Supporting Information for

9-Borafluoren-9-yl and diphenylboron tetracoordinate complexes of F- and Cl-substituted 8-quinolinolato ligands: synthesis, molecular and electronic structures, fluorescence and application in OLED devices

Carina B. Fialho,^{*a*} Tiago F. C. Cruz,^{*a*} Ana I. Rodrigues,^{*a*} Maria José Calhorda,^{*b*} Luís F. Vieira Ferreira,^{*c*} Piotr Pander,^{*d,e,f*} Fernando B. Dias,^{*f*} Jorge Morgado,^{*g,h*} António L. Maçanita,^{*a*}

Pedro T. Gomes*^a

- ^a Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. E-mail: pedro.t.gomes@tecnico.ulisboa.pt
- ^b BioISI Instituto de Biossistemas e Ciências Integrativas, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
- ^c BSIRG Biospectroscopy and Interfaces Research Group, IBB-Institute for Bioengineering and Biosciences, Instituto SuperiorTécnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- ^d Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- ^e Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- ^f Department of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
- ^g Instituto de Telecomunicações, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- ^h Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

Table of Contents

Crystallographic and molecular structure data of boron complexes 3b, 3c, 3d, 4b and 4d	S2
X-ray diffraction structures of complexes 3c	S3
Selected bond lengths and angles for complexes 3b , 3c , 3d , 4b and 4d	S4
NMR spectra	S6
Absorption and emission spectra of complexes 3a-d and 4a-d in THF solution and in ZEONEX film	S19
Absorption and emission spectra of complexes 3a and 4a in solvents of different polarity	S21
Computational studies	S23
Transient emission spectra of complexes 3b, 3c, 4b and 4c in solid films	S28
Electroluminescent devices	S29

Crystallographic and molecular structure data of boron complexes 3b, 3c, 3d, 4b and 4d

	Table ST Crystanographic data for boron complexes 50, 50, 50, 40 and 40.								
	3b	3c	3d	4b	4d				
Formula	$C_{42}H_{26}B_2F_2N_2O_2$	C ₂₁ H ₁₃ BCINO	$C_{21}H_{12}BCl_2NO$	$C_{42}H_{30}B_2FN_2O_3\\$	$C_{21}H_{14}BCl_2NO$				
M (g mol ⁻¹)	650.27	341.58	376.03	651.30	378.04				
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073				
T (K)	150(2)	150(2)	150(2)	150(2)	150(2)				
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic				
Space group	$P2_1/c$	$P2_1/c$	$P2_1/n$	$P2_1/c$	$P2_1/n$				
a (Å)	11.2348(6)	15.228(16)	9.903(2)	10.8807(6)	8.9037(7)				
b (Å)	14.9120(8)	7.863(8)	13.273(2)	28.8313(15)	17.9932(13)				
c (Å)	18.6487(10)	13.804(14)	13.425(3)	11.2931(6)	11.0787(8)				
α (°)	90	90	90	90	90				
β (°)	92.236(2)	96.17(3)	103.851(5)	114.236(2)	102.586(4)				
γ (°)	90	90	90	90	90				
V (Å ³)	3121.9(3)	1643(3)	1713.4(6)	3230.5(3)	1732.2(2)				
Z	4	4	4	8	4				
ρ_{calc} (g cm ⁻³)	1.384	1.381	1.458	1.339	1.450				
Crystal size (mm)	$0.10 \times 0.08 \times 0.08$	0.20×0.15×0.15	0.20×0.10×0.10	$0.12 \times 0.10 \times 0.07$	0.10×0.10×0.05				
θ _{max} (°)	30.173	25.721	25.821	27.269	25.791				
Total data	187527	3366	7789	198612	9992				
Unique data	9198	2040	3145	7197	3247				
R _{int}	0.2476	0.1729	0.0566	0.084	0.0468				
$R[I > 2\sigma(I)]$	0.1694	0.0854	0.0466	0.0606	0.0385				
wR	0.2149	0.1361	0.0744	0.0730	0.0671				
Goodness of fit	1.149	0.797	0.921	1.122	0.863				
ρ_{min}, ρ_{max}	-0.433, 1.084	-0.261, 0.251	-0.284, 0.263	-0.274, 0.741	-0.256, 0.217				

X-ray diffraction structures of complexes 3c

Figure S1 Perspective views of the molecular structures of complex 3c. The calculated hydrogen atoms were omitted for clarity and the ellipsoids were drawn at the 50% probability level.

