Supporting Information

Polarity-extended 8–N^{eff} rule for semiconducting main-group compounds with the TiNiSi type of crystal structure

Riccardo Freccero,*[a,b] Yuri Grin,[a] and Frank R. Wagner *[a]

^[a] Max Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, 01187 Dresden, Germany; email: frank.wagner@cpfs.mpg.de

^[b] Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, I-16146 Genova, Italy; email: riccardo.freccero@unige.it

	Experimental	Relaxed			
Compound	a h c	V	abc	V	Band
AA'E	(Å)	$(\text{\AA}^3 f. u.^{-1})$	(Å)	$(\text{\AA}^3 f. u.^{-l})$	gap (eV)
Be_2C ‡ ¹	4.340(2)	20.44	4.341	20.45	1.16
$Mg_2C \ddagger 2$	5.4480(4)	40.42	5.460	40.69	0.74
$Mg_2Sn \ddagger 3$	6.76648(2)	77.45	6.816	79.16	0.00
$Ba_2Ge \ddagger$	hypothetic	_	8.006	128.29	0.04
Ca_2Si^{4}	7.6910(3) 4.8174(1) 9.0477(3)	83.81	7.614 4.821 9.038	82.94	0.29
$Ca_2Ge^{\dagger 5}$	7.734(7) 4.834(4) 9.069(9)	84.76	7.675 4.857 9.090	84.71	0.31
$Sr_2Si \dagger 6$	8.11(2) 5.15(2) 9.54(2)	99.61	8.120 5.143 9.595	100.17	0.36
$Sr_2Ge^{\dagger 7}$	8.13(2) 5.20(6) 9.58(2)	101.25	8.178 5.188 9.653	102.39	0.39
Ba ₂ Si † ⁸	8.43(2) 5.40(2) 9.88(2)	112.44	8.448 5.375 10.096	114.61	0.07
Ba ₂ Ge † ⁹	8.38(2) 5.48(2) 10.04(2)	115.26	8.487 5.433 10.169	117.22	0.05
Ba ₂ Pb ¹⁰	8.651(1) 5.691(2) 10.618(2)	130.69	8.768 5.763 10.759	135.91	0.05
CaMgSi † 11	7.4825(3) 4.4319(2) 8.3133(3)	68.92	7.474 4.433 8.318	68.90	0.04
CaMgGe † ¹²	7.62(2) 4.42(2) 8.34(2)	70.22	7.529 4.464 8.418	70.73	0.00
CaMgSn † ¹²	7.86(2) 4.66(2) 8.74(2)	80.03	7.875 4.720 8.818	81.94	0.02
SrMgGe ¹²	7.80(2) 4.56(2) 8.55(2)	76.03	7.874 4.631 8.635	78.72	0.12
CaLiAs † ¹³	7.233(3) 4.313(1) 7.895(3)	61.57	7.253 4.311 7.976	62.35	1.19
CaLiSb ¹³	7.643(1) 4.632(1) 8.292(1)	73.39	7.663 4.639 8.336	74.08	0.65
CaLiBi † ¹³	7.7294(9) 4.7134(6) 8.422(1)	76.71	7.813 4.735 8.530	78.89	0.55
SrLiAs † ¹⁴	7.6458(2) 4.5158(1) 8.0403(3)	69.40	7.647 4.519 8.152	70.43	1.13
NaLiSe † ¹⁵	7.174(4) 4.249(2) 7.716(2)	58.80	7.206 4.270 7.779	59.84	2.44
NaLiTe † ¹⁶	7.740(1) 4.624(2) 8.406(1)	75.21	7.720 4.598 8.358	74.17	2.30
KNaSe † ¹⁶	8.063(2) 4.817(1) 8.651(2)	84.00	8.149 4.833 8.798	86.62	2.01

Table S1. Lattice parameters, cell volume per formula unit (f.u.) and calculated band gaps for AA'E compounds studied.

† TiNiSi structure type; ‡ CaF₂ structure type;

Table S2. Atomic (according to the periodic table of the elements PTE) and ELI-D core populations $N_{core}^{PTE}(X)$ and $N_{core}^{ELI}(X)$, respectively, for each atomic species in $A^1A'^1E^{14}$ compounds, and the corresponding the valence shell defects $N_{vdef}^{ELI}(X)$.

Compound	Species X	$N_{core}^{PTE}(X)$	$N_{core}^{ELI}(X)$	$N_{vdef}^{ELI}(X)$
	Ca	18	18.29	-0.29
CaMgSi †	Mg	10	10.07	-0.07
	Si	10	10.07	-0.07
	Ca	18	18.29	-0.29
CaMgGe †	Mg	10	10.07	-0.07
	Ge	28	27.72	+0.28
	Ca	18	18.29	-0.29
CaMgSn †	Mg	10	10.06	-0.06
	Sn	46	45.77	+0.23
	Sr	36	36.30	-0.30
SrMgGe †	Mg	10	10.07	-0.07
	Ge	28	27.73	+0.27

Table S3 Atomic (according to the periodic table of the elements PTE) and ELI-D core populations $N_{core}^{PTE}(X)$ and $N_{core}^{ELI}(X)$, respectively, for each atomic species in $A^2A'^1E^{15}$ compounds, and the corresponding valence shell defects $N_{vdef}^{ELI}(X)$.

