Supplementary information for

Structure and Bonding Properties of the Platinum-Mediated Endohedral Tetrametallic Fullerene La₃Pt@C₉₈

Yameng Hou^a, Lei Mu^{a†}, Sijin Zhou^a, Yicheng Xu^a, Xianglei Kong^{a,b,c*}

^a State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

^b Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.

[°] Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

[†] Present address: COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China

*Corresponding author. Email: kongxianglei@nankai.edu.cn

This PDF file includes:

- 1. Supplementary Methods
- 2. Supplementary Figures
- 3. Supplementary Tables
- 4. Supplementary Data
- 5. Supplementary References

1 Supplementary Methods

1.1 Materials

Graphene (Timesnano company), lanthanum (III) chloride (99.5%, Tianjin Guangfu Chemical research institute), platinum (IV) tetrachloride (99%, Energy Chemical company), acetone (99.5%, Concord Tech reagent).

1.2 Experimental Methods

Experiments were performed on a 7.0 T FT ICR MS (Varian IonSpec) employing the commercial MALDI source in positive-ion mode. A 355nm Nd: YAG laser (Orion, New Wave) was used to create ions. Typical laser energy was set to be 85% relative to the maximum energy of 4mJ/pulse. Graphene was dispersed in water/acetone (9:1, vol/vol) at 1mg/ml. Lanthanum (III) chloride and platinum (IV) tetrachloride were dissolved in acetone at 5 mM and 1 mM, respectively. Then the solutions of LaCl₃ and PtCl₄ were mixed at the ratio of 1:1 (vol/vol). 1µL of graphene solutions was deposited on the stainless steel-plate and dried at room temperature, then 1µL of the mixture of LaCl₃/PtCl₄ was deposited on it. In the experiments, ions produced by six consecutive laser pulses were accumulated in the hexapole first. After the accumulation, the hexapole exit lens was gated so that ions could be transferred into the quadrupole guide. The DC potential of the trapping plate near the quadrupole was set to be 15 V before the introduction of the ions into the cell. During the period of ion transfer to the cell, the trapping plate was pulsed down to 0 V to allow the ions to enter the ICR cell. The ions were then cooled down by a pulsed nitrogen gas (with pressure in the cell raised to about 10⁻⁶ Torr) before detection or isolation for tandem MS. Typically, mass spectra were acquired in the *m/z* range of 700–2500.

1.3 Theoretical Methods

All DFT calculations were carried out using the Gaussian 09 program package.⁷⁷ In general, given a common +3 oxidation state of M (M = Sc, Y, Ln) in EMF of M₂@C_{2n} and M₃@C_{2n} ^{53, 78}, the fullerene cage is in a valence state of -6. In this research, the valence state of platinum is difficult to be estimated at the first time, thus, all top negatively charged cages of C₉₈^{4–}, C₉₈^{6–}, C₉₈^{7–} and C₉₈^{8–} need to be considered. Therefore, 259 IPR-isomers of C₉₈ cages get from CAGE software ⁷⁹ were first calculated with valences of -4, -6, -7 and -8 at the xTB level ⁸⁰. These structures were then

ranked based on their energies, and the top 15 isomers of negatively charged cages C₉₈⁴⁻, C₉₈⁶⁻, C_{98}^{7-} and C_{98}^{8-} were chosen and optimized at the level of B3LYP/6-31g(d) ^{81,82} (Table. S1-S4). It is worth noting that C₉₈ empty cages calculated under different valence states (-6, -7, -8) have similar cage stability, so some of their respective top 15 most stable C_{98} cages (C_{98}^{6-} , C_{98}^{7-} and C_{98}^{8-}) are duplicates. Thus, the top five stable IPR isomers of C_{98}^{4-} , the top eight stable IPR isomers of C_{98}^{8-} and the top ten stable IPR isomers of C_{98}^{6-} , C_{98}^{7-} were all selected. Besides, the non-IPR cage of 168785 was also considered in this paper, due to its importance in Gd₂@C₉₈ isomers, as shown by Nagase. et.al.³¹ In total, the nine IPR isomers and one non-IPR isomer are selected here. Then, the La₃Pt metalloclusters were inserted into the optimized cages. For each cage, initial confirmations formed by insertions from more than 8 different directions were tried. All these isomers were optimized at the B3LYP/6-31g(d)/SDD level. The 6-31G(d) basis set is used for C atom, while SDD basis set is used for La and Pt atoms. Results show that for same carbon cage, there are several conformational isomers that are different in their orientations of the La3Pt cluster relative to the cage. The results are shown in Figures 2, S3 and S4. Their electronic energies were calculated with zero-point energy corrections. Two different DFT methods⁸³ of wB97X-D and TPSSH were applied to these isomers of $La_3Pt(a)C_{90}$, and the results are shown in **Table. S4**.

Relative concentrations (Wi) of the i-th isomer at different temperatures were calculated by:84

where R is the gas constant, T is the absolute temperature, q_i and $DH_{0,j}^o$ are the partition functions and the relative heat of formation at absolute zero temperature of the *i*-th isomer, respectively. And rotational-vibrational partition functions were calculated from the optimized structural and vibrational data obtained at the level of B3LYP/6-31g(d)/SDD without frequency scaling.

A series of wavefunction analyses were used to determine the bonding interactions and electronic properties of the La₃Pt@C₉₈ isomers using the Multifwn software.⁷² On one hand, the gaussian checkpoint files containing the wavefunction information were imported into Multifwn for ELF analysis, Mayer bonding order calculation, and interaction region indicator (IRI) analysis⁸⁵ to verify bonding interactions within these isomers. On the other hand, by combining Multifwn with Visual Molecular Dynamics (VMD)⁸⁶, it is feasible to plot the charge distribution maps, spin electron distribution maps, and molecular orbitals of La₃Pt@*C2*(231010)-C₉₈ and La₃Pt@*C1*(231005)-C₉₈, which can be used to better demonstrate the interesting electronic properties of EMFs. All of the wavefunction analyses presented above were carried out at the level of of B3LYP /6-31g(d)/SDD. Herein, both spin electron distribution maps and molecular orbital diagrams are drawn in isosurface maps. The isovalue was set at 0.002.

To elucidate the bonding state, the local molecular orbitals (LMOs) were located using the popular

Pipek–Mezey localization method. The obtained LMOs were also verified by the adaptive natural density partitioning (adNDP) method.⁷³ The selection process is as follows: first, isolate the La₃Pt clusters; second, perform an orbital search in the order 1c-2e, 2c-2e, 3c-2e, 4c-2e; third, select the representative high occupation number of these orbitals (in each step, not all orbitals can be selected, otherwise, there will be no orbitals available for the next step). For a better rendering, the isovalue of all orbits was set at 0.5.

2 Supplementary Figures

Figures. S1–S12

Figure. S1 Comparison of the experimental isotopic distributions of $La_3Pt@C_{112}^+$ and

 $La_3Pt@C_{114}^+$ ions with their simulated isotopic distributions.

Figure. S2 Laser ablation MS spectrum of the mixture of graphene/PtCl₄ in the regions of 800-1500 m/z (a), 1500-2200 m/z (b) and 2200-2900 m/z (c).

Figure. S3 Top and front views of optimized geometric structures of La₃Pt@C₉₈ isomers:

La₃Pt@C1(230926)-C₉₈ (a), La₃Pt@C1(230933)-C₉₈ (b), La₃Pt@C2(230932)-

C₉₈ (c), La₃Pt@C1(230979)-C₉₈ (d), La₃Pt@C2(230924)-C₉₈ (e),

La₃Pt@*C2*(230922)-C₉₈ (f).

- Figure. S4 Top and front views of optimized geometric structures of conformational isomers: La₃Pt@*C1*(231005)-C₉₈-2 (a), La₃Pt@*C2*(230932)-C₉₈-2 (b), La₃Pt@*C1*(230933)-C₉₈-2 (c).
- Figure. S5 Mulliken charge distributions of La₃Pt@C₉₈ isomers: La₃Pt@C2(231010)-C₉₈
 (a), La₃Pt@C1(231005)-C₉₈ (b), La₃Pt@C1(230926)-C₉₈ (c), La₃Pt@C1 (230933)-C₉₈ (d), La₃Pt@C2(230932)-C₉₈ (e), La₃Pt@C1 (230979)-C₉₈ (f), which were calculated at the level of B3LYP/6-31g(d)/SDD.
- Figure. S6 Electron localization function analysis of La₃Pt@C₉₈ isomers:
 La₃Pt@C1(231005)-C₉₈ (a), La₃Pt@C1(230926)-C₉₈ (b), La₃Pt@C1(230933) C₉₈ (c) in the La₁-La₂-La₃ (left) and La₁-Pt-La₂ (right) planes.