Selected bond lengths and angles for complexes 3b, 3c, 3d, 4b and 4d

Table S2 Selected experimental and calculated (DFT) bond lengths (Å) and angles (°) for complexes 3b, 3c and 3d. AtomsX1/X2 refer to the halogen atoms in 5 and 7 positions of the 8-hydroxyquinolinate, respectively.

	3b (molecule 1)	3b (molecule 2)	3h (DFT)	30	3d	3d (DFT)
Lanaths (Å)	ob (molecule 1)	SD (molecule 2)	30 (D11)	50	<i>.</i> 50	54 (DI 1)
B(1) - O(1)	1 557(8)	1 517(7)	1 513	1 526(12)	1 527(4)	1 518
B(1)-C(12)	1.615(8)	1.605(8)	1.515	1.520(12) 1.654(14)	1.527(4) 1 500(1)	1.510
B(1)-C(1)	1.570(9)	1.611(8)	1.612	1.00+(1+) 1.600(16)	1.577(4) 1.606(4)	1.609
B(1)-C(1) B(1)-N(1)	1.570(9)	1.611(0)	1.612	1.000(10) 1.608(13)	1.000(4) 1.613(4)	1.609
C(1)-C(2)	1.392(0)	1 395(8)	1.012	1.000(13) 1.380(13)	1.015(4) 1.385(4)	1.386
C(1)-C(2)	1.300(0)	1.375(8) 1.407(8)	1.307	1.380(13) 1.420(12)	1.303(4) 1.402(4)	1.300
C(1)-C(0) C(6) C(7)	1.392(9) 1.488(8)	1.407(8)	1.407	1.439(12) 1.458(14)	1.402(4) 1.480(4)	1.407
C(0)-C(1)	1.407(8)	1.405(0) 1.416(7)	1.470	1.430(14) 1.201(12)	1.400(4) 1.402(4)	1.470
C(1) - C(12)	1.407(8)	1.410(7) 1 380(8)	1.405	1.391(12) 1.295(12)	1.403(4)	1.400
C(11)-C(12) C(12) N(1)	1.377(8) 1.208(7)	1.309(6)	1.307	1.363(13) 1.212(11)	1.390(4) 1.222(2)	1.390
C(15)-IN(1) C(16)-C(21)	1.290(7) 1.272(9)	1.332(0) 1.204(7)	1.320	1.512(11) 1.292(12)	1.522(5) 1.205(4)	1.320
C(16)-C(21)	1.3/3(8) 1.266(0)	1.394(7) 1.428(0)	1.399	1.382(12)	1.395(4)	1.398
C(10)-C(17)	1.300(9)	1.420(9)	1.409	1.441(13)	1.411(4)	1.410
C(17)-C(18)	1.370(8)	1.328(12)	1.367	1.361(13)	1.368(4)	1.372
C(1/)-X(1)	1.426(7)	1.351(8)	1.358	1./44(10)	1.726(3)	1.738
C(18)-C(19)	1.404(8)	1.396(12)	1.416	1.419(13)	1.412(4)	1.413
C(19)-C(20)	1.382(7)	1.374(8)	1.374	1.379(12)	1.367(4)	1.376
C(19)-X(2)	-	-	-	-	1.727(3)	1.730
C(20)-O(1)	1.313(7)	1.340(7)	1.334	1.358(11)	1.327(3)	1.323
C(20)-C(21)	1.442(7)	1.395(7)	1.405	1.402(13)	1.400(4)	1.405
C(21)-N(1)	1.364(7)	1.346(6)	1.348	1.388(11)	1.359(3)	1.350