Compound	Species X	$N_{core}^{PTE}(X)$	$N_{core}^{ELI}(X)$	$N_{vdef}^{ELI}(X)$
	Ca	18	18.29	-0.29
CaLiAs †	Li	2	2.04	-0.04
	As	28	27.76	+0.24
	Ca	18	18.28	-0.28
CaLiSb †	Li	2	2.04	-0.04
	Sb	46	45.76	+0.24
	Ca	18	18.29	-0.29
CaLiBi †	Li	2	2.04	-0.04
	Bi	78	77.65	+0.35
	Sr	36	36.29	-0.29
SrLiAs †	Li	2	2.04	-0.04
	As	28	27.76	+0.24

Table S4. Atomic (according to the periodic table of the elements PTE) and ELI-D core
populations $N_{core}^{PTE}(X)$ and $N_{core}^{ELI}(X)$, respectively, for each atomic species in $A^2A'^2E^{16}$
compounds, and the corresponding valence shell defects $N_{vdef}^{ELI}(X)$.

Compound	Species X	$N_{core}^{PTE}(X)$	$N_{core}^{ELI}(X)$	$N_{vdef}^{ELI}(X)$
	Na	10	10.04	-0.04
NaLiSe †	Li	2	2.04	-0.04
	Se	28	27.78	+0.22
	Na	10	10.05	-0.05
NaLiTe †	Li	2	2.04	-0.04
	Te	46	45.74	+0.26
	Κ	18	18.10	-0.10
KNaSe †	Na	10	10.05	-0.05
	Se	28	27.78	+0.22

Table S5. Atomic (according to the periodic table of the elements PTE) and ELI-D core populations $N_{core}^{PTE}(X)$ and $N_{core}^{ELI}(X)$, respectively, for each atomic species in $A_2^2 E^{14}$ compounds, and the corresponding valence shell defects $N_{vdef}^{ELI}(X)$.

Compound	Species X	$N_{core}^{PTE}(X)$	$N_{core}^{ELI}(X)$	$N_{vdef}^{ELI}(X)$
	Cal	18	18.29	-0.29
Ca ₂ Si †	Ca2	18	18.27	-0.27
	Si	10	10.07	-0.07
	Cal	18	18.30	-0.30
Ca ₂ Ge †	Ca2	18	18.28	-0.28
	Ge	28	27.73	+0.27
	Sr1	36	36.31	-0.31
Sr ₂ Si †	Sr2	36	36.29	-0.29
·	Si	10	10.07	-0.07
	Sr1	36	36.31	-0.31
Sr ₂ Ge †	Sr2	36	36.29	-0.29
	Ge	28	27.73	+0.27
	Ba1	54	54.50	-0.50
Ba ₂ Si †	Ba2	54	54.46	-0.46
-	Si	10	10.07	-0.07
	Ba1	54	54.50	-0.50
Ba₂Ge †	Ba2	54	54.46	-0.46
·	Ge	28	27.74	+0.26
	Bal	54	54.47	-0.47
Ba ₂ Pb †	Ba2	54	54.43	-0.43
·	Pb	78	77.79	+0.21

† TiNiSi-type (optimized)

Table S6. ELI-D core population for each atomic species in $A_2^2 E^{14}$ compounds with the *cF*12-CaF₂ structure, together with the valence shell defects.

Compound	Species X	$N_{core}^{PTE}(X)$	$N_{core}^{ELI}(X)$	$N_{vdef}^{ELI}(X)$
BerC ++	Be	2	2.06	-0.06
$\mathbf{D}\mathbf{C}_{2}\mathbf{C}$	С	2	2.11	-0.11
M~ C ++	Mg	10	10.07	-0.07
NIg ₂ C 11	C	2	2.10	-0.10
Ma Sn ++	Mg	10	10.07	-0.07
WIg ₂ SII	Sn	46	45.76	+0.24
hum Do Co ++	Ba	54	54.45	-0.45
nyp-Ба ₂ Ge	Ge	28	27.73	+0.27

†† anti-CaF₂-type type (optimized)

Table S7. Position-space bonding results for each constituting atoms of the targeted compounds **without** the application of the **PSC0 correction**. QTAIM effective charges and volumes, which are not affected by this correction, are listed in the main text.

