Supporting information

Selective Cu and Ni-MOFs as pre-catalysts for the hydrogenation of furfural to furfuryl alcohol

Pamela S. Moyo^a, Banele Vatsha^a, Gift Mehlana^{b*}, Leah C. Matsinha^{a*} and Banothile C.E. Makhubela^{a*}

^aResearch Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa.

^bDepartment of Chemical Sciences, Midlands State University, 9055 Senga Road, Gweru, Zimbabwe.

Author Information

Corresponding authors

Email*: <u>leahmatsinha@gmail.com</u>, <u>mehlanag@staff.msu.ac.zw</u> and <u>bmakhubela@uj.ac.za</u>.

Characterisation

Figure SI 2: ¹³C{H} NMR spectrum of L1, recorded in DMSO-d₆.

Figure SI 3: High resolution electrospray ionisation-mass spectrum for L1.

Figure SI 4: FT-IR spectrum of L1.

Table SI 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for ligand L1. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
O001	10433.4(18)	1863(2)	9228.7(16)	69.5(7)
N002	9406(2)	3973(3)	8558.7(16)	51.1(6)
N003	5581.0(19)	2567(3)	5425.1(17)	51.8(6)
N004	2891(2)	4412(3)	2873.2(19)	60.6(7)
N005	12002(2)	7275(3)	9582.7(19)	61.3(7)

O006	4523(2)	1063(3)	5951.0(17)	89.4(9)
C007	4665(2)	3177(3)	4587(2)	47.4(7)
C008	7484(2)	2008(3)	7382(2)	49.4(7)
C009	10295(2)	5035(3)	8928(2)	48.3(7)
C00A	8436(2)	1559(3)	8237(2)	48.7(7)
C00B	9517(3)	2469(3)	8723(2)	52.3(8)
C00C	4883(3)	3707(3)	3795(2)	53.1(8)
C00D	6523(2)	1104(3)	6960(2)	50.7(8)
C00E	10028(3)	6515(3)	8671(2)	55.8(8)
C00F	5461(3)	1563(3)	6078(2)	58.0(8)
C00G	6513(3)	-265(3)	7394(2)	58.5(8)
C00H	3558(3)	3308(3)	4514(2)	59.3(8)
C00I	3978(3)	4302(3)	2970(2)	59.5(8)
C00J	10892(3)	7557(3)	9009(2)	59.8(8)
C00K	8405(3)	178(3)	8654(2)	56.8(8)
C00L	11438(3)	4706(4)	9548(2)	61.6(9)
C00M	7456(3)	-718(3)	8238(2)	60.3(8)
C00N	12230(3)	5857(4)	9844(2)	67.4(9)
C00O	2716(3)	3919(4)	3661(3)	63.4(9)

Table SI 2: Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for ligand L1. The Anisotropic displacement factor exponent takes the form: $2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...].$ Atom U₁₃ U_{11} U_{22} U₃₃ U_{12} U_{23} O001 48.3(14) 61.3(14) 79.6(15) 10.1(11) 7.6(12) 17.6(12) N002 38.9(14) 47.6(15) 54.7(14) 1.2(11)7.5(11) 2.4(12)N003 39.5(14) 54.1(14) 52.5(14) -4.9(12)10.1(12)3.4(12) N004 48.5(17)54.2(16) 66.8(17) -0.4(13)11.7(14)4.3(13)N005 47.3(17)66.7(19) 64.3(17)-0.2(13)17.7(14) -2.7(14)O006 55.0(16) 113(2)79.6(16) -30.0(14)7.7(13) 30.0(14)C007 38.7(17) 46.5(16) 49.1(17) -3.6(13)10.5(14)-4.7(13)C008 47.5(17)48.0(17) 2.6(15)17.0(15) 4.7(14)49.4(18) 54.4(18) C009 45.8(16) 2.7(14)12.5(13) 39.4(17) -1.4(14)C00A 47.8(18) 46.1(17) 48.0(16) 4.2(14)15.7(15) 1.3(14)C00B 50(2) 54.7(19) 49.0(17) 5.7(16) 17.0(15) 4.5(15)C00C 42.6(18) 54.3(18) 57.2(18) 0.0(14)15.7(16) 0.5(15)C00D 52(2) 47.6(18) -1.7(15)16.2(15)-0.7(14)48.1(17) C00E 43.0(19) 7.7(15) 55(2) 56.2(18) 6.1(15) 1.8(15)C00F 49(2) 60(2)55.2(19) -15.7(16)11.9(16) 0.3(16)C00G 59(2) 46.9(19) -7.0(15)22.4(18) -3.6(16)65(2) C00H 47(2)70(2) 57.7(19) -3.7(16)18.5(16) 3.1(16) C00I 60(2)55.9(19) 56.8(19) -0.8(16)18.4(17)3.9(15) C00J 50(2) 54.4(19) 70(2) -0.7(17)20.1(17)-4.2(16)C00K 61(2) 47.9(18) 55.2(18) 6.9(16)6.7(15) 17.5(16) C00L 59(2) 41.1(19) 71(2) 4.5(16)9.8(16) 8.0(16) C00M 63(2) 68(2) 46.0(18)2.3(17)23.2(18) 8.9(16)