Analos (°)						
$\Omega(1) - B(1) - C(12)$	113 9(5)	117.7(4)	116.1	110 7(0)	1131(2)	115 5
O(1)- $D(1)$ - $C(12)$	113.7(5)	116.6(5)	116.7	117.7(7) 114.3(0)	113.1(2) 113.2(2)	115.5
C(1)- $D(1)$ - $C(1)$	102.2(5)	100.0(3)	100.7	114.3(9) 101 5(8)	113.2(2) 100.8(2)	100.7
C(12)- $D(1)$ - $C(1)$	08.0(4)	08.8(4)	00.4	101.5(8)	100.8(2)	00.7
O(1)-D(1)-IN(1) O(12) D(1) N(1)	112.9(5)	30.0(4)	99.4 112.6	99.9(8) 109.5(9)	99.5(2)	112.9
C(12)- $B(1)$ - $N(1)$	115.0(3) 115.2(5)	111.2(4) 112.0(4)	112.0	108.5(8)	11/.1(2) 114.1(2)	112.0
C(1)-D(1)-IN(1) C(2)-C(1)-C(6)	113.3(3) 119.5(6)	112.0(4) 110.1(5)	112.2	113.3(9)	114.1(2)	115.0
C(2)-C(1)-C(0)	118.3(0)	119.1(5)		118.7(10)	118.4(3)	
C(2)-C(1)-B(1)	132.4(0)	132.0(5)		133.6(9)	132.0(3)	
C(6)-C(1)-B(1)	109.0(5)	108.9(5)		107.6(9)	108.9(2)	
C(1)-C(6)-C(7)	110.5(5)	110.5(5)		110.8(9)	110.3(2)	
C(11)-C(12)-C(7)	118.3(5)	119.1(5)		121.6(9)	117.9(3)	
C(11)-C(12)-B(1)	134.9(5)	132.4(5)		131.8(9)	133.2(3)	
C(7)-C(12)-B(1)	106.7(5)	108.5(5)		106.6(9)	108.7(2)	
C(21)-C(16)-C(17)	114.5(6)	113.0(6)		112.7(9)	114.4(2)	
C(18)-C(17)-C(16)	122.3(6)	122.2(7)		120.9(9)	121.5(3)	
C(18)-C(17)-X(1)	120.8(6)	121.9(7)		121.6(8)	119.7(2)	
C(16)-C(17)-X(1)	116.8(5)	115.9(7)		117.6(8)	118.8(2)	
C(17)-C(18)-C(19)	124.0(6)	123.3(6)		124.1(10)	121.3(3)	
C(20)-C(19)-C(18)	115.9(5)	117.6(7)		116.6(10)	119.9(2)	
C(20)-C(19)-X(2)	-	-		-	120.6(2)	
C(18)-C(19)-X(2)	-	-		-	119.4(2)	
O(1)-C(20)-C(19)	129.1(5)	129.7(6)		127.5(10)	130.0(2)	
O(1)-C(20)-C(21)	113.1(5)	112.0(4)		114.2(8)	113.2(2)	
C(19)-C(20)-C(21)	117.8(5)	118.3(6)		118.1(9)	116.8(2)	
N(1)-C(21)-C(16)	126.0(5)	123.7(5)		124.1(9)	123.8(2)	
N(1)-C(21)-C(20)	108.5(5)	110.8(5)		108.5(9)	110.1(2)	
C(16)-C(21)-C(20)	125.5(5)	125.4(5)		127.5(9)	126.1(2)	
C(13)-N(1)-C(21)	119.7(5)	119.5(5)		117.8(9)	119.3(2)	
C(13)-N(1)-B(1)	130.7(5)	132.6(4)		133.7(9)	133.3(2)	
C(21)-N(1)-B(1)	109.5(5)	107.9(4)		108.4(8)	107.4(2)	
C(20)-O(1)-B(1)	110.0(4)	110.5(4)		108.9(7)	109.7(2)	