Compound	ELIBON			$N^{ELI}(C^E)$	$N^{ELI}(F)$	$N_{-}(F)$	$N_{\rm c}(F)$
Compound	A	A'	E		^{IV} val ^(L)	Cb(L)	lp(L)
NaLiSe †	+0.95	+0.96	-1.91	8.13	7.88	0.25	3.82
NaLiTe †	+0.95	+0.96	-1.91	8.17	7.92	0.25	3.84
KNaSe †	+0.90	+0.95	-1.85	8.07	7.76	0.31	3.72
CaLiAs †	+1.71	+0.96	-2.67	7.92	7.39	0.53	3.43
CaLiSb †	+1.72	+0.96	-2.67	7.91	7.38	0.54	3.42
CaLiBi †	+1.71	+0.96	-2.67	8.03	7.48	0.56	3.46
SrLiAs †	+1.71	+0.96	-2.67	7.91	7.35	0.55	3.40
CaMgSi †	+1.71	+1.93	-3.64	7.57	6.58	0.99	2.79
CaMgGe †	+1.71	+1.93	-3.64	7.91	6.88	1.03	2.92
CaMgSn †	+1.71	+1.93	-3.64	7.88	6.80	1.08	2.86
SrMgGe †	+1.70	+1.93	-3.63	7.90	6.77	1.13	2.82
Ca ₂ Si †	+1.73	+1.71	-3.44	7.36	6.36	1.00	2.68
Ca ₂ Ge †	+1.73	+1.70	-3.43	7.71	6.69	1.02	2.84
Sr ₂ Si †	+1.71	+1.69	-3.40	7.34	6.25	1.09	2.58
Sr ₂ Ge †	+1.71	+1.69	-3.40	7.68	6.56	1.12	2.72
Ba₂Si †	+1.55	+1.50	-3.05	6.98	5.89	1.10	2.39
Ba₂Ge †	+1.55	+1.50	-3.05	7.31	6.19	1.12	2.54
Ba ₂ Pb †	+1.57	+1.53	-3.10	7.32	6.13	1.19	2.47
Be ₂ C ††	+1.94	_	-3.88	7.77	7.14	0.63	3.26
Mg ₂ C ††	+1.93	_	-3.87	7.77	6.96	0.81	3.07
Mg ₂ Sn ††	+1.93	_	-3.87	8.11	7.00	1.11	2.95
hyp-Ba ₂ Ge ††	+1.55	_	-3.09	7.36	6.28	1.07	2.60

† TiNiSi-type (optimized), †† anti-CaF₂-type (optimized)

Compound	ELI-D basin (B _i)	Atomicity	$N(B_i)$	$p(B_i^E)$	СС	lpc	$p(B_i^{A'})$	$\sum_{j} p(B_{i}^{A_{j}})$
	<i>d</i> 1	(Se; Li; 4Na)	2.0796	0.9590	0.0820	0.9180	0.0171	0.0237
NaLiSe +	d2	(Se; Li; 4Na)	2.1547	0.9565	0.0871	0.9129	0.0180	0.0250
Malibe	d2	(Se; Li; 4Na)	2.1753	0.9565	0.0870	0.9130	0.0180	0.0250
	d3	(Se; Li; 3Na)	1.5932	0.9585	0.0831	0.9169	0.0227	0.0185
	d1	(Te; Li; 4Na)	2.0301	0.9598	0.0803	0.9197	0.0179	0.0221
NoL To +	d2	(Te; Li; 4Na)	2.1225	0.9576	0.0849	0.9151	0.0179	0.0239
MaLITE	d2	(Te; Li; 4Na)	2.1394	0.9575	0.0850	0.9150	0.0180	0.0239
	d3	(Te; Li; 3Na)	1.7093	0.9563	0.0873	0.9127	0.0207	0.0224
	d1	(Se; Na; 4K)	1.9536	0.9407	0.1186	0.8814	0.0265	0.0324
KNaSa +	d2	(Se; Na; 4K)	2.1996	0.9406	0.1189	0.8811	0.0247	0.0346
Khase	d2	(Se; Na; 4K)	2.2177	0.9406	0.1188	0.8812	0.0246	0.0347
	d3	(Se; Na; 3K)	1.6327	0.9452	0.1096	0.8904	0.0320	0.0225
	<i>d</i> 1	(As; Li; 4Ca)	2.0596	0.8881	0.2238	0.7762	0.0200	0.0916
CaliAa +	d2	(As; Li; 4Ca)	2.4396	0.8907	0.2187	0.7813	0.0193	0.0892
CallAs	d2	(As; Li; 4Ca)	2.4591	0.8915	0.2171	0.7829	0.0193	0.0884
	<i>d</i> 3	(As; Li; 3Ca)	1.0462	0.9101	0.1797	0.8203	0.0368	0.0512
	<i>d</i> 1	(Sb; Li; 4Ca)	2.3102	0.8884	0.2232	0.7768	0.0190	0.0925
Calish +	d2	(Sb; Li; 4Ca)	2.2158	0.8894	0.2211	0.7789	0.0216	0.0880
Caliso	d2	(Sb; Li; 4Ca)	2.2002	0.8906	0.2189	0.7811	0.0214	0.0870
	d3	(Sb; Li; 3Ca)	1.2769	0.9071	0.1859	0.8141	0.0292	0.0618
	<i>d</i> 1	(Bi; Li; 4Ca)	2.2376	0.8854	0.2293	0.7707	0.0198	0.0946
Cal :D: +	d2	(Bi; Li; 4Ca)	2.5708	0.8869	0.2262	0.7738	0.0185	0.0930
	d2	(Bi; Li; 4Ca)	2.5899	0.8866	0.2269	0.7731	0.0186	0.0932
	d3	(Bi; Li; 3Ca)	0.6083	0.9287	0.1426	0.8574	0.0591	0.0082
	<i>d</i> 1	(As; Li; 4Sr)	1.6570	0.8893	0.2213	0.7787	0.0240	0.0860
Srling +	d2	(As; Li; 4Sr)	2.4868	0.8851	0.2299	0.7701	0.0195	0.0951
SILIAS	d2	(As; Li; 4Sr)	2.5086	0.8852	0.2296	0.7704	0.0195	0.0950
	d3	(As; Li; 3Sr)	1.3521	0.9035	0.1929	0.8071	0.0263	0.0688
	d1	(Si; Mg; 4Ca)	1.9743	0.8290	0.3419	0.6581	0.0786	0.0920
CoMaSi +	d2	(Si; Mg; 4Ca)	2.3221	0.8320	0.3360	0.6640	0.0703	0.0970
Calvigsi	d2	(Si; Mg; 4Ca)	2.3411	0.8311	0.3378	0.6622	0.0708	0.0974
	d3	(Si; Mg; 3Ca)	1.3632	0.8310	0.3380	0.6620	0.1052	0.0613
	d1	(Ge; Mg; 4Ca)	2.0017	0.8245	0.3511	0.6489	0.0819	0.0933
CaMaGe ‡	d2	(Ge; Mg; 4Ca)	2.3121	0.8285	0.3431	0.6569	0.0745	0.0964
Calvigue	d2	(Ge; Mg; 4Ca)	2.3324	0.8269	0.3462	0.6538	0.0750	0.0975
	d3	(Ge; Mg; 3Ca)	1.3579	0.8180	0.3640	0.6360	0.1156	0.0620
	d1	(Sn; Mg; 4Ca)	2.1293	0.8204	0.3592	0.6408	0.0846	0.0945
CaMaSn ‡	d2	(Sn; Mg; 4Ca)	2.2612	0.8239	0.3522	0.6478	0.0800	0.0952
CalvigSir	d2	(Sn; Mg; 4Ca)	2.2776	0.8234	0.3532	0.6468	0.0807	0.0951
	d3	(Sn; Mg; 3Ca)	1.3361	0.8102	0.3796	0.6204	0.1254	0.0606
	d1	(Ge; Mg; 4Sr)	1.7658	0.8081	0.3838	0.6162	0.0967	0.0950
SrMaGe +	d2	(Ge; Mg; 4Sr)	2.3377	0.8121	0.3758	0.6242	0.0822	0.1053
Simgue	d2	(Ge; Mg; 4Sr)	2.3571	0.8108	0.3785	0.6215	0.0827	0.1061
	d3	(Ge; Mg; 3Sr)	1.5430	0.8179	0.3643	0.6357	0.1090	0.0708