Figure. S7 Color-coded map of intra-cluster interactions described by the interaction

region indicator of La₃Pt@C₉₈ isomers: Color-coded map of intra-cluster interactions described by the interaction region indicator of La₃Pt@C₉₈ isomers: La₃Pt@*C1*(231005)-C₉₈ (a,b) and La₃Pt@*C1*(231005)-C₉₈ (c,d), from full (a, c,) and half section views (b, d). The standard coloring method applied was shown in the right of the figure.

The standard coloring method applied was shown in the right of the figure.

- Figure. S8 Adaptive natural density partitioning (adNDP) analysis results of $La_3Pt@C1(231005)-C_{98}$.
- Figure. S9 Electron spin density distributions of La₃Pt@C₉₈ isomers: La₃Pt@C1(230926)-C₉₈ (a), La₃Pt@C1(230933)-C₉₈ (b), La₃Pt@C2(230932)-C₉₈ (c), La₃Pt@C1 (230979)-C₉₈ (d), which were calculated at the level of B3LYP/6-31g(d)/SDD.
- Figure. S10 Main frontier molecular orbitals of La₃Pt@*C1*(231005)-C₉₈, calculated at the B3LYP/6-31g(d)/SDD level.
- Figure. S11 The comparison of molecular orbitals of La₃Pt@*C2*(231010)-C₉₈ with those of empty C₉₈.
- Figure. S12 Simulated IR spectra of La₃Pt@C2(231010)-C₉₈ (a), La₃Pt@C1(231005)-C₉₈ (b), La₃Pt@C1(230926)-C₉₈ (c) and La₃Pt@C1(230933)-C₉₈ (d), which were calculated at the B3LYP/6-31g(d)/SDD level.

Figure. S1 Comparison of the experimental isotopic distributions of $La_3Pt@C_{112}^+$ and $La_3Pt@C_{114}^+$ ions with their simulated isotopic distributions.

Figure. S2 Laser ablation MS spectrum of the mixture of graphene/PtCl₄ in the regions of 800-1500 m/z (a), 1500-2200 m/z (b) and 2200-2900 m/z (c).

Figure. S3 Top and front views of optimized geometric structures of La₃Pt@C₉₈ isomers: La₃Pt@*C1*(230926)-C₉₈ (a), La₃Pt@*C1*(230933)-C₉₈ (b), La₃Pt@*C2*(230932)-C₉₈ (c), La₃Pt@*C1*(230979)-C₉₈ (d), La₃Pt@*C2*(230924)-C₉₈ (e), La₃Pt@*C2*(230922)-C₉₈ (f).

Figure. S4 Top and front views of optimized geometric structures of conformational isomers: $La_3Pt@C1(231005)-C_{98}-2$ (a), $La_3Pt@C2(230932)-C_{98}-2$ (b), $La_3Pt@C1(230933)-C_{98}-2$ (c).

Figure. S5 Mulliken charge distributions of La₃Pt@C₉₈ isomers: La₃Pt@*C*2(231010)-C₉₈ (a), La₃Pt@*C*1(231005)-C₉₈ (b), La₃Pt@*C*1(230926)-C₉₈ (c), La₃Pt@*C*1(230933)-C₉₈ (d), La₃Pt@*C*2(230932)-C₉₈ (e), La₃Pt@*C*1(230979)-C₉₈ (f), which were calculated at the level of B3LYP/6-31g(d)/SDD.

Figure. S6 Electron localization function (ELF) analysis of La₃Pt@C₉₈ isomers: La₃Pt@C1(231005)-C₉₈ (a), La₃Pt@C1(230926)-C₉₈ (b), La₃Pt@C1(230933)-C₉₈ (c) in the La₁-La₂-La₃ (left) and La₁-Pt-La₂ (right) planes.

Figure. S7 Color-coded map of intra-cluster interactions described by the interaction region indicator of La₃Pt@C₉₈ isomers: La₃Pt@*C1*(231005)-C₉₈ (a,b) and La₃Pt@*C1*(231005)-C₉₈ (c,d), from full (a, c,) and half section views (b, d). The standard coloring method applied was shown in the right of the figure.

2c-2e Pt-La₂

2c-2e Pt-La₃

3c-2e Pt-La1-La2

3c-2e Pt-La₂-La₃

3c-2e Pt-La₃-La₁

4c-2e Pt-La₁-La₂-La₃

Figure. S8 Adaptive natural density partitioning (adNDP) analysis results of $La_3Pt@C1(231005)-C_{98}$. To make the picture clearer, the outer fullerene cage has been removed purposely.

Figure. S9 Electron spin density distributions of La₃Pt@C₉₈ isomers: La₃Pt@C1(230926)-C₉₈ (a), La₃Pt@C1(230933)-C₉₈ (b), La₃Pt@C2(230932)-C₉₈ (c), La₃Pt@C1(230979)-C₉₈ (d), which were calculated at the level of B3LYP/6-31g(d)/SDD.

Figure. S10 Main frontier molecular orbitals of La₃Pt@CI(231005)-C₉₈, calculated at the B3LYP/6-31g(d)/SDD level.

Figure. S11 The comparison of molecular orbitals of $La_3Pt@C2(231010)-C_{98}$ with those of empty C_{98} .

Figure. S12 Simulated IR spectra of La₃Pt@*C2*(231010)-C₉₈ (a), La₃Pt@*C1*(231005)-C₉₈ (b), La₃Pt@*C1* (230926)-C₉₈ (c) and La₃Pt@*C1*(230933)-C₉₈ (d), which were calculated at the B3LYP/6-31g(d)/SDD level.

3 Supplementary Tables

Tables. S1–S15

- **Table. S1** Relative energies of the top 15 isomers of C_{98}^{4-} before and after encapsulating La₃Pt clusters.
- **Table. S2** Relative energies of the top 15 isomers of C_{98}^{6-} before and after encapsulating La₃Pt clusters.
- **Table. S3** Relative energies of the top 15 isomers of C_{98}^{7-} before and after encapsulating La₃Pt clusters.
- **Table. S4** Relative energies of the top 15 isomers of C_{98}^{8-} before and after encapsulating La₃Pt clusters.
- **Table. S5** Relative energies and corresponding ranks of La₃Pt@C₉₈ isomers based on three different methods.
- **Table. S6** Relative energies and corresponding ranks, together with HOMO-LUMO gapsof La3Pt@C98 and La3Pt@C98⁺ isomers at the B3LYP/6-31g(d)/SDD level.

Table. S7 Comparison of La-C and Pt-C bond lengths (in Å) in La₃Pt@C₉₈ isomers.

- **Table. S8** Comparison of La-La, La-Pt and La-C bond lengths (in Å) in the cages of La₃N@C_{88,92,96} and La₃Pt@C₉₈. *
- **Table. S9** Relative energies and HOMO–LUMO gaps of conformational isomers of La₃Pt@C₉₈ at the B3LYP/6-31g(d)/SDD level.
- **Table. S10** La-La and La-Pt bond lengths (in Å), La-Pt-La bond angles (in degree) of the metal cluster La₃Pt in these conformational isomers of La₃Pt@C₉₈ at the

B3LYP/6-31g(d)/SDD level.

Table. S11 La-C, Pt-C bond lengths (in Å), and the coordinated environment of three La atoms in the cages of these conformational isomers of La₃Pt@C₉₈ at the B3LYP/6-31g(d)/SDD level.

Table. S12 Mulliken charge distributions of the top 10 La₃Pt@C₉₈ isomers

Table. S13 Hirshfeld charge distributions of the top 10 La₃Pt@C₉₈ isomers

- **Table. S14** Voronoi deformation density (VDD) charge distributions of the top 10 La₃Pt@C₉₈ isomers
- Table. S15 Total Mayer Bond Orders between La (Pt) and C atoms coordinated to them in

 La₃Pt@C₉₈ isomers.

Spiral ID	IPR code	Symmetry	Empty cage ^a	EMF ^b
230979	221	C_1	0.00	5.58
230933	175	C_1	0.32	3.72
230926	168	C_1	0.82	3.09
230925	167	C_{2v}	1.13	12.61
230924	166	C_2	1.49	7.36
230927	169	C_1	3.23	
230941	183	C_1	3.32	
230839	81	C_{2v}	3.44	
230938	180	C_2	4.97	
230931	173	C_1	5.43	
230889	131	C_1	6.54	
230932	174	C_2	6.63	5.57
230969	211	C ₂	6.83	
231005	247	C_1	7.19	1.21
230947	189	C_2	7.33	

Table. S1 Relative energies of the top 15 isomers of C_{98}^{4-} before and after encapsulating La₃Pt clusters.

a. Empty carbon cages C_{98}^{4-} were optimized with the method of B3LYP/6-31g(d). The top five fullerenes were selected for the next-step optimization. Due to the complexity of computation, the calculation for some less important EMFs with higher-energy empty cages was not performed here.