C00N	37.3(19)	78(2)	73(2)	6.5(18)	8.5(16)	9.6(19)
C00O	43(2)	66(2)	76(2)	1.0(16)	20.4(18)	0.4(18)

Table SI 3: Bond Lengths for ligand L1.

Atom Atom	Length/Å	Atom Atom	Length/Å
O001 C00B	1.217(3)	C008 C00D	1.380(4)
N002 C009	1.403(4)	C009 C00E	1.384(4)
N002 C00B	1.369(4)	C009 C00L	1.386(4)
N003 C007	1.403(3)	C00AC00B	1.499(4)
N003 C00F	1.366(4)	C00AC00K	1.390(4)
N004 C00I	1.332(4)	C00C C00I	1.380(4)
N004 C000	1.336(4)	C00D C00F	1.485(4)
N005 C00J	1.332(4)	C00D C00G	1.386(4)
N005 C00N	1.326(4)	C00E C00J	1.369(4)
O006 C00F	1.213(3)	C00GC00M	1.375(4)
C007 C00C	1.382(4)	C00HC00O	1.375(4)
C007 C00H	1.371(4)	C00KC00M	1.364(4)
C008 C00A	1.388(4)	C00L C00N	1.380(4)

Table SI 4: Bond Angles for ligand L1.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
C00B N002 C009	126.5(2)	C00I C00C C007	118.7(3)
C00F N003 C007	125.0(2)	C00F C00D C008	122.7(3)
C000 N004 C00I	114.9(3)	C00G C00D C008	119.4(3)
C00N N005 C00J	114.2(3)	C00G C00D C00F	117.8(3)
C00C C007 N003	118.9(3)	C00J C00E C009	119.3(3)
C00H C007 N003	123.5(3)	O006 C00F N003	121.7(3)
C00H C007 C00C	117.5(3)	C00D C00F N003	117.6(3)
C00D C008 C00A	120.6(3)	C00D C00F 0006	120.6(3)
C00E C009 N002	118.8(3)	C00M C00G C00D	120.2(3)
C00L C009 N002	124.3(3)	C000 C00H C007	119.4(3)
C00L C009 C00E	116.9(3)	C00C C00I N004	124.9(3)
C00B C00A C008	123.5(3)	C00E C00J N005	125.3(3)
C00K C00A C008	118.7(3)	C00M C00K C00A	120.9(3)
C00K C00A C00B	117.8(3)	C00N C00L C009	118.3(3)
N002 C00B O001	123.4(3)	C00K C00M C00G	120.2(3)
C00A C00B O001	120.1(3)	C00L C00N N005	125.9(3)
C00A C00B N002	116.6(3)	C00H C00O N004	124.6(3)

Table SI 5: Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for ligand L1.

Atom	x	у	z	U(eq)
H00K	9039(3)	-139(3)	9223(2)	68.1(10)
H00M	7447(3)	-1639(3)	8526(2)	72.4(10)

H00G	5867(3)	-878(3)	7115(2)	70.2(10)
H008	7494(2)	2926(3)	7092(2)	59.3(9)
H00N	12991(3)	5617(4)	10265(2)	80.9(11)
H00J	10686(3)	8542(3)	8822(2)	71.7(10)
H00E	9269(3)	6798(3)	8273(2)	67(1)
H00L	11666(3)	3735(4)	9758(2)	73.9(10)
H00I	4139(3)	4652(3)	2444(2)	71.4(10)
H00O	1972(3)	3995(4)	3630(3)	76.1(11)
H00H	3379(3)	2985(3)	5037(2)	71.2(10)
H00C	5624(3)	3664(3)	3817(2)	63.7(9)
H002	8723(2)	4300(3)	8192.3(16)	61.3(8)