Table S8a. Data referred to ELI-D valence basins for ternary phases after PSC0.

Compound	ELI-D basin (B _i)	Atomicity	$N(B_i)$	$p(B_i^E)$	СС	lpc	$\sum_{l} p(B_{i}^{A1_{l}})$	$\sum_{j} p(B_{i}^{A2_{j}})$
	d1*	(Si; 3Ca1; 2Ca2)	1.7458	0.7771	0.4457	0.5543	0.1437	0.0746
Ca₂Si †	d2*	(Si; 3Ca1; 3Ca2)	3.1165	0.8114	0.3773	0.6227	0.0880	0.0993
	d2*	(Si; 3Ca1; 3Ca2)	3.1392	0.8123	0.3753	0.6247	0.0886	0.0977
	d1*	(Ge; 3Ca1; 2Ca2)	1.8002	0.7735	0.4531	0.5469	0.1464	0.0753
Ca ₂ Ge †	d2*	(Ge; 3Ca1; 3Ca2)	3.0879	0.8103	0.3795	0.6205	0.0887	0.0995
- '	d2*	(Ge; 3Ca1; 3Ca2)	3.1184	0.8089	0.3822	0.6178	0.0886	0.1010
	d1*	(Si; 3Sr1; 2Sr2)	1.8470	0.7602	0.4797	0.5203	0.1570	0.0812
Sr ₂ Si †	d2*	(Si; 3Sr1; 3Sr2)	3.0691	0.7976	0.4048	0.5952	0.0931	0.1083
_ 1	d2*	(Si; 3Sr1; 3Sr2)	3.0895	0.7988	0.4024	0.5976	0.0933	0.1071
	d1*	(Ge; 3Sr1; 2Sr2)	1.8413	0.7550	0.4899	0.5101	0.1593	0.0839
Sr ₂ Ge †	d2*	(Ge; 3Sr1; 3Sr2)	3.0632	0.7962	0.4076	0.5924	0.0942	0.1087
	d2*	(Ge; 3Sr1; 3Sr2)	3.0920	0.7949	0.4101	0.5899	0.0944	0.1098
	d1*	(Si; 3Ba1; 2Ba2)	1.8456	0.7103	0.5795	0.4205	0.1915	0.0982
D- C: +	d2*	(Si; 3Ba1; 2Ba2)	2.0761	0.7562	0.4876	0.5124	0.1313	0.1125
Ba_2S1	d2*	(Si; 3Ba1; 2Ba2)	2.0906	0.7551	0.4898	0.5102	0.1315	0.1135
	d3*	(Si; 4Ba1; 3Ba2)	1.9920	0.7516	0.4969	0.5031	0.0767	0.1704
	d1*	(Ge; 3Ba1; 2Ba2)	1.8570	0.7048	0.5904	0.4096	0.1930	0.1021
	d2*	(Ge; 3Ba1; 2Ba2)	1.9860	0.7498	0.5006	0.4994	0.1340	0.1163
Ba ₂ Ge	d2*	(Ge; 3Ba1; 2Ba2)	1.9953	0.7506	0.4987	0.5013	0.1339	0.1154
	d3*	(Ge; 4Ba1; 3Ba2)	2.1661	0.7526	0.4949	0.5051	0.0803	0.1661
	d1*	(Pb; 3Ba1; 2Ba2)	1.8225	0.6971	0.6058	0.3942	0.1914	0.1111
D- D- +	d2*	(Pb; 3Ba1; 2Ba2)	2.0909	0.7461	0.5078	0.4922	0.1321	0.1217
Ba ₂ Pb	d2*	(Pb; 3Ba1; 2Ba2)	2.0974	0.7471	0.5058	0.4942	0.1323	0.1206
	d3*	(Pb; 4Ba1; 3Ba2)	1.9806	0.7673	0.4655	0.5345	0.0767	0.1543

Table S8b. Data referred to ELI-D valence basins for binary phases after PSC0.