	4b (molecule 1)	4b (molecule 2)	4d	4d (DFT)
Lengths (Å)				
B(1)-O(1)	1.538(3)	1.530(3)	1.544(3)	1.532
B(1)-C(12)	1.619(3)	1.606(3)	1.595(4)	1.609
B(1)-C(1)	1.599(3)	1.612(3)	1.597(4)	1.607
B(1)-N(1)	1.628(3)	1.631(3)	1.623(3)	1.623
C(1)-C(2)	1.401(3)	1.399(3)	1.393(3)	1.397
C(1)-C(6)	1.402(3)	1.403(3)	1.396(3)	1.399
C(7)-C(12)	1.396(3)	1.401(3)	1.399(3)	1.399
C(11)-C(12)	1.395(3)	1.402(3)	1.397(3)	1.398
C(13)-N(1)	1.320(3)	1.324(3)	1.319(3)	1.320
C(16)-C(21)	1.400(3)	1.398(3)	1.396(3)	1.399
C(16)-C(17)	1.399(3)	1.415(3)	1.418(3)	1.416
C(17)-C(18)	1.366(3)	1.358(4)	1.368(3)	1.373
C(17)-X(1)	1.367(3)	1.363(3)	1.732(2)	1.738
C(18)- $C(19)$	1.420(3)	1.420(3)	1407(3)	1.412
C(10) = C(20)	1.120(3) 1.372(3)	1.377(3)	1.407(3) 1.372(3)	1 377
C(19) - C(20)	-	-	1.372(3) 1.726(2)	1 731
C(20) - O(1)	1 330(3)	$\frac{1}{1}$ 340(2)	1.720(2) 1.326(3)	1 320
C(20) - O(1)	1.330(3) 1.420(3)	1.3+0(2) 1/12(3)	1.520(3) 1.402(2)	1.520
C(20)-C(21)	1.420(3) 1.250(2)	1.412(3) 1.252(2)	1.402(3)	1.400
C(21)-IN(1)	1.550(5)	1.333(2)	1.330(3)	1.349
Angles (°)				
O(1)-B(1)-C(12)	107.96(16)	111.12(16)	108.9(2)	110.8
O(1)-B(1)-C(1)	111.32(16)	110.29(15)	111.3(2)	111.0
C(12)-B(1)-C(1)	117.08(17)	117.21(16)	116.7(2)	115.5
O(1)-B(1)-N(1)	98.40(15)	98.66(14)	98.4(2)	98.5
C(12)-B(1)-N(1)	109.03(16)	108.42(15)	111.6(2)	110.5
C(1)-B(1)-N(1)	111.39(16)	109.52(15)	108.4(2)	109.1
C(2)-C(1)-C(6)	117.09(18)	116.52(19)	116.7(2)	
C(2)-C(1)-B(1)	120.61(18)	123.24(18)	122.0(2)	
C(6)-C(1)-B(1)	122.30(18)	120.08(18)	121.3(2)	
C(11)-C(12)-C(7)	116.56(18)	116.97(18)	116.3(2)	
C(11)- $C(12)$ - $B(1)$	122.65(18)	120.62(17)	1251(2)	
C(7)- $C(12)$ - $B(1)$	122.03(10) 120.08(17)	120.02(17) 122.38(17)	123.1(2) 118.6(2)	
C(21) = C(12) = D(1)	114 6(2)	113 7(2)	114.5(2)	
C(18) - C(17) - C(16)	121 Q(2)	122 5(2)	121 - 3(2) 121 - 2(2)	
C(10) - C(17) - C(10) C(18) - C(17) - V(1)	121.7(2) 121.2(2)	122.3(2) 120.4(2)	121.2(2) 120.8(2)	
C(10)-C(17)-A(1)	121.3(2) 116.8(2)	120.4(2) 117 1(2)	120.0(2) 118.0(2)	
C(10)-C(17)-A(1)	110.0(2) 122.6(2)	117.1(2) 122.0(2)	110.0(2) 121.5(2)	
C(17) - C(18) - C(19)	122.0(2)	122.0(2)	121.3(2)	
C(20)- $C(19)$ - $C(18)$	117.7(2)	118.3(2)	120.2(2)	
C(20)- $C(19)$ - $X(2)$	-	-	120.0(2)	
C(18)-C(19)-X(2)	-	-	119.8(2)	
O(1)-C(20)-C(19)	129.6(2)	129.8(2)	130.0(2)	
O(1)-C(20)-C(21)	112.00(18)	112.31(17)	113.4(2)	
C(19)-C(20)-C(21)	118.4(2)	117.9(2)	116.6(2)	
N(1)-C(21)-C(16)	124.47(18)	123.65(19)	123.9(2)	
N(1)-C(21)-C(20)	110.76(17)	110.70(17)	110.2(2)	
C(16)-C(21)-C(20)	124.77(19)	125.64(19)	125.9(2)	
C(13)-N(1)-C(21)	119.18(18)	119.49(17)	119.3(2)	
C(13)-N(1)-B(1)	133.13(18)	132.76(16)	132.7(2)	
C(21)-N(1)-B(1)	107.52(16)	107.74(15)	108.0(2)	
C(20) = O(1) = B(1)	110.35(15)	110.55(15)	109.9(2)	

