Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

N_2 binding to the E_0 – E_4 states of nitrogenase

Hao Jiang and Ulf Ryde *

Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden

Correspondence to Ulf Ryde, E-mail: Ulf.Ryde@teokem.lu.se,

Tel: +46 – 46 2224502, Fax: +46 – 46 2228648

2023-05-26

Table S1. Relative energies (in kJ/mol) for the best structures calculated with two basis set, def2-SV(P) (SV) and def2-TZVPD (TZ) (the latter single-point energy calculations on the def2-DSV(P) structures). Energies that change by more than 20 kJ/mol are marked in bold face and the corresponding spin populations are shown in Table S2.

E_n	Structure		TP	SS	r ² SCAN	
			SV	TZ	SV	TZ
E_1	Fe2+N2		31.0	39.4	39.1	45.5
	Fe6+N2		0.0	0.0	0.0	0.0
	Fe2-N2		31.1	47.3	42.9	59.5
	Fe6-N2		24.1	29.3	60.3	75.0
E_2	Fe2+N2	H6S	47.8	44.8	11.5	7.6
		C2	191.6	201.8	126.1	128.1
	Fe6+N2	H2F	76.2	71.9	44.8	40.1
	Fe2-N2	H6S	6.2	2.5	0.0	0.0
		C2	184.3	193.8	124.2	134.4
	Fe6-N2	H2F	0.0	0.0	17.8	17.2
E_3	Fe2+N2	S6M	58.6	91.7	30.6	27.6
		35_3	110.9	111.3	63.5	57.4
		C3	250.8	261.0	156.2	153.8
	Fe6+N2	S2S	74.1	66.7	98.2	98.4
	Fe2-N2	S6M			0.0	0.0
		35_3	78.4	83.4	47.7	47.5
		C3	227.4	224.5	153.6	142.2
	Fe6-N2	S2S	0.0	0.0	29.4	28.6
E_4	Fe2+N2	S6S	75.7	60.7	47.0	5.2
	Fe6+N2	S2S	80.7	77.3	68.5	53.9
	Fe2-N2	S6S	35.1	15.5	0.0	0.0
		3523	32.0	13.6	47.4	64.2
		C3	202.3	229.6	67.7	14.0
	Fe6-N2	S2S	0.0	0.0	10.7	3.5

Table S2. Mulliken spin populations obtained with the def2-SV(P) (SV) and def2-TZVPD (TZ) basis sets (the latter single-point energy calculations on the def2-DSV(P) structures) for the four structures for which the relative energies change by more than 20 kJ/mol in Table S1. For the E_3 state, the BS state changes from BS14 to BS147. For the other three, several spin populations change by more than 1 e (marked in bold face), indicating that the electronic structure has changed extensively.

E_n Structure	DFT	def2-SV(P)			def2-TZVPD		
		Fe1 Fe2	Fe3 Fe4 Fe5	Fe6 Fe7 Mo	Fe1 Fe2 Fe3 Fe4 Fe5 Fe6 Fe7 Mo		
E ₃ Fe6+N2 S2	S TPSS	-3.2 2.3	2.5 -3.2 2.4	1.2 1.0 0.5	-3.0 3.5 2.4 -2.7 2.7 1.5 -0.5 -0.7		
E ₄ Fe ₂ +N ₂ S6 ₅	S r ² SCAN	-3.7 2.7	3.2 3.3 -3.2	2.4 -3.1 -0.6	-3.4 4.4 2.4 3.5 -3.7 1.0 -3.5 2.5		
Fe2-N2 C3	TPSS	3.1 -3.0	-3.4 -3.4 2.9	3.1 2.8 -0.8	3.0 -3.0 -3.2 -3.4 2.9 3.7 0.8 -1.1		
	r ² SCAN	3.7 -2.3	-3.1 -3.2 3.3	0.3 3.1 -1.4	3.0 -4.2 -2.6 -3.8 3.6 1.0 3.6 -3.4		

Table S3. N₂-binding energies ($\Delta E_{\rm N2}$ in kJ/mol) for the best structures calculated with two basis set, def2-SV(P) (SV) and def2-TZVPD (TZ) (the latter single-point energy calculations on the def2-DSV(P) structures). Binding energies for the other complexes can be obtained by summing $\Delta E_{\rm N2}$ in this table with the relative energies in Table S1.

E _n Structure	,	TP	SS	r2SCAN	
		B1	B2	B1	B2
E ₁ Fe6+N2		1.9	12.7	-1.7	7.4
E ₂ Fe6–N2	H2F	-10.9	-18.0	34.5	53.2
E ₃ Fe2-N2	S6M			9.6	23.0
Fe6-N2	S2S	-45.5	-34.5		
E ₄ Fe2-N2	S6S			-18.5	-7.0
Fe6-N2	S2S	-50.9	-33.4		