Compound	Atomicity	$\overline{N}(B_i)$	$p(B_i^E)$	СС	lpc	$\sum_{l} p(B_{i}^{A1})$
	(C; Be)	1.0005	0.9055	0.1891	0.8109	0.0933
	(C; Be)	1.0006	0.9054	0.1893	0.8107	0.0933
	(C; Be)	1.0009	0.9061	0.1878	0.8122	0.0934
$\mathbf{P} \in C + t$	(C; Be)	1.0008	0.9057	0.1887	0.8113	0.0934
Be_2C	(C; Be)	1.0011	0.9054	0.1892	0.8108	0.0937
	(C; Be)	1.0012	0.9062	0.1876	0.8124	0.0938
	(C; Be)	1.0018	0.9059	0.1883	0.8117	0.0937
	(C; Be)	1.0035	0.9049	0.1901	0.8099	0.0945
	(C; Mg)	0.9999	0.8823	0.2355	0.7645	0.1171
	(C; Mg)	0.9999	0.8823	0.2355	0.7645	0.1171
Mg ₂ C ††	(C; Mg)	0.9999	0.8822	0.2357	0.7643	0.1172
	(C; Mg)	0.9999	0.8826	0.2349	0.7651	0.1171
	(C; Mg)	1.0000	0.8822	0.2357	0.7643	0.1171
	(C; Mg)	0.9999	0.8826	0.2349	0.7651	0.1172
	(C; Mg)	1.0008	0.8821	0.2359	0.7641	0.1177
	(C; Mg)	1.0008	0.8819	0.2363	0.7637	0.1177
	(Sn; Mg)	0.9996	0.8450	0.3101	0.6899	0.1550
	(Sn; Mg)	1.0002	0.8449	0.3103	0.6897	0.1551
	(Sn; Mg)	0.9999	0.8450	0.3100	0.6900	0.1550
Ma Sa ++	(Sn; Mg)	1.0002	0.8446	0.3107	0.6893	0.1553
$\log_2 \sin \gamma$	(Sn; Mg)	1.0002	0.8448	0.3105	0.6895	0.1551
	(Sn; Mg)	1.0001	0.8448	0.3103	0.6897	0.1552
	(Sn; Mg)	1.0002	0.8448	0.3105	0.6895	0.1552
	(Sn; Mg)	1.0002	0.8448	0.3105	0.6895	0.1552
	(Ge; 4Ba)	1.3220	0.7509	0.4982	0.5018	0.2491
	(Ge; 4Ba)	1.3314	0.7526	0.4947	0.5053	0.2473
hun Do Co ++	(Ge; 4Ba)	1.3316	0.7525	0.4949	0.5051	0.2474
пур-Ба ₂ Ge	(Ge; 4Ba)	1.3227	0.7506	0.4987	0.5013	0.2494
	(Ge; 4Ba)	1.3433	0.7538	0.4924	0.5076	0.2461
	(Ge; 4Ba)	1.3433	0.7538	0.4924	0.5076	0.2461

Table S8c. Data referred to ELI-D valence basins for binary phases with the cF12-CaF₂ structure **after PSC0**.

†† anti-CaF₂-type (optimized)