Spiral ID	IPR code	Symmetry	Empty cage ^a	EMF ^b
230924	166	C_2	0.00	7.36
231005	247	C_1	3.71	1.21
231010	252	C_2	7.42	0.00
230933	175	C_1	10.74	3.72
230926	168	\mathbf{C}_1	11.16	3.09
230932	174	C_1	11.27	5.57
230979	221	C ₂	11.62	5.58
231004	246	C ₂	12.42	8.67
230925	167	C_{2v}	12.61	12.61
230919	161	C_1	12.91	17.68
231006	248	C_2	13.17	
230947	189	C ₂	13.87	
231017	259	C ₂	15.00	
230973	215	C_2	15.12	
230944	186	C_1	15.17	

Table. S2 Relative energies of the top 15 isomers of C_{98}^{6-} before and after encapsulating La₃Pt clusters.

a. Empty carbon cages C_{98}^{6-} were optimized with the method of B3LYP/6-31g(d). The top ten fullerenes were selected for the next-step optimization. Due to the complexity of computation, the calculation for some less important EMFs with higher-energy empty cages was not performed here.

Spiral ID	IPR code	Symmetry	Empty cage ^a	EMF ^b
230924	166	C_2	0.00	7.36
231005	247	C_1	4.69	1.21
230925	167	C_{2v}	6.09	12.61
230979	221	C ₂	6.48	5.58
230926	168	C_1	7.49	3.09
230933	175	C_1	7.67	3.72
231010	252	C ₂	8.17	0.00
230932	174	C_1	8.87	5.57
231004	246	C_2	11.01	8.67
230919	161	C_1	12.01	17.68
230947	189	C_2	12.48	
230941	183	C ₂	12.73	
230839	81	C ₂	14.13	8.72
230982	224	C_2	14.43	
230942	184	C_2	14.56	

Table. S3 Relative energies of the top 15 isomers of C_{98}^{7-} before and after encapsulating La₃Pt clusters.

a. Empty carbon cages C_{98}^{7-} were optimized with the method of B3LYP/6-31g(d). The top ten fullerenes were selected for the next-step optimization. Due to the complexity of computation, the calculation for some less important EMFs with higher-energy empty cages was not performed here.

Spiral ID	IPR code	Symmetry	Empty cage ^a	EMF ^b
230924	166	C ₂	0.00	7.36
230925	167	C_{2v}	1.89	12.61
230932	174	C ₂	6.42	5.57
230926	168	C_1	6.89	3.09
230933	175	C_1	8.29	3.72
230922	164	C_1	9.57	12.64
231005	247	C_1	9.72	1.21
230839	81	C ₂	11.03	8.72
230947	189	C ₂	11.18	
230927	169	C_1	12.22	
230938	180	C_1	12.36	
231010	252	C ₂	12.83	0.00
231004	246	C ₂	12.87	8.67
230969	211	C ₂	14.12	
230941	183	C_2	14.33	

Table. S4 Relative energies of the top 15 isomers of C_{98}^{8-} before and after encapsulating La₃Pt clusters.

a. Empty carbon cages C_{98}^{8-} were optimized with the method of B3LYP/6-31g(d). The top eight fullerenes were selected for the next-step optimization. Due to the complexity of computation, the calculation for some less important EMFs with higher-energy empty cages was not performed here.

	Met	thod-A ^a	Met	hod-B ^b	Met	Method-C ^c		
Spiral ID	Dopt	ΔE (in	Donkd	ΔE (in	Donkd	ΔE (in		
	Kalik "	kcal/mol)	Kalik [°]	kcal/mol)	Kalik ^a	kcal/mol)		
231010	1	0.00	1	0.00	1	0.00		
231005	2	1.21	2	1.59	2	0.25		
230926	3	3.09	3	5.01	3	1.59		
230933	4	3.72	4	4.38	4	3.28		
230932	5	5.57	7	6.88	5	5.41		
230979	6	5.58	6	6.84	6	5.43		
230924	7	7.36	5	6.43	7	7.25		
231004	8	8.67	8	9.06	8	9.49		
230839	9	8.72	9	9.90	9	9.55		
168785	10	12.59	10	11.23	10	9.76		

Table. S5 Relative energies and corresponding ranks of $La_3Pt@C_{98}$ isomers based on three different methods.

a. Method-A: B3LYP/6-31g(d)/SDD;

b. Method-B: wB97X-D/6-31g(d)/SDD;

c. Method-C: TPSSH/6-31g(d)/SDD.

d. The relative energy order of the top 10 La₃Pt@C₉₈ isomers with three different methods.

Sminal		La ₃ Pt@C ₉	8 ^a	$La_3Pt@C_{98}+b$			
ID	Rank ^c	ΔE (in kcal/mol)	Gap (in eV)	Rank °	ΔE (in kcal/mol)	Gap (in eV)	
231010	1	0.00	0.78/1.67	2	2.00	1.50	
231005	2	1.21	0.92/1.73	1	0	1.57	
230926	3	3.09	1.11/1.28	3	6.61	1.20	
230933	4	3.72	1.10/1.30	6	8.17	1.20	
230932	5	5.57	0.76/1.27	4	7.50	1.25	
230979	6	5.58	1.19/1.24	5	7.51	1.24	
230924	7	7.36	0.87/1.72	7	10.68	1.49	
231004	8	8.67	1.02/1.68	8	10.79	1.37	
230839	9	8.72	1.07/1.85	9	12.85	1.49	
168785	10	12.59	1.12/2.09	10	16.28	1.58	

Table. S6 Relative energies and corresponding ranks, together with HOMO-LUMO gaps of La₃Pt@C₉₈ and La₃Pt@C₉₈⁺ isomers at the B3LYP/6-31g(d)/SDD level.

a. Relative energies and corresponding ranks, together with HOMO-LUMO gaps of $La_3Pt@C_{98}$, which were calculated at the level of UB3LYP/6-31g(d)/SDD;

b. Relative energies and corresponding ranks, together with HOMO-LUMO gaps of $La_3Pt@C_{98}^+$, which were calculated at the level of B3LYP/6-31g(d)/SDD.

c. The relative energy order of the top 10 La₃Pt@C₉₈ and La₃Pt@C_{98⁺} isomers at the B3LYP/6-31g(d)/SDD level.

Spinal ID	La-	C (Carbon	Cage) (in A	Å) ^a	Pt-C (in	Coordinated Environment ^b						
Spiral ID	La-C	La ₁ -C	La ₂ -C	La ₃ -C	Å)	La ₁	La ₂	La ₃				
231010	2.52	2.52	2.53	2.51	3.10	acenaphthylene	penalene	acenaphthylene				
231005	2.52	2.51	2.54	2.52	3.01	acenaphthylene	hexagon	acenaphthylene				
230926	2.53	2.53	2.56	2.52	2.93	acenaphthylene	hexagon	acenaphthylene				
230933	2.53	2.52	2.54	2.52	3.04	acenaphthylene	pentagon	acenaphthylene				
230932	2.52	2.50	2.51	2.54	3.03	acenaphthylene	naphthalene	pentagon				
230979	2.54	2.52	2.51	2.58	3.24	hexagon	hexagon	hexagon				
230924	2.57	2.56	2.56	2.60	3.00	hexagon	naphthalene	pentagon				
231010	2.54	2.53	2.54	2.54	3.14	acenaphthylene	pentagon	naphthalene				
230839	2.51	2.51	2.50	2.51	3.37	acenaphthylene	acenaphthylene	acenaphthylene				
168785	2.57	2.54	2.55	2.63	3.16	naphthalene	acenaphthylene	pentagon				

Table. S7 Comparison of La-C and Pt-C bond lengths (in Å) in La₃Pt@C₉₈ isomers.

a. The La₁-C, La₂-C, La₃-C bond lengths are the distances between the three La atoms and their nearest C atoms in the cages of La₃Pt@C₉₈ isomers, and the La-C bond lengths are the average distances of the three values.

b. The coordinated environment of La atoms has a series of types: pentagon (La atom coordinates with a pentagonal carbon ring of the cage); hexagon (La atom coordinates with a hexagonal carbon ring of the cage); naphthalene (La atom is located near the junctions of two hexagons); acenaphthylene (La atom is situated at the junctions of one pentagon and two hexagons); penalene (La atom is located near the junctions of three hexagons).

