A cycle-durable hollow nanoneedle structure with a nanosheet as a conductive substrate

CoS_{1.097}/Ni₉S₈@RGO to enhance supercapacitor performance

Yanmin Wang^a, Chong Sun^a, Hu Zhao^a, Jinlong Cui^a, Yongqiang Zhang^{a*}, Wenxiu He^{a*}

School of Chemistry and Chemical Engineering, Inner Mongolia University of Science &

Technology, Baotou, Inner Mongolia 014010, China

* Corresponding author at: E-mail address: wenxiu_he@foxmail.com;

yongqiang_zhang1203@foxmail.com.

References

- 1 Y. Chen, L.J. Wang, H. Gan, Y.H. Jiang, J.B. Feng, J.Q. Liu, X.C. Shi, J. Energy. Storage., 2022, 47, 103625.
- 2 Y.D. Miao, X.P. Zhang, J. Zhan, Y.W. Sui, J.Q. Qi, F.X. Wei, Q.K. Meng, Y.Z. He, Y.J. Ren, Z.Z. Zhan, Z. Sun, Adv. Mater. Interaces., 2020, 3, 1901618.
- 3 C. Huang, A.M. Gao, Z.H. Zhu, F.Y. Yi, M.Y. Wang, J.N. Hao, H.H. Cheng, J.Z. Ling, D. Shu, Electrochim. Acta., 2022, 406, 139872.
- 4 C. Sambathkumar, S. Sudhahar, P. Devendran, J. Alloy. Compd., 2022, 920, 165839.
- 5 Y.T. Wang, X.F. He, X.M. Chen, Y. Zhang, F.T. Li, Y. Zhou, C. Meng, Appl Surf. Sci., 2022, 596, 153600.

Current densities / A g ⁻¹		2-CSNS	1.05NG
samples / C g ⁻¹	2-CSNS@RGU		1-C21/2
1	1650.13	1522.80	1370.74
2	1583.04	1392.60	1270.61
4	1480.96	1301.20	1151.73
6	1452.00	1243.20	1070.73
8	1396.91	1205.60	1014.62
10	1352.40	1172.00	961.60
20	1220.80	1066.00	831.36
rate performance	74.0 %	69.9 %	60.6 %

Table. S1 The specific capacitance values of different electrodes at 1 to 20 A $g^{\mbox{--}1}$

Current densities / A g ⁻¹		2-CSNS//AC	
samples / F g ⁻¹	2-CSNS@KGU//AC		
0.8	247.58	224.86	
1.6	225.90	185.37	
3.2	197.78	147.32	
4.8	178.18	134.80	
6.4	161.66	115.51	
8	149.26	94.08	
12	127.99	74.14	
rate performance	51.7 %	33.0 %	

Table. S2 The specific capacitance values of 2-CSNS//AC and 2-CSNS@RGO//AC at 1 to 20 A $\,$

g⁻¹

Supercapacitors	Potential window (V)	Maximum energy density (Wh kg ⁻¹)	Power density (kW kg ⁻¹)	Retention (%) cycling Number current density	Refs.
NiCo ₂ S ₄ @NiS/CoS//Fe ₃ O ₄ NSs@ERGO	1.6	58.44	0.8002	86.4% after 10,000 times at 20 A g ⁻¹	1
NiS@CoS//AC	1.5	24.1	0.7521	80% after 5000 times at 5 A g ⁻¹	2
Ni _x Co _{1-x} S/C-3//AC	1.5	45.31	0.748	91.0% after 8000 times at 50 mV s ⁻¹	3
Co ₉ S ₈ //AC	1.7	15.47	0.1275	81.3% after 7000 times at 7 A g ⁻¹	4
NCS-1//AC	1.6	29.3	0.4	87.27% after 3000 times at 4 A g ⁻¹	5
2-CSNS//AC	1.6	79.95	0.80	-	This work
2-CSNS@RGO//AC	1.6	88.0	0.80	131.6% after 30000 times at 10 A g ⁻¹	This work

Table. S3 Characteristics of supercapacitors in literature and this paper

Fig. S1. (a) the CV of the 1-CSNS electrodes at scan rates of 5, 10, 20, 30, 40 and 50 mV s⁻¹, (b) the CV of the 2-CSNS and 2-CSNS@RGO electrodes was performed at scan rates of 5, 10, 20, 30, 40 and 50 mV s⁻¹, (c) the CV of the 2-CSNS@RGO electrodes was performed at scan rates of 5, 10, 20, 30, 40 and 50 mV s⁻¹.

Fig. S2. (a) the GCD of 1-CSNS electrodes 1 to 20 A g^{-1} , (b) the GCD of 2-CSNS electrodes 1 to 20 A g^{-1} , (c) the GCD of 2-CSNS@RGO electrodes 1 to 20 A g^{-1} .

Fig. S1.

Fig. S2.