d1 (Se; Li; 4Na) 2.1123 0.9705 0.0591 0.9409 0.0124 0.0171 $d2$ (Se; Li; 4Na) 2.1904 0.9684 0.0633 0.9367 0.0130 0.0182 $d2$ (Se; Li; 4Na) 2.2105 0.9681 0.0638 0.9362 0.0130 0.0182 $d2$ (Se; Li; 4Na) 2.2105 0.9681 0.0638 0.9362 0.0130 0.0183 $d2$ (Se; Li; 4Na) 2.2105 0.9681 0.0608 0.9362 0.0130 0.0183	
NaLiSe \dagger d_2 (Se; Li; 4Na) 2.1904 0.9684 0.0633 0.9367 0.0130 0.0182 d_2 (Se; Li; 4Na) 2.1904 0.9684 0.0633 0.9367 0.0130 0.0182 d_2 (Se; Li; 4Na) 2.2105 0.9681 0.0638 0.9362 0.0130 0.0182 d_2 (Se; Li; 4Na) 2.2105 0.9681 0.0638 0.9362 0.0130 0.0183	
NaLiSe † $d2$ (Se; Li; 4Na) 2.2105 0.9681 0.0638 0.9362 0.0130 0.0183	
(5e: 11: 5Na) $(5e: 11: 5Na)$ $(5e: 11: 5Na$	
$\frac{d1}{d1} = \frac{(0.4, 2.5, 0.10)}{(100, 100, 100, 100, 100, 100, 100, 100,$	
d^2 (Te; Li; 4Na) 2.1682 0.9689 0.0622 0.9378 0.0130 0.0175	
NaLiTe \dagger d2 (Te; Li; 4Na) 2.1862 0.9687 0.0626 0.9374 0.0131 0.0176	
d3 (Te; Li; 3Na) 1.7466 0.9683 0.0633 0.9367 0.0150 0.0161	
d1 (Se; Na; 4K) 1.9665 0.9607 0.0785 0.9215 0.0195 0.0196	
d2 (Se; Na; 4K) 2.2164 0.9608 0.0785 0.9215 0.0183 0.0208	
KNaSe \uparrow d2 (Se; Na; 4K) 2.2353 0.9606 0.0788 0.9212 0.0184 0.0209	
d3 (Se; Na; 3K) 1.6519 0.9621 0.0758 0.9242 0.0238 0.0137	
d1 (As; Li; 4Ca) 2.0279 0.9314 0.1373 0.8627 0.0155 0.0528	
As; Li; 4Ca) 2.4101 0.9326 0.1348 0.8652 0.0149 0.0516	
CallAs d^2 (As; Li; 4Ca) 2.4306 0.9323 0.1354 0.8646 0.0150 0.0519	
d3 (As; Li; 3Ca) 1.0472 0.9405 0.1190 0.8810 0.0277 0.0298	
d1 (Sb; Li; 4Ca) 2.2769 0.9304 0.1392 0.8608 0.0149 0.0545	
Calish $\ddagger d2$ (Sb; Li; 4Ca) 2.1881 0.9305 0.1390 0.8610 0.0168 0.0516	
Calliso d^2 (Sb; Li; 4Ca) 2.1741 0.9309 0.1383 0.8617 0.0167 0.0514	
d3 (Sb; Li; 3Ca) 1.2754 0.9394 0.1212 0.8788 0.0224 0.0362	
d1 (Bi; Li; 4Ca) 2.2361 0.9288 0.1425 0.8575 0.0154 0.0556	
Cal iBi \ddagger d2 (Bi; Li; 4Ca) 2.5757 0.9295 0.1410 0.8590 0.0143 0.0547	
Caller $d2$ (Bi; Li; 4Ca) 2.5951 0.9292 0.1416 0.8584 0.0144 0.0549	
<u>d3</u> (Bi; Li; 3Ca) 0.6276 0.9463 0.1074 0.8926 0.0438 0.0061	
$d1 \qquad (As; Li; 4Sr) \qquad 1.6349 \qquad 0.9294 \qquad 0.1413 \qquad 0.8587 \qquad 0.0187 \qquad 0.0511$	
SrLiAs $\dot{\tau}$ d2 (As; Li; 4Sr) 2.4515 0.9281 0.1438 0.8562 0.0152 0.0565	
$d2 \qquad (As; Li; 4Sr) \qquad 2.4728 \qquad 0.9277 \qquad 0.1445 \qquad 0.8555 \qquad 0.0153 \qquad 0.0567$	
$\frac{d3}{d3} = \frac{d3}{(As; Li; 3Sr)} = \frac{1.3480}{1.3480} = \frac{0.9374}{0.1251} = \frac{0.8749}{0.8749} = \frac{0.0200}{0.0200} = \frac{0.0412}{0.0412}$	
$d1 \qquad (S1; Mg; 4Ca) \qquad 1.8639 \qquad 0.8689 \qquad 0.2621 \qquad 0.7379 \qquad 0.0743 \qquad 0.0564$	
CaMgSi \dagger d^2 (Si; Mg; 4Ca) 2.1925 0.8716 0.2569 0.7431 0.0661 0.0617	
$\frac{d2}{d2} = \begin{pmatrix} (S1; Mg; 4Ca) & 2.2100 & 0.8/0/ & 0.2586 & 0.7414 & 0.0666 & 0.0620 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.2764 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.7264 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.7264 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.7264 & 0.7236 & 0.0072 & 0.00072 \\ (S1; Mg; 4Ca) & 1.2002 & 0.8(10 & 0.7264 & 0.7264 & 0.0072 & 0.00$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$a1 \qquad (Ge; Mg; 4Ca) \qquad 1.9/28 \qquad 0.8/06 \qquad 0.258/ \qquad 0./413 \qquad 0.0/44 \qquad 0.0546$	
CaMgGe $\frac{1}{1}$ $\frac{d2}{d2}$ (Ge; Mg; 4Ca) 2.2850 0.8736 0.2529 0.7471 0.0671 0.0588	
$d2 \qquad (Ge; Mg; 4Ca) = 2.5057 = 0.6727 = 0.2546 = 0.7454 = 0.0076 = 0.0591$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{d1}{d2} \qquad (Sn; Mg; 4Ca) \qquad 2.0901 \qquad 0.0045 \qquad 0.2711 \qquad 0.7289 \qquad 0.0780 \qquad 0.0504$	
CaMgSn $\frac{1}{1}$ $\frac{42}{d2}$ (Sn; Mg; 4Ca) 2.2244 0.0009 0.2002 0.7556 0.0758 0.0565	
$\frac{d2}{d3} = \begin{pmatrix} (31, 14g, 7Ca) & 2.2717 & 0.0037 & 0.2002 & 0.7516 & 0.0744 & 0.0509 \\ \frac{d3}{d3} = \begin{pmatrix} (3n, Mg, 3Ca) & 1.3256 & 0.8440 & 0.3102 & 0.6808 & 0.1147 & 0.0365 \\ \end{pmatrix}$	
$\frac{d1}{d1} = \frac{d2}{(Ge^{\circ} Mg^{\circ} 4Sr)} = \frac{1.5256}{1.5256} = \frac{0.5162}{0.5162} = \frac{0.0098}{0.0098} = 0.1147 = 0.0003$	
d^2 (Ge: Mg: 4Sr) 2 3030 0.8589 0.2821 0.7170 0.0751 0.0656	
SrMgGe \dagger d_2 (Ge; Mg; 4Sr) 2.3050 0.0509 0.2021 0.7179 0.0751 0.0050	
d_3 (Ge; Mg; 3Sr) 1.5366 0.8557 0.2887 0.7113 0.0979 0.0442	