EMF	S	La-L	a distan	ces (in .	Å) ^a	La-Pt	La-Pt bond lengths (in Å) ^b				La-C bond lengths (in Å) ^c		
Types ^d	IPR-		La ₁ -	La ₂ -	La ₃ -	L o Dt	La ₁ -	La ₂ -	La ₃ -		La C	La C	La C
	code	La-La	La ₂	La ₃	La ₁	La-Pi	Pt	Pt	Pt	La-C	La ₁ -C	La ₂ -C	La ₃ -C
La ₃ N@C ₈₈	31	3.83	3.67	3.91	3.90	2.21	2.19	2.23	2.22	2.62	2.64	2.60	2.62
$La_3N@C_{92}$	86	3.78	3.78	3.78	3.78	2.19	2.19	2.19	2.19	2.55	2.55	2.55	2.55
La ₃ N@C ₉₆	186	3.95	4.07	3.89	3.89	2.28	2.29	2.28	2.28	2.64	2.63	2.65	2.65
	252	4.30	4.53	4.32	4.06	2.81	2.81	2.80	2.83	2.52	2.52	2.53	2.51
	247	4.29	4.45	4.45	3.96	2.80	2.81	2.81	2.78	2.52	2.51	2.54	2.52
$La_3Pl(u)C_{98}$	168	4.36	4.33	4.39	4.35	2.79	2.80	2.75	2.81	2.53	2.53	2.56	2.52
	175	4.30	4.36	4.40	4.14	2.80	2.79	2.79	2.82	2.53	2.52	2.54	2.52

Table. S8 Comparison of La-La distances, La-Pt and La-C bond lengths (in Å) in the cages of $La_3N@C_{88,92,96}$ and $La_3Pt@C_{98}$.*

a. The distances are La-La distances between La₁ (La₂, La₃) and La₂ (La₃, La₁) atoms, together with their average values;

b. The distances are La-Pt bond lengths between La₁ (La₂, La₃) and Pt atoms, together with their average values;

- c. The La₁-C, La₂-C, La₃-C bond lengths are the distances between the three La atoms and their corresponding nearest C atoms in the cages. The La-C bond lengths are the average distances between the three La atoms and their nearest C atoms in the cages;
- d. These La₃N@C_{2n} (2n=88, 92, 96) isomers were taken from the reference 33, 65, 66, in turn, and reoptimized at the level of B3LYP/6-31G(d).
- *. A rough comparison shows that the distance between La-N is significantly shorter than the distance between La-Pt, while the distance between La-C (La₃N@C_{2n}) is slightly farer than the distance between La-C (La₃Pt@C_{2n}).

Table. S9 Relative energies and HOMO-LUMO gaps of different conformational isomersof $La_3Pt@C_{98}$ at the B3LYP/6-31g(d)/SDD level.

Rank	Isomeric spiral ID ^a	Caged IPR-code ^b	ΔE (in kcal/mol) ^c	Gap (in eV) ^d
1	231010-1	252	0.00	0.95/1.50
2	231005-1	247	1.21	0.92/1.73
3	230926-1	168	3.09	1.11/1.28
4	230933-1	175	3.72	1.10/1.30
5	231005-2	247	4.96	0.89/1.81
6	230932-1	174	5.57	1.09/1.31
7	230979-1	221	5.58	1.19/1.24
8	230932-2	174	6.32	1.22/1.25
9	230933-2	175	6.68	1.11/1.33
10	230924-1	166	7.36	0.87/1.72
11	230924-2	166	8.49	0.40/1.58
12	231004-1	246	8.67	1.02/1.68
13	230979-2	221	8.70	1.25/1.33
14	230932-3	174	8.70	0.85/1.30
15	230839-1	81	8.72	1.07/1.85
16	230933-3	175	9.20	0.83/1.68
17	231005-3	247	9.65	0.83/1.68
18	231010-2	252	9.80	0.95/1.50
19	230924-3	166	10.37	1.07/1.65

20	230926-2	168	11.23	1.01/1.42
21	168785-1		12.59	1.12/2.09
22	230925-1	167	12.61	1.17/1.23
23	230922-1	164	12.64	1.10/1.23
24	230919-1	161	17.68	0.97/1.56

a. Isomeric spiral ID is specific to each conformational isomer.

- b. Caged IPR-code is the IPR number specific to the cage of these La₃Pt@C₉₈ isomers.
 Different conformational isomers can share a common cage;
- c. The relative energy of each isomer with respect to that of the isomer 231010-1. Calculations were performed at the UB3LYP/6-31g(d)/SDD level. The order of energy ranking is shown in the first column, where the non-dominant conformational isomers are marked in red;
- d. HOMO-LUMO gap for α and β spin orbitals of La₃Pt@C₉₈ isomers at the UB3LYP/6-31g(d)/SDD level.

Isomorio	La	-La dista	nces (in A	Å) ^a	La-P	t bond le	engths (ir	n Å) ^b	La-Pt-La bond angles (in degree) ^c			
	Lala				L o Dt	Lo Dt	Lo Dt	Lo Dt		La ₁ -Pt-	La ₂ -Pt-	La ₃ -Pt-
spiral ID	La-La La ₁ -La ₂ La ₂ -La ₃ La ₃ -		La ₃ -La ₁	a ₁ La-Pi La ₁ -P				La-Pl-La	La ₂	La ₃	La ₁	
231005-2	4.23	4.44	4.12	4.13	2.80	2.79	2.85	2.77	98.1	104.0	94.3	96.0
230932-2	4.21	4.19	4.29	4.15	2.82	2.82	2.83	2.80	96.7	95.9	99.3	95.2
230933-2	4.25	4.29	4.43	4.03	2.81	2.81	2.82	2.81	98.4	99.4	104.0	91.7
230924-2	4.17	3.61	4.78	4.12	2.79	2.83	2.82	2.72	98.2	79.4	119.2	96.1
230979-2	4.16	3.92	4.27	4.30	2.80	2.79	2.83	2.79	96.1	88.4	98.9	101.1
230932-3	4.17	4.27	4.31	3.92	2.80	2.83	2.79	2.79	95.8	98.8	100.2	88.5
230933-3	4.24	4.53	4.01	4.17	2.81	2.80	2.77	2.86	98.4	109.0	91.0	95.1
231005-3	4.26	4.59	4.27	3.92	2.81	2.78	2.85	2.79	99.0	109.2	98.4	89.4
231010-2	4.23	4.20	4.11	4.37	2.81	2.82	2.84	2.76	97.8	95.9	94.4	103.2
230924-3	4.19	4.19	3.89	4.49	2.80	2.81	2.84	2.74	97.6	96.0	88.6	108.1
230926-2	4.26	4.13	4.40	4.24	2.80	2.82	2.78	2.79	99.4	95.4	104.6	98.2

Table. S10 La-La distances (in Å) and La-Pt bond lengths (in Å), La-Pt-La bond angles (in degree) of the metal cluster La₃Pt in these conformational isomers of La₃Pt@C₉₈ at the B3LYP/6-31g(d)/SDD level.

a. The distances are La-La distances between La₁ (La₂, La₃) and La₂ (La₃, La₁) atoms, together with their average values;

b. The distances are La-Pt bond lengths between La₁ (La₂, La₃) and Pt atoms, together with their average values;

c. The angles are La-Pt-La bond angles among La₁ (La₂, La₃), Pt and La₂ (La₃, La₁) atoms, together with their average values.

Isomeric	La-	La-C (Carbon Cage) (in Å) ^a				Coor	ient ^b	
spiral ID	La-C	La ₁ -C	La ₂ -C	La ₃ -C	Å)	La_1	La ₂	La ₃
231005-2	2.53	2.57	2.51	2.50	3.03	hexagon	acenaphthylene	acenaphthylene
230932-2	2.53	2.51	2.55	2.54	3.27	naphthalene	hexagon	pentagon
230933-2	2.53	2.53	2.53	2.52	3.05	naphthalene	naphthalene	acenaphthylene
230924-2	2.56	2.58	2.54	2.56	3.04	pentagon	naphthalene	naphthalene
230979-2	2.52	2.52	2.50	2.55	3.02	acenaphthylene	naphthalene	hexagon
230932-3	2.52	2.51	2.54	2.52	3.03	naphthalene	naphthalene	naphthalene
230933-3	2.51	2.54	2.51	2.49	3.35	naphthalene	naphthalene	acenaphthylene
231005-3	2.52	2.52	2.53	2.52	3.06	acenaphthylene	naphthalene	pentagon
231010-2	2.53	2.52	2.55	2.51	3.04	acenaphthylene	hexagon	acenaphthylene
230924-3	2.52	2.56	2.50	2.50	2.94	hexagon	acenaphthylene	acenaphthylene
230926-2	2.52	2.52	2.52	2.51	3.11	naphthalene	acenaphthylene	naphthalene

Table. S11 La-C, Pt-C bond lengths (in Å), and the coordinated environment of three La atoms in the cages of these conformational isomers of $La_3Pt@C_{98}$ at the B3LYP/6-31g(d)/SDD level.

a. The La₁-C, La₂-C, La₃-C bond lengths are the distances between the three La atoms and their nearest C atoms in the cages, and the La-C bond lengths are the average distances of three values.

b. The coordinated environment of La atoms has a series of types: pentagon; hexagon; naphthalene; acenaphthylene. (See footnote to **Table. S6** for descriptions)

Sectoral ID		Mullike	en Charge Dist	ribution	
Spiral ID	La ₁	La ₂	La ₃	Pt	Carbon Cage ^a
231010	0.49	0.52	0.50	-0.24	-1.27
231005	0.53	0.51	0.51	-0.29	-1.26
230926	0.48	0.49	0.52	-0.22	-1.26
230933	0.52	0.49	0.51	-0.24	-1.28
230932	0.51	0.48	0.48	-0.18	-1.29
230979	0.48	0.48	0.51	-0.18	-1.29
230924	0.53	0.50	0.51	-0.45	-1.09
231004	0.49	0.50	0.52	-0.23	-1.28
230839	0.51	0.47	0.47	-0.19	-1.26
168785	0.44	0.41	0.34	-0.18	-1.01

Table. S12 Mulliken charge distributions of the top 10 La₃Pt@C₉₈ isomers

a. The sum of Mulliken charges of all C atoms.