Table S3 Selected experimental and calculated (DFT) bond lengths (Å) and angles (°) for complexes 4b and 4d. AtomsX1/X2 refer to the halogen atoms in 5 and 7 positions of the 8-hydroxyquinolinate.

NMR spectra

Figure S3 ¹³C APT NMR (CD₂Cl₂, 75 MHz) spectrum of complex 3a.

Figure S5 ¹H NMR (THF-*d*₈, 300 MHz) spectrum of complex 3b.

Figure S6¹³C APT NMR (THF-*d*₈, 75 MHz) spectrum of complex 3b.

Figure S7¹¹B NMR (THF-*d*₈, 96 MHz) spectrum of complex 3b.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Figure S9 ¹H NMR (CD₂Cl₂, 300 MHz) spectrum of complex 3c.

Figure S11¹¹B NMR (CD₂Cl₂, 96 MHz) spectrum of complex 3c.

Figure S13 ¹³C APT NMR (THF-*d*₈, 75 MHz) spectrum of complex 3d.

Figure S15 ¹H NMR (CD₂Cl₂, 300 MHz) spectrum of complex 4a.

Figure S17¹¹B NMR (CD₂Cl₂, 96 MHz) spectrum of complex 4a.

Figure S19 ¹³C APT NMR (CD₂Cl₂, 75 MHz) spectrum of complex 4b.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Figure S21 $^{19}F\{^{1}H\}$ NMR (CD₂Cl₂, 282 MHz) spectrum of complex 4b.

Figure S23 ¹³C APT NMR (CD₂Cl₂, 75 MHz) spectrum of complex 4c.

Figure S25 ¹H NMR (CD₂Cl₂, 300 MHz) spectrum of complex 4d.

40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 f1 (ppm)

Figure S27 ^{11}B NMR (CD_2Cl_2, 96 MHz) spectrum of complex 4d.

Absorption and emission spectra of complexes 3a-d and 4a-d in THF solution and in ZEONEX film

Figure S28 Normalised absorption and emission spectra of complexes 3a-d and 4a-d in THF solution (OD_{max} < 0.2 at λ_{abs}^{max} ; $c < 8 \times 10^{-5}$ M) and in film (ZEONEX 480R, 1% wt), at 293 K.

Absorption and emission spectra of complexes 3a and 4a in solvents of different polarity

			Co	omplex 3a		Complex 4a			
Solvent	εμ		Stokes shift (cm ⁻¹)	λ_{abs}^{\max} (nm)	λ_{em}^{\max} (nm)	Stokes shift (cm ⁻¹)	λ_{abs}^{\max} (nm)	λ_{em}^{\max} (nm)	
ZEONEX 480R	2.34	-	4929	405	506	4650	407	502	
Toluene	2.379	0.31	5583	400	515	5507	400	513	
Dichloromethane	9.08	1.14	5772	397	515	5888	394	513	
THF	7.58	1.75	5809	397	516	6102	393	517	
Acetonitrile	38.8	3.44	6579	388	521	6431	388	517	

Table S4 Absorption and emission maxima of complexes **3a** and **4a** and corresponding Stokes shifts in solvents of different polarity(dielectric constant ε ; dipole moment μ).

Figure S29 Normalised absorption and emission spectra of solutions of complex 3a at 293 K. Solvents are indicated in the figure legend.

Figure S30 Normalised absorption and emission spectra of solutions of complex 4a at 293 K. Solvents are indicated in the figure legend.

Computational studies

Figure S31 Optimised geometries of complexes 3a-3d and 4a-4b in the S0 state (ground state) with relevant distances (Å).

Figure S32 Optimised geometries of complexes 3a-3d and 4a-4b in the S₁ state (first singlet excited state) with relevant distances (Å).

Figure S33 Optimised geometries of complexes 3a-3d and 4a-4b in the T_1 state (first triplet excited state) with relevant distances (Å).

Figure S34 Frontier molecular orbitals (HOMO-1, HOMO and LUMO) of complexes 3a-3b and 4a-4c, with their energies in eV.

Table S5 Calculated HOMOs and LUMOs energies (eV) for complexes 3a-3d and 4a-4d using different methods.

	GP		TI	HF	CH	$_2$ Cl ₂	A	ł	A/.	D3	I	3	B /	D3
	номо	LUMO	номо	LUMO	номо	LUMO	номо	LUMO	номо	LUMO	номо	LUMO	номо	LUMO
3a	-0.2707	-0.0995	-0.2709	-0.0993	-0.2568	-0.1021	-0.2559	-0.1018	-0.2259	-0.1459	-0.2320	-0.1317	-0.2321	-0.1310
3b	-0.2709	-0.1049	-0.2710	-0.1046	-0.2564	-0.1080	-0.2565	-0.1076	-0.2285	-0.1531	-0.2304	-0.1410	-0.2301	-0.1402
3c	-0.2714	-0.1062	-0.2716	-0.1060	-0.2568	-0.1088	-0.2570	-0.1085	-0.2298	-0.1541	-0.2308	-0.1398	-0.2326	-0.1415
3d	-0.2728	-0.1102	-0.2730	-0.1101	-0.2580	-0.1128	-0.2581	-0.1126	-0.2326	-0.1606	-0.2353	-0.1458	-0.2349	-0.1449
4a	-0.2741	-0.0990	-0.2741	-0.0989	-0.2603	-0.1015	-0.2604	-0.1013	-0.2367	-0.1458	-0.2345	-0.1360	-0.2343	-0.1353
4b	-0.2729	-0.1043	-0.2729	-0.1042	-0.2602	-0.1071	-0.2603	-0.1068	-0.2358	-0.1529	-0.2314	-0.1408	-0.2311	-0.1401
4c	-0.2735	-0.1057	-0.2736	-0.1055	-0.2607	-0.1082	-0.2607	-0.1082	-0.2394	-0.1545	-0.2339	-0.1421	-0.2335	-0.1530
4d	-0.2765	-0.1096	-0.2766	-0.1095	-0.2640	-0.1120	-0.2642	-0.1119	-0.2436	-0.1603	-0.2366	-0.1454	-0.2362	-0.1446