Table S9a. Data referred to ELI-D valence basins for ternary phases without PSC0.

Compound	ELI-D basin (B _i)	Atomicity	$N(B_i)$	$p(B_i^E)$	СС	lpc	$\sum_{l} p(B^{A1_{l}}_{i})$	$\sum_{j} p(B_{i}^{A2_{j}})$
Ca₂Si †	d1*	(Si; 3Ca1; 2Ca2)	1.6017	0.8383	0.3234	0.6766	0.1047	0.0521
	d2*	(Si; 3Ca1; 3Ca2)	2.8690	0.8716	0.2569	0.7431	0.0592	0.0677
	d2*	(Si; 3Ca1; 3Ca2)	2.8937	0.8714	0.2573	0.7427	0.0595	0.0676
Ca ₂ Ge †	d1*	(Ge; 3Ca1; 2Ca2)	1.7204	0.8418	0.3163	0.6837	0.1024	0.0507
	d2*	(Ge; 3Ca1; 3Ca2)	2.9807	0.8755	0.2490	0.7510	0.0570	0.0660
	d2*	(Ge; 3Ca1; 3Ca2)	3.0059	0.8754	0.2493	0.7507	0.0571	0.0660
Sr ₂ Si †	<i>d</i> 1*	(Si; 3Sr1; 2Sr2)	1.6841	0.8247	0.3507	0.6493	0.1151	0.0585
	d2*	(Si; 3Sr1; 3Sr2)	2.8169	0.8592	0.2817	0.7183	0.0639	0.0759
	d2*	(Si; 3Sr1; 3Sr2)	2.8399	0.8592	0.2817	0.7183	0.0641	0.0758
Sr ₂ Ge †	$d1^*$	(Ge; 3Sr1; 2Sr2)	1.7518	0.8269	0.3463	0.6537	0.1127	0.0586
	d2*	(Ge; 3Sr1; 3Sr2)	2.9505	0.8630	0.2741	0.7259	0.0620	0.0741
	d2*	(Ge; 3Sr1; 3Sr2)	2.9750	0.8629	0.2742	0.7258	0.0621	0.0740
Ba₂Si †	<i>d</i> 1*	(Si; 3Ba1; 2Ba2)	1.6680	0.8187	0.3626	0.6374	0.1197	0.0616
	d2*	(Si; 3Ba1; 2Ba2)	1.8189	0.8555	0.2891	0.7109	0.0775	0.0670
	d2*	(Si; 3Ba1; 2Ba2)	1.8302	0.8553	0.2894	0.7106	0.0775	0.0671
	d3*	(Si; 4Ba1; 3Ba2)	1.9944	0.8540	0.2919	0.7081	0.0421	0.1028
Ba ₂ Ge †	<i>d</i> 1*	(Ge; 3Ba1; 2Ba2)	1.6680	0.8187	0.3626	0.6374	0.1197	0.0616
	d2*	(Ge; 3Ba1; 2Ba2)	1.8189	0.8555	0.2891	0.7109	0.0775	0.0670
	d2*	(Ge; 3Ba1; 2Ba2)	1.8302	0.8553	0.2894	0.7106	0.0775	0.0671
	d3*	(Ge; 4Ba1; 3Ba2)	1.9944	0.8540	0.2919	0.7081	0.0421	0.1028
Ba₂Pb†	<i>d</i> 1*	(Pb; 3Ba1; 2Ba2)	1.6398	0.8012	0.3976	0.6024	0.1261	0.0722
	d2*	(Pb; 3Ba1; 2Ba2)	1.9147	0.8443	0.3115	0.6885	0.0801	0.0755
	d2*	(Pb; 3Ba1; 2Ba2)	1.9240	0.8440	0.3121	0.6879	0.0803	0.0757
	d3*	(Pb; 4Ba1; 3Ba2)	1.8431	0.8540	0.2920	0.7080	0.0463	0.0978

Table S9b. Data referred to ELI-D valence basins for binary phases without PSC0.