Contract ID		Hirshfe	eld Charge Dis	stribution	
Spiral ID	La ₁	La ₂	La ₃	Pt	Carbon Cage ^a
231010	0.45	0.48	0.47	-0.16	-1.24
231005	0.44	0.46	0.49	-0.16	-1.23
230926	0.46	0.46	0.47	-0.16	-1.23
230933	0.48	0.47	0.46	-0.16	-1.25
230932	0.47	0.47	0.47	-0.16	-1.25
230979	0.48	0.47	0.47	-0.15	-1.27
230924	0.47	0.37	0.35	-0.15	-1.04
231004	0.46	0.48	0.47	-0.16	-1.25
230839	0.46	0.48	0.48	-0.16	-1.24
168785	0.38	0.36	0.45	-0.18	-1.01

Table. S13 Hirshfeld charge distributions of the top 10 La₃Pt@C₉₈ isomers

a. The sum of Hirshfeld charges of all C atoms.

Sector 11D	Voron	oi Deformation	n Density (VD	D) Charge D	istribution
Spiral ID —	La ₁	La ₂	La ₃	Pt	Carbon Cage ^a
231010	0.31	0.33	0.33	-0.35	-0.62
231005	0.31	0.31	0.34	-0.36	-0.60
230926	0.32	0.32	0.32	-0.36	-0.60
230933	0.34	0.33	0.32	-0.35	-0.64
230932	0.33	0.37	0.31	-0.30	-0.71
230979	0.34	0.33	0.33	-0.35	-0.65
230924	0.32	0.21	0.21	-0.34	-0.40
231004	0.34	0.32	0.30	-0.34	-0.60
230839	0.31	0.34	0.32	-0.29	-0.66
168785	0.23	0.21	0.30	-0.37	-0.37

Table. S14 Voronoi deformation density (VDD) charge distributions of the top 10 $La_3Pt@C_{98}$ isomers

a. The sum of Voronoi deformation density (VDD) charges of all C atoms.

Sectors 1 ID		Mayer Bo	ond Order	
Spiral ID –	La ₁ -Cage	La ₂ -Cage	La ₃ -Cage	Pt-Cage
231010	2.68	2.52	2.75	0
231005	2.83	2.72	2.41	0
230926	2.82	2.57	2.21	0
230933	2.50	2.78	2.74	0
230932	2.97	2.53	2.48	0
230979	2.68	2.64	2.59	0
230924	2.64	2.44	2.19	0
231004	2.71	2.74	2.78	0
230839	2.68	2.56	2.51	0
168785	2.54	3.10	3.09	0

Table. S15 Total Mayer Bond Orders between La (Pt) and C atoms coordinated to them in $La_3Pt@C_{98}$ isomers.

4 Supplementary Data

Element	Х	Y	Z
С	-3.04222721	0.14700493	3.05921861
С	-1.87930044	0.90478389	3.48160302
С	-0.71693524	0.15577604	3.91333501
С	0.49495217	0.86384289	4.08924248
С	1.75628830	0.23245662	3.93668148
С	2.70069374	1.23077004	3.49020389
С	3.72892458	0.88318122	2.53477245
С	4.04655389	1.81572941	1.46232618
С	4.41006472	1.25785354	0.14712734
С	4.09702475	2.03379870	-1.01992830
С	3.76234429	1.41424186	-2.26541662
С	2.67843884	2.17591973	-2.85292043
С	1.62824952	1.53072624	-3.55045349
С	0.27800746	2.00643262	-3.44196554
С	-0.79342986	1.06744205	-3.75590236
С	-2.11795598	1.43613836	-3.40454018
С	-3.16029124	0.48893021	-3.19374783
С	-4.15675356	1.09322136	-2.30096963
С	-4.86707299	0.28269682	-1.32275554
С	-4.97142074	0.83604963	0.02553181
С	-4.73069502	-0.01385902	1.18762460
С	-3.99140501	0.73936263	2.16429898
С	-3.00446536	-1.26761568	3.06568881
С	-3.74209288	-2.05227285	2.09359303
С	-4.53865742	-1.43096181	1.09434561
С	-4.53594512	-1.99051930	-0.22694031
С	-4.59237470	-1.12680897	-1.39611014
С	-3.67682913	-1.71793819	-2.37389335
С	-2.85423090	-0.91376092	-3.21460014
С	-1.52488111	-1.35804240	-3.57876261
С	-0.54890859	-0.34187341	-3.96426050
С	0.80379513	-0.74774680	-4.10046313
С	1.86826353	0.17246493	-3.90898234
С	3.03400263	-0.56859188	-3.48111254
С	3.90399346	0.02009387	-2.47399615
С	4.39968341	-0.79873091	-1.39394735
С	4.58211389	-0.18201177	-0.05639145
С	4.43759901	-1.01099215	1.09372990

Data S1 The XYZ coordinates of La₃Pt@C2(231010)-C₉₈-1

С	3.93920053	-0.49797394	2.32990598
С	3.04067205	-1.50407105	2.88619406
С	1.86487230	-1.14142954	3.56718189
С	0.66152567	-1.93895246	3.42712899
С	-0.61750295	-1.29516672	3.72467981
С	-1.79950666	-1.97065358	3.36316883
С	-1.77664376	-3.18356003	2.60119968
С	-2.97528023	-3.22782130	1.80556500
С	-2.93616964	-3.76083707	0.48669151
С	-3.70527937	-3.10916105	-0.52535594
С	-3.16702054	-2.93241981	-1.85151949
С	-1.88375286	-3.43581526	-2.22395718
С	-1.04285157	-2.68106313	-3.13654628
С	0.37502114	-3.03673412	-3.23162542
С	1.27963743	-2.07918968	-3.84349552
С	2.69286490	-1.97266232	-3.51642797
С	3.27173099	-2.83541557	-2.52898714
С	4.10282199	-2.23622571	-1.48983394
С	3.82008260	-2.96046997	-0.28027689
С	3.98125356	-2.37002903	0.97778768
С	3.05753207	-2.64247788	2.03324590
С	1.90205593	-3.45640398	1.83777654
С	0.69781240	-3.14534004	2.59411766
С	-0.55610395	-3.74923979	2.16525214
С	-0.60454938	-4.48972472	0.93968789
С	-1.74967678	-4.40641570	0.07479254
С	-1.26837282	-4.31208280	-1.28323997
С	0.13978597	-4.49714977	-1.26506584
С	0.97919785	-3.95888319	-2.27301463
С	2.39111852	-3.81705022	-1.90699834
С	2.75679909	-3.88650915	-0.49458797
С	1.80412078	-4.14994442	0.55666165
С	0.54783751	-4.61497020	0.12498239
С	-2.40593460	2.61912511	-2.66938571
С	-3.63937114	2.41267836	-1.95874897
С	-3.75716385	2.95878182	-0.63338138
С	-4.39271109	2.13527350	0.35344574
С	-3.79767998	2.05541687	1.66750660
С	-2.68824173	2.85118293	2.09533163
С	-1.72145738	2.30506925	3.03164992
С	-0.43029821	2.97312333	3.14303727
С	0.63815104	2.25846032	3.77061865
С	2.03565663	2.50003806	3.48329945
С	2.43042151	3.50566330	2.54282961

С	3.43876559	3.15371857	1.54379006
С	3.03035312	3.81376484	0.32447315
С	3.34276598	3.24473299	-0.92439961
С	2.39939827	3.28005087	-2.00646054
С	1.07715707	3.78532644	-1.83438094
С	0.00132020	3.19179271	-2.61463739
С	-1.35852586	3.48204855	-2.22431412
С	-1.61635194	4.19854921	-1.02234483
С	-2.74200495	3.84086267	-0.18963707
С	-2.28063820	3.86362829	1.18220073
С	-0.96230372	4.39344644	1.20521489
С	-0.03682607	4.05046284	2.21807197
С	1.37652968	4.27251463	1.90780989
С	1.77174670	4.46464475	0.50397427
С	0.79205850	4.46480904	-0.56948249
С	-0.55150570	4.60768740	-0.17903617
Pt	-0.14619197	-0.56403796	0.75185323
La	1.58970160	-1.44187920	-1.27841565
La	-2.48777731	0.35955909	-0.47339691
La	1.26429621	1.87147167	1.03721489

