1 Electronic Supplementary Information

2 Carbon dioxide sequestration by mineral carbonation via iron complexation

3 using bipyridine chelating ligands

4 Javier F. Reynes^a*, Guy Mercier^b, Jean-François Blais^b, Louis-César Pasquier^b

5 a. Departamento de Química Orgánica e Inorgánica, Facultad de Química,Universidad de Oviedo, Av. Julián Clavería, 8, 6 33006 Oviedo, Asturias, Spain

b. Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la
8 Couronne, Québec G1K 9A9, Canada

9 *Corresponding author. E-mail addresses : (J.F.Reynes) fernandezreyjavier@uniovi.es, javier.reynes@hotmail.com

1. Materials and Methods

1.1 Synthesis

Table S1. Buffer solution preparation and pH measured.

		Theoretical		NaOH 0.1M	HCI 0.1M
Compound name	Buffer Solution	Buffer	рН	added (ml)	added
		Solution pH	measure		(ml)
Sodium Chloride	50 ml 0.2 M NaCl	1	1.01	0	0
Hydrochlorid acid	134 ml 0.2 M HCl				
Sodium Chloride	51 ml 0.2 M NaCl	2	1.90	0	0
Chlorhydric acid	13 ml 0.2 M HCl				
Potassium hydrogen phthalate	100 ml 0.1 M C ₈ H ₅ KO ₄	3	3.05	0	0
Hydrochlorid acid	44.6 ml 0.1 M HCl	_			
Acetic Acid	164 ml 0.1 M CH ₃ COOH	4	3.90	0	0
Sodium Acetate	$36 \text{ ml} 0.1 \text{ M} \text{ C}_2\text{H}_3\text{NaO}_2$	-			
Acetic Acid	59 ml 0.1 M CH₃COOH	5	4.98	0	0
Sodium Acetate	141 ml 0.1 M C ₂ H ₃ NaO ₂				
Potassium dihydrogen	50 ml 0.2 M KH ₂ PO ₄	6	6.00	7	0
phosphate	100 ml 0 2 M NoOU	_			
Potassium dihydrogen phosphate	50 ml 0.2 M KH ₂ PO ₄	/	7.01	19	0
Sodium hydroxide	100 ml 0.2 M NaOH	-			
Potassium dihydrogen phosphate	50 ml 0.2 M KH ₂ PO ₄	8	8.00	28	0
Sodium hydroxide	100 ml 0.2 M NaOH	_			
Borax	100 ml 0.025 M	9	9.02	0	16
	$Na_2[B_4O_5(OH)_4]\cdot 8H_2O$	-			
Hydrochlorid acid	9.2 ml 0.1 M HCl				
Borax	47 ml 0.025 M	10	10.10	0	0
	$Na_2[B_4O_5(OH)_4]\cdot 8H_2O$	_			
Sodium hydroxide	250 ml 0.1 M NaOH				
Sodium hydrogen carbonate	34.2 ml 0.05 M NaHCO $_3$	11	11.04	0	0
Sodium hydroxide	45.4 ml 0.2M NaOH				
Sodium hydrogen carbonate	100 ml 0.05 M NaHCO $_3$	12	12.02	0	0
Sodium hydroxide	48.4 ml 0.2M NaOH	_			

2. Results and Discussion

18 2.1 IR spectra of the $[Fe(bipy)_3]^{2+}$ complex solution

- 19 IR spectroscopy analysis of the $[Fe(bipy)_3]^{2+}$ complex at its natural pH (3.27) and ambient temperature was
- performed in order to confirm the complex formation.

Figure S1. IR spectra of the $[Fe(bipy)_3]^{2+}$ complex solution (0.5 M) at its natural pH (3.27) and ambient temperature.

25 2.2 pH-dependent stability of [Fe(bipy)₃]²⁺

UV-VIS spectroscopy analysis of the [Fe(bipy)₃]²⁺ complex at each pH were done to study its long-term stability

27 after 7 days (Figure S2).

31

35

32 2.3 SEM Images and EDS analysis

- 33 SEM-EDS analysis of the FeCO $_3$ obtained at three different temperatures (21, 60 and 80 $^{\circ}$ C) were performed in
- 34 order to study the particle morphology and composition (Figure S3)

- 36 Figure S3. EDS elemental mapping analysis of samples prepared at 21, 60 and 80 °C, using a polished section of the
- $37 \quad \text{solid precipitate formed in the carbonation reaction} \\$