Table SI 6 Anisotropic Displacement Parameters (Å²×10³) for MOF 1. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu1	9.6(6)	18.3(7)	12.2(6)	0	0	0
N2	13(2)	20(2)	18(2)	-1.6(19)	0.3(17)	2.2(19)
O4	20(2)	56(3)	27(2)	-14(2)	-4.8(18)	14(2)
N3	16(2)	27(3)	25(2)	-7(2)	-4.7(18)	7(2)
C5	14(2)	20(3)	22(3)	-4(2)	1(2)	2(2)
C1	14(2)	23(3)	20(2)	-3(2)	-2(2)	2(2)
C7	17(2)	14(3)	19(2)	-0.1(19)	-1.8(19)	-2(2)
C6	16(2)	22(3)	16(2)	1(2)	-1.0(19)	-1(2)
C2	14(2)	24(3)	21(3)	-6(2)	0(2)	4(2)
C10	18(3)	30(4)	14(3)	0	0	-4(3)
C8	18(3)	19(3)	19(2)	-2(2)	3(2)	1(2)
C4	14(2)	23(3)	27(3)	-7(2)	1(2)	3(2)
C9	24(4)	31(4)	15(3)	0	0	4(4)
N4B	21(5)	34(6)	49(4)	-3(5)	11(4)	1(4)
C3	14(2)	23(2)	21(2)	-3(2)	-1(2)	2(2)
O5B	20(5)	30(5)	40(6)	-9(4)	2(4)	4(4)
C13A	28(9)	34(8)	48(6)	-4(6)	10(7)	6(7)
C11B	20(5)	29(5)	46(5)	-6(4)	7(4)	1(4)
C11A	22(5)	31(6)	45(5)	-7(4)	2(4)	0(4)
O5A	24(4)	29(5)	43(5)	-8(4)	5(4)	4(4)
C13B	30(10)	42(9)	48(7)	-5(6)	17(7)	-6(8)
C12A	28(6)	36(7)	66(7)	-1(6)	11(6)	8(5)
N4A	25(5)	31(6)	47(4)	-5(4)	9(4)	1(4)
C12B	33(7)	52(8)	72(9)	8(7)	15(7)	18(6)
N5	29(4)	17(3)	23(5)	2(3)	-11(3)	0(3)
01	36(8)	21(3)	42(7)	1(5)	3(6)	-3(4)

Table SI 6 Anisotropic Displacement Parameters (Å²×10³) for MOF 1. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O2	47(4)	22(3)	41(13)	2(5)	-27(7)	14(5)
O3	31(4)	26(4)	31(5)	0(4)	-6(4)	-8(3)

Table SI 7: Bond Lengths for MOF 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu1	N21	2.029(4)	C2	C3	1.398(8)
Cu1	N2	2.030(4)	C8	С9	1.392(7)
Cu1	N2 ²	2.029(4)	C4	C3	1.398(8)
Cu1	N2 ³	2.029(4)	N4B	C11B	1.35(2)
Cu1	01	2.433(8)	N4B	C13B	1.41(3)
N2	C5	1.351(7)	N4B	C12B	1.39(2)
N2	C1	1.354(7)	O5B	C11B	1.21(2)
O4	C6	1.206(7)	C13A	N4A	1.43(3)
N3	C6	1.379(7)	C11A	.05A	1.26(2)
N3	C3	1.396(7)	C11A	N4A	1.32(2)
C5	C4	1.365(8)	C12A	N4A	1.48(3)
C1	C2	1.377(8)	N5	01	1.248(12)
C7	C6	1.504(8)	N5	O2	1.244(12)
C7	C10	1.390(7)	N5	03	1.241(10)
C7	C8	1.389(8)			

Table SI 8: Bond Angles for MOF 1.