Data S2 The XYZ coordinates of La₃Pt@C1(231005)-C₉₈-1

Element	Х	Y	Ζ
С	-2.48446500	-0.96040400	3.57570400
С	-2.04822000	0.39872700	3.71154000
С	-0.65308600	0.68504800	3.87427700
С	-0.14821400	2.01447500	3.51436300
С	1.27276800	2.22352700	3.44923900
С	1.77959100	3.29020800	2.64083200
С	3.01796700	3.11160800	1.92914600
С	2.88774100	3.77837800	0.65757400
С	3.40129200	3.11676200	-0.53794700
С	2.58047400	3.12856200	-1.74318500
С	2.56011900	1.96095200	-2.62239000
С	1.35740000	1.62521300	-3.40504200
С	1.10672600	0.25313900	-3.81217200
С	-0.26258700	-0.25949500	-3.95885200
С	-0.60710600	-1.64167900	-3.60708100
С	-1.95167300	-1.94323600	-3.09693300
С	-2.11861200	-3.08737100	-2.22269400

С	-3.17623000	-3.09217700	-1.24540400
С	-3.01254600	-3.65499300	0.07920300
С	-3.92264800	-2.97759900	0.97267900
С	-3.44128100	-2.67820800	2.30499400
С	-3.68851900	-1.35149400	2.84988400
С	-1.52652200	-2.00551200	3.44902300
С	-2.08127000	-3.04990600	2.63759700
С	-1.18341700	-3.79912600	1.77470700
С	-1.71502700	-4.16083100	0.47591600
С	-0.81590600	-4.43109600	-0.57508500
С	-1.01875600	-3.91121300	-1.91383800
С	0.25576500	-3.69228500	-2.49732700
С	0.47678800	-2.56272300	-3.33202700
С	1.82391800	-2.08724800	-3.38553500
С	2.12082400	-0.71049300	-3.60123100
С	3.32775700	-0.38836500	-2.91488400
С	3.54356500	0.91088700	-2.39022500
С	4.41271300	0.97382300	-1.26394300
С	4.28984800	2.02811300	-0.31804100
С	4.57651800	1.48960900	0.99054400
С	3.84310000	1.96239100	2.11284700
С	3.44383100	1.01635800	3.09108300
С	2.15963500	1.14505600	3.72123900
С	1.65084500	-0.16774600	3.92721800
С	0.27359200	-0.44068100	3.94926500
С	-0.13188300	-1.77860200	3.58071500
С	0.79215400	-2.70996700	2.93622400
С	0.25303200	-3.67857100	1.96775300
С	1.13954200	-4.16719900	0.91916900
С	0.58248500	-4.50679100	-0.34324900
С	1.26354900	-4.15932700	-1.57404500
С	2.57554600	-3.63656200	-1.57338800
С	2.86265700	-2.63184400	-2.54629600
С	3.82004100	-1.58890700	-2.26565400
С	4.57763400	-1.54624300	-1.04500600
С	4.84996200	-0.22696900	-0.56712300
С	4.89132400	0.09430000	0.84345400
С	4.48509900	-0.87679300	1.81456800
С	3.72951100	-0.38465500	2.92605700
С	2.60183200	-1.11872900	3.44472000
С	2.19584700	-2.37377900	2.91233500
С	3.08813500	-2.95705500	1.92720300
С	2.53947100	-3.79758500	0.91234600
С	3.29243100	-3.58763500	-0.31240300

С	4.33220600	-2.59831100	-0.04779100
С	4.21960300	-2.22888500	1.36544400
С	-4.13562700	-2.05503900	-1.16381900
С	-4.60831700	-1.95622000	0.21507100
С	-4.92016900	-0.64077400	0.76449400
С	-4.43058400	-0.32787000	2.11705500
С	-4.06292800	1.02678200	2.38995100
С	-2.91007300	1.38702300	3.18812200
С	-2.38804000	2.62464300	2.69707400
С	-1.02293300	2.96945200	2.82444500
С	-0.50567600	4.00034800	1.91622800
С	0.93310700	4.18822600	1.89546300
С	1.67581300	4.54849800	0.68707300
С	0.95556000	4.71998400	-0.53535600
С	1.42307000	4.00929300	-1.72359900
С	0.26608900	3.65731200	-2.48417800
С	0.22306900	2.52470600	-3.35802400
С	-1.05976100	2.06801800	-3.71364600
С	-1.29948100	0.68639500	-3.98864300
С	-2.64398100	0.36249300	-3.58458200
С	-2.97206100	-0.90320600	-3.05204900
С	-4.06201400	-0.94262400	-2.06218200
С	-4.65484500	0.25841100	-1.59969400
С	-5.02331300	0.42109700	-0.18647000
С	-4.71550300	1.77425800	0.15367000
С	-4.22326100	2.07596300	1.42112800
С	-3.18900000	3.05385300	1.58689100
С	-2.58440300	3.73345400	0.48231500
С	-1.27637900	4.31826900	0.68871900
С	-0.49021400	4.65208400	-0.51162000
С	-0.90288900	4.09264300	-1.76930600
С	-2.17782100	3.49837000	-1.99183200
С	-2.25865600	2.59667000	-3.08126300
С	-3.24025100	1.56575300	-3.08752200
С	-4.20302100	1.52262200	-2.07948400
С	-4.15783200	2.45973600	-0.98852400
С	-3.09054300	3.38914800	-0.86438600
Pt	-0.14249300	-0.18444800	-0.95200700
La	0.53725300	2.32921900	0.10640800
La	-2.18588400	-1.13286300	0.73413900
La	2.20846300	-1.25538600	0.07045200

Element	Х	Y	Ζ
С	-2.84089800	-0.08766800	3.27279200
С	-1.68035400	0.72521200	3.57578500
С	-0.44278000	0.04123800	3.93610500
С	0.71692400	0.81812200	4.03461500
С	2.01497100	0.25147400	3.88960100
С	2.89247400	1.28925500	3.41137700
С	3.95357100	0.97440900	2.52866600
С	4.27131100	1.90248500	1.51035900
С	4.62760900	1.41343900	0.18321200
С	4.04774800	2.31544500	-0.76949900
С	3.46082900	1.84810300	-1.98530600
С	2.28858900	2.56004900	-2.50612500
С	1.30813500	1.88273200	-3.32846000
С	-0.11112700	2.26488800	-3.30044800
С	-1.11201900	1.23826200	-3.60464900
С	-2.45277000	1.47697200	-3.23619300
С	-3.35289100	0.40566200	-2.93017000
С	-4.27781400	0.87955500	-1.92360000
С	-4.79200300	0.00717000	-0.91595700
С	-4.91954300	0.50342600	0.41671600
С	-4.63382100	-0.36479800	1.54321900
С	-3.89575400	0.45048800	2.50013300
С	-2.72450800	-1.52254000	3.24142800
С	-3.53295700	-2.38495500	2.37684800
С	-4.45979900	-1.78089300	1.42911000
С	-4.45471200	-2.31183000	0.06999900
С	-4.51521300	-1.38852400	-1.05169600
С	-3.61735500	-1.84337300	-2.07678400
С	-2.93039700	-0.94708800	-2.96481300
С	-1.59772600	-1.27478400	-3.41620000
С	-0.72743800	-0.16149100	-3.81814800
С	0.63810100	-0.42247900	-4.00224600
С	1.64415000	0.58539200	-3.76536800
С	2.83964900	-0.08727100	-3.33763800
С	3.70705600	0.46569300	-2.34617200
С	4.44739300	-0.43784500	-1.43352500
С	4.83768100	0.04173500	-0.11255900
С	4.79061500	-0.88750600	1.03040900
С	4.21632200	-0.41066700	2.27021200
С	3.37257900	-1.44027800	2.80126300
С	2.17747700	-1.11198200	3.52768600

