Supporting Information

Halloysite Nanotubes Enhance the Mechanical Properties and

Thermal Stability of Iridescent Cellulose Nanocrystal Films

Huan Gao,^{a,b} Miguel A. Soto,^a Joanna K. Szymkowiak,^a Lucas J. Andrew,^a Wadood Y.

Hamad ^c and Mark J. MacLachlan^{a,d,e,f*}

^a Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.

^b Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China

^c Transformation and Interfaces Group, Bioproducts, FPInnovations, 2665 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada

^d Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4 Canada

^e WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan

^f Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada

mmaclach@chem.ubc.ca

Table of Contents

1.	TEM image of CNCs	.S2
2.	TEM image of HNTs	.S2
3.	Photographs of HNT and CNC suspensions	.S3
4.	Zeta potentials	.S3
5.	Mapping images of films	.S4
6.	FTIR spectra	.S5
7.	Photographs, SEM images and POM images	.S5
8.	Normalized CD and reflectance spectra	.S6

Fig. S1 TEM images of CNC1 (A) and CNC2 (B).

Fig. S2 TEM image of HNTs.

Fig. S3 Photographs (from left to right) of HNTs, **CNC1**, **CNC1** mixed with 1 wt. %, 3 wt. %, 5 wt. % and 10 wt. % HNTs suspensions before (A) and after (B) standing for one day. Photographs (from left to right) of HNTs, **CNC2**, and **CNC2** mixed with 1 wt. %, 3 wt. %, 5 wt. %, and 10 wt. % HNTs suspensions before (C) and after (D) standing for one day.

Fig. S4 Zeta potentials of HNTs, **CNC1**, **CNC1**/HNTs, **CNC2** and **CNC2**/HNTs suspensions. Error bars are the standard deviation of measurements on three samples.

Fig. S5 (A, B) SEM images and corresponding SEM-EDS mapping of **CNC1** mixed with 5 wt. % HNTs composite film. A and B correspond to two different regions of the film.

Fig. S6 (A, B) SEM images and corresponding SEM-EDS mapping of **CNC1** mixed with 10 wt. % HNTs composite film. A and B correspond to two different regions of the film.

Fig. S7 (A) FTIR spectra and (B) PXRD patterns of films prepared from HNTs and **CNC2**. The spectral traces correspond to: film made from **CNC2** (B) and **CNC2** mixed with 1 wt. %, 3 wt. %, 5 wt. % and 10 wt. % HNTs. Standard cards of HNTs (01-081-9524) and CNCs (00-056-1718) are from the JCPD database.

Fig. S8 (A) Photographs of prepared films, (B) SEM images, and (C) POM images of the series of composite films made using CNC2. Panels a to e: CNC2 film (a), composite films made from CNC2 mixed with 1 wt. % (b), 3 wt. % (c), 5 wt. % (d) and 10 wt. % (e) HNTs.

Fig. S9 (A) Normalized CD spectra of pristine **CNC1** film (a) and composite films of **CNC1** mixed with 1 wt. % HNTs (b), 3 wt. % HNTs (c), 5 wt. % HNTs (d) and 10 wt. % HNTs (e). (B) Normalized reflectance spectra of pristine **CNC1** film (a) and composite films prepared from **CNC1** mixed with 1 wt. % HNTs (b), 3 wt. % HNTs (c), 5 wt. % HNTs (d) and 10 wt. % HNTs (e).