Compound	Atomicity	$\overline{N}(B_i)$	$p(B_i^E)$	СС	lpc	$\sum_{l} p(B_{i}^{A1_{l}})$
	(C; Be)	0.9708	0.9190	0.1619	0.8381	0.0797
	(C; Be)	0.9710	0.9189	0.1623	0.8377	0.0797
	(C; Be)	0.9712	0.9197	0.1606	0.8394	0.0798
$\mathbf{P} \in C + t$	(C; Be)	0.9711	0.9193	0.1615	0.8385	0.0798
Be_2C	(C; Be)	0.9715	0.9190	0.1620	0.8380	0.0801
	(C; Be)	0.9716	0.9197	0.1606	0.8394	0.0801
	(C; Be)	0.9722	0.9194	0.1613	0.8387	0.0801
	(C; Be)	0.9738	0.9185	0.1631	0.8369	0.0810
	(C; Mg)	0.9709	0.8957	0.2087	0.7913	0.1037
	(C; Mg)	0.9709	0.8957	0.2087	0.7913	0.1037
	(C; Mg)	0.9709	0.8957	0.2089	0.7911	0.1038
$M_{\sim}C^{++}$	(C; Mg)	0.9709	0.8960	0.2081	0.7919	0.1037
Mg_2C	(C; Mg)	0.9710	0.8956	0.2089	0.7911	0.1037
	(C; Mg)	0.9709	0.8960	0.2080	0.7920	0.1038
	(C; Mg)	0.9718	0.8955	0.2091	0.7909	0.1043
	(C; Mg)	0.9718	0.8953	0.2095	0.7905	0.1043
	(Sn; Mg)	1.0130	0.8636	0.2729	0.7271	0.1364
	(Sn; Mg)	1.0134	0.8634	0.2731	0.7269	0.1366
	(Sn; Mg)	1.0132	0.8636	0.2728	0.7272	0.1364
Ma Sn ++	(Sn; Mg)	1.0134	0.8633	0.2733	0.7267	0.1367
Mg_2SH	(Sn; Mg)	1.0133	0.8634	0.2732	0.7268	0.1366
	(Sn; Mg)	1.0134	0.8634	0.2731	0.7269	0.1366
	(Sn; Mg)	1.0135	0.8633	0.2733	0.7267	0.1367
	(Sn; Mg)	1.0135	0.8633	0.2733	0.7267	0.1367
	(Ge; 4Ba)	1.2171	0.8535	0.2930	0.7070	0.1465
	(Ge; 4Ba)	1.2260	0.8546	0.2909	0.7091	0.1454
hun Ba Ga ++	(Ge; 4Ba)	1.2262	0.8544	0.2911	0.7089	0.1456
nyp-Da ₂ Oe	(Ge; 4Ba)	1.2178	0.8532	0.2936	0.7064	0.1468
	(Ge; 4Ba)	1.2352	0.8545	0.2910	0.7090	0.1455
	(Ge; 4Ba)	1.2352	0.8545	0.2910	0.7090	0.1455

Table S9c. Data referred to ELI-D valence basins for binary phases with the cF12-CaF2 structure without PSC0.

†† anti-CaF₂-type (optimized)

¹ N.N. Matyushenko, A.A. Rozen, N.S. Pugachev, Sov. Powder Metall. Met. Ceram., 1966, 5,

310-312.

- ² O. O. Kurakevych, T. A. Strobel, D. Y. Kim, G.D. Cody, *Angew. Chem. Int. Ed.*, 2013, **52**, 8930–8933.
- ³ H. Kasai, L. Song, H. L. Andersen, H. Yin, B. B. Iverrsen, *Acta Crystallogr. B*, 2017, **73**, 1158–1163.
- ⁴ H. Wu, W. Zhou, T. J. Udovic, J.J. Rush, Chem. Mater., 2007, 19, 329-334.
- ⁵ P. Eckerlin, E.R. Wölfel, Z. Anorg. Allg. Chem., 1955, 280, 321-331.
- ⁶ A. Widera, B. Eisenmann, H. Schäfer, Z. Naturforsch. B, 1976, **31**, 520–521.
- ⁷ B. Eisenmann, H. Schäfer, K. Turban, Z. Naturforsch. B, 1975, **30**, 677–680.
- ⁸ A. Widera, H. Schäfer, Z. Naturforsch. B, 1976, **31**, 1434–1435.
- ⁹ K. Turban, H. Schäfer, Z. Naturforsch., 1973, 28, 220–222.
- ¹⁰ K. Guttsche, A. Rosin, M. Wendorff, C. Röhr, Z. Naturforsch. B, 2006, **61**, 846–853.
- ¹¹ N. Miyazaki, N. Adachi, Y. Todaka, H. Miyazaki, Y. Nishino, *J. Alloys Compd.*, 2017, **691**, 914–918.
- ¹² B. Eisenmann, H. Schäfer, A. Weiss, Z. Anog. Allg. Chem., 1972, 391, 241–254.
- ¹³ M. C. Schäfer, N.-T. Suen, S. Bobev, *Dalton Trans.*, 2014, **43**, 16889–16901.
- ¹⁴ X.-J. Feng, Yu. Prots, M. P. Schmidt, S. Hoffmann, I. Veremchuk, W. Schnelle, U. Burkhardt, J.-T. Zhao, Yu. Grin, *Inorg. Chem.*, 2013, **52**, 8971–8978.
- ¹⁵ W. Bronger, C. Bomba, H. Sabrowsky, J. Less Common Met., 1989, 156, 43-47.
- ¹⁶ K. Hippler, P. Vogt, R. Wortmann, H. Sabrowsky, Z. Naturforsch. B, 1989, 44, 1607–1609.