Data S3 The XYZ coordinates of La₃Pt@C1(230926)-C₉₈-1

С	1.01884800	-1.96090800	3.40539400
С	-0.27363200	-1.38541500	3.73018500
С	-1.44458300	-2.12429000	3.40586200
С	-1.39704500	-3.32964900	2.65366000
С	-2.67163800	-3.50129100	1.98859300
С	-2.66504300	-4.01757100	0.63144300
С	-3.54199400	-3.38207500	-0.32031300
С	-3.02127500	-3.05476400	-1.64120400
С	-1.72719800	-3.43615900	-2.11203100
С	-1.00030400	-2.56235100	-3.02822200
С	0.43151400	-2.75822600	-3.15829000
С	1.20691000	-1.71091900	-3.74084300
С	2.57586300	-1.49355800	-3.39489700
С	3.22798200	-2.35150700	-2.49977800
С	4.21332800	-1.87182900	-1.56570300
С	4.16536700	-2.77781600	-0.42247500
С	4.41654900	-2.27655800	0.89339000
С	3.47122600	-2.59986000	1.96166400
С	2.29612300	-3.43587300	1.76696300
С	1.09373700	-3.16643800	2.55051600
С	-0.14422400	-3.81955400	2.15860800
С	-0.21540200	-4.52449500	0.92856800
С	-1.42691600	-4.49255100	0.13237000
С	-1.01054400	-4.31440900	-1.24945900
С	0.39999800	-4.40511400	-1.30540900
С	1.13241300	-3.67902300	-2.26832100
С	2.50864600	-3.44212900	-1.93821600
С	3.05711800	-3.68096100	-0.61437000
С	2.16488800	-4.07625700	0.45838100
С	0.90000800	-4.55619500	0.05179200
С	-2.83296300	2.62279200	-2.46193300
С	-3.94524400	2.23544900	-1.62021600
С	-4.00874900	2.70281800	-0.27976700
С	-4.48859000	1.82725100	0.73308500
С	-3.82709300	1.78447500	2.01642900
С	-2.72583900	2.62331700	2.33319800
С	-1.63298300	2.11962700	3.12749400
С	-0.35657200	2.85649400	3.09208800
С	0.76621100	2.19323600	3.63102300
С	2.10552500	2.48177400	3.22628200
С	2.36915300	3.41406200	2.18507900
С	3.52256200	3.11527100	1.36497100
С	3.47409400	3.39454200	-0.03302800
С	2.40066100	4.10796900	-0.55508300

С	1.84724500	3.73680000	-1.82164900
С	0.49627700	4.22432300	-1.87282800
С	-0.52233600	3.47325500	-2.58579900
С	-1.88899400	3.60379700	-2.09459400
С	-2.11776700	4.26854200	-0.80823800
С	-3.06090400	3.68938200	0.11156400
С	-2.46678300	3.70683300	1.42273500
С	-1.22519700	4.42039300	1.36039400
С	-0.10451500	3.98791300	2.18903000
С	1.25355100	4.19945600	1.66254300
С	1.37731500	4.68048800	0.27543600
С	0.24105600	4.90036600	-0.59421100
С	-1.06052300	4.84775900	-0.03134400
Pt	-0.09678700	-0.16341500	-0.95944000
La	-0.15662600	2.46753300	-0.01274000
La	-2.06353100	-1.38392500	0.52979200
La	2.29885300	-1.12376300	0.14802400

Data S4 The XYZ coordinates of $La_3Pt@C1(230933)-C_{98}(-1)$

Element	Х	Y	Ζ
С	4.83091000	0.36971300	0.71472200
С	4.44617300	-0.41671700	1.82885100
С	3.60451900	0.12527200	2.88711100
С	2.83618400	-0.94560200	3.42527600
С	1.48884300	-0.75059600	3.84127100
С	0.54366400	-1.86211100	3.70568000
С	-0.87588100	-1.62209700	3.64865900
С	-1.77532900	-2.46934100	2.85783100
С	-3.03294400	-1.87788400	2.38008800
С	-3.65071800	-2.47420100	1.25639800
С	-4.43082700	-1.70793900	0.33273300
С	-4.19739400	-2.25568700	-0.98924000
С	-4.07916200	-1.38694900	-2.11987800
С	-3.10081800	-1.68791800	-3.10624300
С	-2.32657800	-0.63667000	-3.72443800
С	-1.01463000	-1.15013800	-3.96125500
С	0.12434000	-0.32485800	-3.94954400
С	1.40754600	-0.92427400	-3.58230200
С	2.52241400	-0.02941400	-3.34603700

С	3.61480700	-0.46253700	-2.55499600
С	4.40864400	0.45390200	-1.74853800
С	4.79748200	-0.27758800	-0.56246100
С	4.56723600	1.79579700	0.75812300
С	4.30917100	2.57215000	-0.45475100
С	4.17782700	1.87658800	-1.74808600
С	3.11542000	2.30506300	-2.61799100
С	2.33780000	1.37760000	-3.42731900
С	1.03445900	1.92895900	-3.61120900
С	-0.10726300	1.11798500	-3.81172300
С	-1.40613800	1.64696700	-3.41519100
С	-2.53294500	0.72983000	-3.39970100
С	-3.66415300	1.02098500	-2.58861600
С	-4.39952400	-0.01866800	-1.92153200
С	-4.81444200	0.48482500	-0.63942200
С	-4.69891600	-0.33210700	0.54451000
С	-4.30279400	0.27979700	1.81059900
С	-3.42284800	-0.49583500	2.68997300
С	-2.56897100	0.21813700	3.58563500
С	-1.30257400	-0.31849300	3.98280000
С	-0.37574200	0.77018400	4.09052900
С	1.00535500	0.60740300	3.87771800
С	1.75963700	1.72090300	3.30068000
С	3.09457200	1.44800100	2.80981400
С	3.68879100	2.29796300	1.80483400
С	2.94791700	3.39741300	1.28638800
С	3.32145700	3.58334400	-0.10039200
С	2.30860700	4.04451100	-1.02339700
С	2.23987300	3.41025100	-2.29866100
С	0.96379100	3.17507800	-2.92470900
С	-0.26306600	3.63718900	-2.37614800
С	-1.47565200	2.88824900	-2.62444800
С	-2.61196100	3.11538800	-1.72872400
С	-3.69409700	2.18549400	-1.76274300
С	-4.47903600	1.87566200	-0.59788200
С	-4.27145500	2.54237500	0.63367800
С	-4.23885300	1.76368300	1.86637200
С	-3.26501700	2.43235900	2.70861500
С	-2.43803900	1.65022900	3.54584200
С	-1.05881000	1.97747300	3.75582400
С	-0.40113300	3.02711100	3.04228100
С	1.04010800	2.91036600	2.82655800
С	1.64675700	3.73592000	1.80318900
С	0.80282300	4.47606300	0.92500800

С	1.09950100	4.54487100	-0.48890500
С	-0.15451100	4.43925700	-1.19760000
С	-1.20564500	4.48616100	-0.24670900
С	-2.46573400	3.89690500	-0.49986100
С	-3.27979200	3.58800200	0.67672800
С	-2.65415600	3.53217400	2.00329500
С	-1.23684700	3.83914400	2.16951100
С	-0.60628500	4.48454000	1.08040600
С	-3.03469400	-3.55907500	0.54080200
С	-3.36346900	-3.39666000	-0.86239100
С	-2.38356000	-3.69634000	-1.85626500
С	-2.26817000	-2.84386100	-2.98436500
С	-0.96669100	-2.50833000	-3.51293000
С	0.22656800	-3.05683900	-2.99975900
С	1.44496800	-2.27658900	-3.02104200
С	2.51587300	-2.65945100	-2.09584500
С	3.57768600	-1.73331600	-1.90908100
С	4.30848800	-1.63405300	-0.68728800
С	3.97206100	-2.44473000	0.42989400
С	4.14374400	-1.82407700	1.71261200
С	3.23942200	-2.14310600	2.76188000
С	2.33004000	-3.19001900	2.61008200
С	1.01244500	-3.09901200	3.15727700
С	0.15786000	-4.01303800	2.44403400
С	-1.24833700	-3.68673000	2.23353200
С	-1.85733200	-4.18595200	0.99770200
С	-0.99101000	-4.76353400	-0.04293400
С	-1.20406400	-4.35962600	-1.41718500
С	0.07585500	-4.09875200	-2.01532300
С	1.09777500	-4.44216700	-1.07140000
С	2.32884800	-3.66929200	-1.05070200
С	2.99895600	-3.51407300	0.23805300
С	2.29199400	-3.99753300	1.42690000
С	0.99403100	-4.63174100	1.40327000
С	0.42535400	-4.93093400	0.13347300
Pt	-0.19899500	0.02787800	-0.94883900
La	2.24763100	1.15234000	-0.20574800
La	-2.00601000	1.33998300	0.72883900
La	0.23799400	-2.42529100	0.36796500