Atom	n Atom	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
$N2^1$	Cu1	N2 ²	89.1(3)	N3	C6	C7	114.7(5)
N2 ³	Cu1	N2	89.1(3)	C1	C2	C3	118.9(5)
$N2^1$	Cu1	N2	179.6(3)	$C7^4$	C10	C7	120.6(7)
$N2^1$	Cu1	N2 ³	90.9(3)	C7	C8	C9	120.1(5)
$N2^2$	Cu1	N2 ³	179.6(3)	C5	C4	C3	119.8(5)
$N2^2$	Cu1	N2	90.9(3)	C8	C9	C8 ⁴	120.0(7)
$N2^1$	Cu1	01	91.5(8)	C11B	N4B	C12B	125(2)
N2 ³	Cu1	01	94.2(5)	C13B	N4B	C11B	133.9(19)
$N2^2$	Cu1	01	85.4(5)	C13B	N4B	C12B	101.0(17)
N2	Cu1	01	88.9(8)	N3	C3	C2	125.4(5)
C5	N2	Cu1	120.1(4)	N3	C3	C4	116.9(5)
C5	N2	C1	117.0(5)	C2	C3	C4	117.7(5)
C1	N2	Cu1	122.8(4)	O5B	C11B	N4B	129(2)
C6	N3	C3	127.2(5)	O5A	C11A	N4A	124(2)
N2	C5	C4	123.2(5)	C11A	N4A	C13A	104(2)
N2	C1	C2	123.4(5)	C11A	N4A	C12A	121(2)
C10	C7	C6	121.4(5)	C12A	N4A	C13A	134.6(16)
C8	C7	C6	119.0(5)	O2	N5	01	119.0(14)
C8	C7	C10	119.6(5)	03	N5	01	121.7(10)

Table SI 8: Bond Angles for MOF 1.

Ator	n Atoı	m Atom	Angle/°	Ato	n Atoı	n Atom	Angle/°
O4	C6	N3	123.7(5)	O3	N5	O2	119.3(15)
O4	C6	C7	121.6(5)	N5	01	Cu1	137.8(10)

Table SI 9: Torsion Angles for MOF 1.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
Cu1	N2	C5	C4	-179.6(5)	C10	C7	C6	O4	-149.4(5)
Cu1	N2	C1	C2	178.5(5)	C10	C7	C6	N3	30.5(7)
N2	C5	C4	C3	0.8(9)	C10	C7	C8	C9	-1.2(8)
N2	C1	C2	C3	1.3(9)	C8	C7	C6	O4	30.5(9)
C5	N2	C1	C2	0.5(9)	C8	C7	C6	N3	-149.7(5)
C5	C4	C3	N3	-178.1(6)	C8	C7	C10	C71	0.6(4)
C5	C4	C3	C2	1.0(9)	C3	N3	C6	O4	2.4(10)
C1	N2	C5	C4	-1.6(9)	C3	N3	C6	C7	-177.5(5)
C1	C2	C3	N3	177.1(6)	O5A	C11A	N4A	C13A	172.8(18)
C1	C2	C3	C4	-2.0(9)	O5A	C11A	N4A	C12A	-1(3)
C7	C8	C9	C81	0.6(4)	C13E	N4B	C11B	O5B	0(4)
C6	N3	C3	C2	12.0(10)	C12E	N4B	C11B	O5B	-172(2)
C6	N3	C3	C4	-168.9(6)	02	N5	01	Cu1	-170(3)
C6	C7	C10	$C7^1$	-179.6(6)	03	N5	01	Cu1	11(4)
C6	C7	C8	C9	178.9(4)					

Table SI 10: Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for MOF 1.

Atom	x	у	z	U(eq)
H3	7392.56	3382.74	4762.13	27
Н5	5473.42	2894.41	3928.02	22
H1	4263.14	4595.18	4369.87	23
H2	5385.72	4576.09	4785.18	24
H10	8749.97	3750.02	4895.12	25
H8	7341.37	3987.76	5757.76	22
H4	6648.74	2850.25	4318.95	25
H9	8749.99	3749.99	6046.13	28
H13D	9424.37	2992.99	3875.47	55
H13E	10010.04	2242.84	3827.57	55
H13F	10519.56	2955.03	3980.37	55
H11B	8933.15	2192.42	4656.5	38
H11A	8606.04	3107.39	4175.8	39
H13A	10178.43	2188.66	3822.58	60
H13B	10888.01	2692.27	4033.44	60
H13C	9876.19	3010.71	3922.84	60
H12D	9780.5	2025.83	4751.88	65
H12E	10735.75	1962.17	4539.87	65
H12F	9867.92	1413.1	4469.38	65

Table SI 10: Hydrogen	Atom Coordina	ates (Å×104)	and Isotro	opic Displacement	Parameters
(Å ² ×10 ³) for MOF 1.					