A – PBE0, TZP (all electron), THF, SO
A/D3 – PBE0/D3, TZP (all electron), THF, SO
B – B3LYP, TZP (all electron), THF, SO
B/D3 – B3LYP/D3, TZP (all electron), THF, SO
GP – BP86 (small core, T2ZP)
THF – BP86 (small core, T2ZP), THF (single point)
CH₂Cl₂ – BP86 (small core, T2ZP), dichloromethane (single point)

Table S6. DFT calculated (THF and vacuum) and experimental (THF and ZEONEX 480R) values of wavelength maximum (λ_{abs}^{max}) of the absorption band of boron complexes **3a-3d** and **4a-4d**, and their dipole moments in S₀, non-relaxed S₁', and S₁

	λ_{abs}^{\max} (nm)		(nm)	λ_{abs}^{\max} (nm	λ_{abs}^{\max} (nm)				μ (D)			
Complex	\mathbb{R}^1	\mathbb{R}^2	THF		ZEONEX 480R	vacuum		\mathbf{S}_0	\mathbf{S}_1	$\mathbf{S}_{1}'{}^{a}$		
		-	exp	calc	exp	calc		calc	calc	calc		
4 a	Н	Н	397	383	407	402		7.60	7.63	6.08		
3 a	Н	Η	397	378	405	398		8.10	8.81	5.98		
4 b	F	Н	412	399	423	418		5.96	6.33	4.36		
3 b	F	Н	413	401	424	418		6.42	6.82	4.30		
4 c	Cl	Н	409	400	422	417		5.79	5.96	5.05		
3c	Cl	Н	413	399	422	414		6.23	6.44	4.95		
4d	Cl	Cl	407	401	422	417		7.48	7.57	4.82		
3d	Cl	Cl	411	400	422	423		7.86	8.04	4.70		

states.

^{*a*} S₁' is the non-relaxed singlet excited state (calculated at the S₀ relaxed geometry).

Transient emission spectra of complexes 3b, 3c, 4b and 4c in solid films

Figure S35 Transient emission spectra of complexes 3b,c and 4b,c in ZEONEX 480R films (1% wt) at room temperature (*ca.* 293 K) (left) and at 77 K (right). All spectra were recorded with a start delay (SD) of 20.1 μs (blue curve) and recorded every 20 μs (Step), with the use of a large gate width (GW=10 ms).

Figure S36 Characteristics of OLED devices: current efficiency vs. current density.

Figure S37 Characteristics of OLED devices: external quantum efficiency (EQE) vs. luminance.

Figure S38 Characteristics of OLED devices: current density vs. voltage.

Figure S3839 Graphical representation of the architecture of OLEDs **3a**, **3c**, **3d**, **4a**, **4c**, and **4d**: ITO | HAT-CN (10 nm) | TSBPA (40 nm) | mCP (2 nm) | mCP co 10% **emitter** (20 nm) | PO-T2T (5 nm) | TPBi (40 nm) | LiF (0.8 nm) | Al (100 nm). Numerical values represent the HOMO (bottom) and LUMO (top) energy of the respective molecule.

Figure S40 Graphical representation of the architecture of OLEDs **3a opt.** and **4a opt.**: ITO | HAT-CN (10 nm) | TSBPA (40 nm) | mCP (2 nm) | mCP:PO-T2T (80:20) co 10% **emitter** | PO-T2T (5 nm) | TPBi (40 nm) | LiF (0.8 nm) | Al (100 nm). Numerical values represent the HOMO (bottom) and LUMO (top) energy of the respective molecule.