Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Highly efficiency CsPbBr₃@glass@polyurethane Composite Film for Flexible Liquid Crystal Displays Backlight

Guoxing Zhang¹, Dongliang Jiang¹, Xinghua Zhu¹, Yuemei Lan¹, Dong Wang¹, Xuejie Zhang², Bo Wang¹, Yan Gao¹, Qingguang Zeng¹, Yan Chen^{1*}

¹ School of Applied Physics and Materials , Wuyi University, Jiangmen, Guangdong 529020, P. R. China

² College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

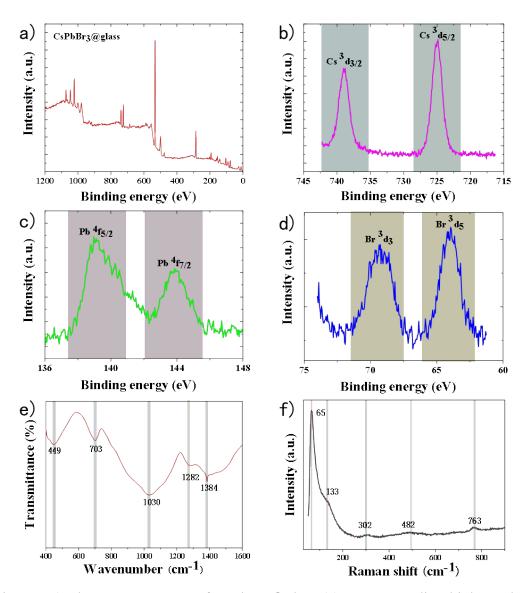


Fig. S1. a) The XPS spectrum of CsPbBr₃@glass (a). Corresponding high-resolution spectra of Cs (b), Pb (c), Br (d). The FTIR spectrum (e) and Raman spectrum (f) of CsPbBr₃@glass.