Atom	x	у	z	U(eq)
H12A	11047.06	1837.12	4354.35	78
H12B	10288.43	1322.14	4171.29	78
H12C	10201.69	1464.59	4559.12	78

Table SI 11: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for MOF 2. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
Ni01	12533.5(4)	10000	6666.666667	48.84(16)
C11	12215.6(7)	9381.0(6)	5419.4(4)	56.1(2)
N3	4108(2)	6695(2)	7280.3(15)	53.5(7)
N4	3001(2)	8853(2)	6871.6(14)	54.4(7)
N1	10937(2)	8877(2)	6899.1(16)	54.9(7)
O2	3082(2)	5711(2)	8208.6(16)	81.8(8)
N2	7737(2)	6702(2)	7442.1(16)	57.5(8)
01	7424(2)	5107(2)	6978.3(18)	91.1(9)
C12	5388(3)	4077(3)	7738(2)	60.8(9)
C7	5962(3)	5169(3)	7519(2)	55.0(9)
C13	3802(3)	5932(3)	7781(2)	58.0(9)
C16	3667(3)	7376(3)	7155.2(19)	56.0(9)
C6	7072(3)	5611(3)	7294(2)	61.3(9)
C14	2656(3)	8205(3)	7444.8(18)	56.4(9)
C24	4382(3)	5320(2)	7772.1(17)	48.2(8)
C3	8796(3)	7379(3)	7255.7(18)	51.5(8)
C5	10456(3)	7864(3)	6674(2)	62.7(9)
C17	4021(3)	8005(3)	6564(2)	62.8(10)
C15	2961(3)	7464(3)	7595.7(19)	58.0(9)
C4	9398(3)	7101(3)	6829(2)	64.8(10)
C8	5434(3)	5766(2)	7543.6(17)	54.3(8)
C11	4364(3)	3666(3)	8010(2)	79.3(12)
C10	3857(3)	4260(3)	8036(2)	63.4(10)
C1	10333(3)	9124(3)	7326(2)	66.4(10)
C18	3666(3)	8738(3)	6431.9(19)	66.2(10)
C2	9269(3)	8407(3)	7500(2)	65.1(10)

Table SI 12: Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for MOF 2. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.Atom U_{11} U_{22} U_{33} U_{12} U_{13} U_{23}

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ni01	41.9(2)	48.7(3)	58.3(3)	24.34(16)	4.62(14)	9.2(3)
Cl1	57.9(5)	52.1(4)	59.8(4)	28.7(4)	6.7(4)	9.9(4)
N3	51.4(16)	56.6(17)	60.1(17)	32.7(14)	-3.5(13)	4.7(14)

N4	45.7(15)	57.7(17)	59.8(16)	25.9(14)	6.8(12)	9.7(13)
N1	46.8(16)	56.5(19)	66.0(18)	29.3(14)	6.1(14)	-1.7(14)
O2	80.0(19)	75.5(18)	97(2)	43.9(16)	16.6(17)	31.0(17)
N2	47.6(17)	42.6(16)	79.6(19)	20.6(14)	3.9(14)	-10.8(13)
01	70.1(19)	60.4(16)	144(3)	33.3(14)	4.8(18)	-30.9(19)
C12	56(2)	43.8(19)	81(2)	23.9(17)	-13.1(19)	4.2(18)
C7	51(2)	42.6(18)	68(2)	20.8(16)	-10.9(16)	-9.1(16)
C13	52(2)	52(2)	68(2)	23.9(17)	-2.5(18)	2.5(17)
C16	54(2)	57(2)	62(2)	31.1(18)	-11.3(17)	-7.7(17)
C6	49(2)	50(2)	81(2)	22.2(17)	6.9(19)	-3.0(19)
C14	64(2)	59(2)	61(2)	41.8(18)	5.1(17)	2.8(17)
C24	43.4(19)	37.7(17)	59.1(19)	16.9(14)	-7.3(15)	0.5(15)
C3	46(2)	43.2(18)	60(2)	18.7(16)	2.9(16)	1.6(16)
C5	57(2)	65(2)	72(2)	35(2)	14.4(18)	-11(2)
C17	56(2)	78(3)	72(2)	47(2)	12.7(17)	23.4(19)
C15	65(2)	57(2)	57(2)	34.2(19)	6.7(18)	6.5(17)
C4	62(2)	51(2)	76(2)	23.5(19)	9.5(18)	-9.0(18)
C8	56(2)	39.9(16)	65.4(19)	22.6(17)	-13.8(18)	0.6(14)
C11	65(3)	34.5(18)	124(4)	15(2)	-18(3)	4(2)
C10	46.0(19)	51(2)	82(3)	16.2(17)	-9.8(17)	5.8(18)
C1	49(2)	56(2)	90(3)	22.7(17)	-1.6(19)	-11.1(19)
C18	74(2)	79(3)	67(2)	54(2)	19(2)	24(2)
C2	53(2)	53(2)	75(2)	15.8(18)	11.3(17)	-20.3(19)

Table SI 13: Bond Lengths for MOF 2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ni01	Cl1	2.4733(9)	C12	C7	1.420(5)
Ni01	Cl11	2.4733(9)	C12	C11	1.382(5)
Ni01	N42	2.103(3)	C7	C6	1.454(5)
Ni01	N43	2.103(3)	C7	C8	1.403(5)
Ni01	N1	2.088(3)	C13	C24	1.485(5)
Ni01	N11	2.088(3)	C16	C17	1.363(5)
N3	C13	1.343(4)	C16	C15	1.364(5)
N3	C16	1.426(4)	C14	C15	1.368(4)
N4	C14	1.349(4)	C24	C8	1.383(5)
N4	C18	1.336(4)	C24	C10	1.409(5)
N1	C5	1.330(4)	C3	C4	1.379(5)

N1	C1	1.355(4)	C3	C2	1.362(5)
02	C13	1.220(4)	C5	C4	1.389(5)
N2	C6	1.397(4)	C17	C18	1.404(5)
N2	C3	1.379(4)	C11	C10	1.373(5)
01	C6	1.225(4)	C1	C2	1.389(4)

Table SI 14: Bond Angles for MOF 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C11	Ni01	Cl11	179.44(5)	O2	C13	N3	124.4(3)
N42	Ni01	Cl11	88.09(8)	C24	C13	N3	115.1(3)
N43	Ni01	Cl11	92.31(8)	C24	C13	02	120.4(3)
N43	Ni01	Cl1	88.09(8)	C17	C16	N3	116.3(3)
N42	Ni01	Cl1	92.31(8)	C15	C16	N3	124.6(3)
N42	Ni01	N43	89.35(14)	C15	C16	C17	119.0(3)
N11	Ni01	Cl1	90.32(8)	01	C6	N2	120.5(3)
N1	Ni01	Cl1	89.27(8)	C7	C6	N2	114.7(3)
N11	Ni01	Cl11	89.27(8)	C7	C6	01	124.8(3)
N1	Ni01	Cl11	90.32(8)	C15	C14	N4	123.7(3)
N1	Ni01	N43	90.78(10)	C8	C24	C13	122.4(3)
N11	Ni01	N43	178.41(11)	C10	C24	C13	118.7(3)
N1	Ni01	N42	178.41(11)	C10	C24	C8	118.8(3)
N11	Ni01	N42	90.78(10)	C4	C3	N2	125.1(3)
N11	Ni01	N1	89.13(15)	C2	C3	N2	117.1(3)
C16	N3	C13	126.9(3)	C2	C3	C4	117.8(3)
C14	N4	Ni014	122.5(2)	C4	C5	N1	124.2(3)
C18	N4	Ni014	120.8(2)	C18	C17	C16	119.1(3)
C18	N4	C14	116.7(3)	C14	C15	C16	119.2(3)
C5	N1	Ni01	123.3(2)	C5	C4	C3	119.4(3)

Figure SI 5: ¹H NMR spectra of digested ligand L1, MOF 1 before and after activation recorded in DMSO- d_6 .

Figure SI 6: ¹H NMR spectra of digested ligand L1, MOF 2 before and after activation recorded in DMSO- d_6 .

Figure SI 7: SEM-EDX images for MOF 1.

Figure SI 8: SEM-EDX images for MOF 2.

Figure SI 9: EDX mapping images for MOF 1.

Figure SI 10: HR-TEM and SAED images of MOF 1.

Figure SI 11: Representative ¹H NMR of the hydrogenation of FF reaction using molecular H_2 , 140 °C, methanol (5 mL), substrate (FF, 2.5 mmol), pre-catalyst (**MOF 2**), time (24 hours), showing product of FA only, recorded in CDCl₃.

Figure SI 12: SEM-EDX images for (a) MOF 2 before catalysis and (b) MOF 2 after the 4th recycle.

Figure SI 13: (a) FT-IR spectra and (b) TGA curves of the MOF 2 before and after the 4th recycle.