_

Element	X	Y	Z
С	-3.26838200	-0.93081300	-2.62242400
С	-2.09735000	-1.67340400	-3.02962400
С	-1.03593900	-0.95265400	-3.73191800
С	0.18574000	-1.61213100	-3.92081800
С	1.41469000	-0.89479600	-4.01944300
С	2.46396400	-1.73388800	-3.48383900
С	3.52174700	-1.17708400	-2.70510000
С	3.99331400	-1.86373800	-1.50799000
С	4.48443300	-1.07695100	-0.37008800
С	4.35730400	-1.65181600	0.93173800
С	4.10363400	-0.83536200	2.08042900
С	3.13215500	-1.54396800	2.90115200
С	2.11532300	-0.84358900	3.57990700
С	0.79959500	-1.40863100	3.70187700
С	-0.30543200	-0.48728600	3.95395900
С	-1.61647200	-0.98429600	3.84165200
С	-2.71927900	-0.13616400	3.53329400
С	-3.70086200	-0.92636200	2.83461900
С	-4.49279000	-0.35556300	1.79633300
С	-4.74528900	-1.13882000	0.63675900
С	-4.76137600	-0.49969600	-0.66040000
С	-4.08710700	-1.40806900	-1.57242900
С	-3.33674400	0.48457700	-2.85546300
С	-4.09626600	1.40702100	-2.02180700
С	-4.77505800	0.91884000	-0.84128300
С	-4.68637500	1.74498600	0.36264800
С	-4.42788000	1.07171900	1.62034800
С	-3.47568400	1.84836100	2.36478100
С	-2.52363100	1.24536500	3.25795100
С	-1.21585100	1.82171500	3.40708600
С	-0.14014000	0.95020000	3.86647800
С	1.18431400	1.44260200	3.78232400
С	2.29725200	0.57173700	3.66839900
С	3.37232700	1.29247800	3.01219100
С	4.19501400	0.57745000	2.03748300
С	4.52875200	1.21962000	0.77330800
С	4.58550600	0.38112500	-0.44506100
С	4.26587900	0.97503300	-1.71042800
С	3.67125700	0.22597100	-2.76923700
С	2.66620600	1.06091300	-3.39622800
С	1.45933100	0.51794300	-3.89592400

Data S5 The XYZ coordinates of La₃Pt@C2(231010)-C₉₈-2

С	0.21796700	1.26823000	-3.76349300
С	-1.02028200	0.51380000	-3.78765200
С	-2.20795100	1.17615100	-3.37641400
С	-2.21410300	2.50795300	-2.87537600
С	-3.38601300	2.67810700	-2.02715700
С	-3.28020100	3.49422400	-0.83007000
С	-3.92627800	2.99576800	0.37352400
С	-3.16372100	3.01995100	1.62533300
С	-1.86546300	3.62410400	1.76923700
С	-0.88270600	3.06475500	2.68944800
С	0.50612700	3.49288200	2.56103500
С	1.53265900	2.72329400	3.23907500
С	2.91954200	2.65323500	2.81919500
С	3.33424000	3.35353700	1.63568000
С	4.13421100	2.64048000	0.63981000
С	3.65933800	3.10572700	-0.64372800
С	3.72201500	2.30165400	-1.78506300
С	2.68937200	2.33998100	-2.77417900
С	1.50183300	3.11387800	-2.60151100
С	0.25170300	2.61475000	-3.16691600
С	-0.98541500	3.21309100	-2.70665300
С	-0.97604900	4.16472600	-1.64274100
С	-2.04658800	4.17548700	-0.65869100
С	-1.40700700	4.35621700	0.63990800
С	-0.02688600	4.60389400	0.43327200
С	0.94246500	4.26156500	1.41375300
С	2.31573600	4.12450600	0.94006700
С	2.54395700	3.98009000	-0.48583900
С	1.47897400	4.01589900	-1.46353000
С	0.23506000	4.48981200	-0.98812900
С	-1.88991500	-2.30424100	3.36499100
С	-3.17653900	-2.25903300	2.71527000
С	-3.39342800	-3.02197100	1.54011300
С	-4.17332700	-2.44963500	0.49856700
С	-3.75255200	-2.60294100	-0.87256000
С	-2.62979100	-3.38520200	-1.25059600
С	-1.79130300	-2.94612000	-2.35041400
С	-0.46367000	-3.54607500	-2.47947000
С	0.45961100	-2.90721200	-3.34141600
С	1.87103200	-2.98073000	-3.13084600
С	2.38840700	-3.70887000	-2.05506200
С	3.46473200	-3.17346800	-1.26992200
С	3.27070500	-3.66879700	0.06249600
С	3.69029100	-2.90201500	1.13965500

С	2.86094300	-2.80791900	2.30911300
С	1.58095500	-3.44245100	2.39142700
С	0.53171400	-2.75889100	3.15349600
С	-0.84582000	-3.19885000	2.99541500
С	-1.17334800	-4.17123100	1.96258300
С	-2.36956600	-3.95612400	1.17427400
С	-2.05439100	-4.22334200	-0.20853900
С	-0.72555700	-4.74629400	-0.27313800
С	0.08776700	-4.42647200	-1.42615500
С	1.49306900	-4.43396200	-1.21245300
С	2.06441400	-4.42935200	0.14896300
С	1.22573500	-4.39167300	1.30902300
С	-0.16293000	-4.73536100	1.09920200
Pt	0.25457900	0.03444200	-0.98117400
La	1.83158600	1.50492700	0.82859300
La	-2.22037200	1.19204700	-0.22083800
La	-0.19891100	-2.33485200	0.35791300

Data S6 The XYZ coordinates of La₃Pt@C1(231005)-C₉₈-2

Element	Х	Y	Ζ
С	-2.38683500	1.52316900	-3.33272700
С	-2.07485300	0.15522200	-3.63846100
С	-0.70120600	-0.22347900	-3.87572300
С	-0.30285600	-1.61344600	-3.66052100
С	1.10897400	-1.95177200	-3.63968800
С	1.53507300	-3.12441400	-2.95335300
С	2.79229500	-3.14065500	-2.24379500
С	2.60028700	-3.87765000	-1.02077200
С	3.14805900	-3.41195400	0.22170500
С	2.33771000	-3.48323300	1.43494100
С	2.44383500	-2.43546000	2.43303000
С	1.24974400	-2.11561000	3.25227300
С	1.10617300	-0.74351900	3.74924300
С	-0.18669100	-0.13878500	3.97461000
С	-0.41828300	1.29372400	3.78512600
С	-1.73461300	1.75738100	3.33678700
С	-1.82255900	3.01314600	2.61687000
С	-2.89825200	3.22960600	1.68765600
С	-2.70331500	3.92729400	0.41959700
С	-3.66523900	3.40171500	-0.52133000

С	-3.19351200	3.16898400	-1.87306000
С	-3.52684600	1.92026400	-2.52562400
С	-1.35380600	2.47709200	-3.13898700
С	-1.80934000	3.46671000	-2.20114600
С	-0.85697700	4.05338300	-1.29117200
С	-1.35623000	4.33974200	0.05021400
С	-0.42097500	4.41429700	1.10414900
С	-0.65568400	3.77673300	2.38809900
С	0.59482800	3.38741100	2.91806300
С	0.72714400	2.14774800	3.59934400
С	2.03452100	1.56395400	3.57078700
С	2.20197900	0.15212600	3.61189700
С	3.41673500	-0.18694800	2.95696600
С	3.51321000	-1.45833600	2.30197000
С	4.36263500	-1.47425300	1.16434500
С	4.14599500	-2.40511900	0.11639500
С	4.45130400	-1.75035700	-1.13568100
С	3.69301100	-2.04767500	-2.31036800
С	3.36032300	-0.96900400	-3.17850500
С	2.06973800	-0.92266700	-3.81012900
С	1.66877500	0.44791500	-3.88966600
С	0.31521300	0.83392200	-3.86500700
С	0.01696200	2.16069900	-3.33562300
С	1.00715100	2.93563900	-2.61138200
С	0.56457100	3.83472000	-1.52909200
С	1.48963700	4.12821200	-0.44252900
С	0.97728900	4.38583300	0.85728800
С	1.64125500	3.85251000	2.03064300
С	2.92969100	3.26069100	1.98923700
С	3.16785800	2.13682300	2.87075900
С	4.05491600	1.04024000	2.49236100
С	4.76471900	1.04469200	1.22157200
С	4.88484800	-0.23437200	0.59105800
С	4.87787700	-0.42104200	-0.84878000
С	4.51479400	0.66484500	-1.70796600
С	3.75194700	0.37529500	-2.87053800
С	2.69306700	1.25950900	-3.31327000
С	2.37436200	2.45280200	-2.62164800
С	3.26781500	2.80977200	-1.55525700
С	2.82956200	3.61412500	-0.47061800
С	3.59740400	3.25293100	0.71096500
С	4.52323600	2.18309200	0.33481600
С	4.31499000	1.94201100	-1.08630600
С	-3.93612900	2.27615000	1.51585000

С	-4.42748000	2.36022700	0.14055900
С	-4.81468900	1.11946700	-0.53204800
С	-4.35672200	0.90127200	-1.90955600
С	-4.12851500	-0.44048600	-2.34961500
С	-3.00517600	-0.80236900	-3.19727500
С	-2.57697000	-2.12068500	-2.84788000
С	-1.24502200	-2.53557200	-3.02864000
С	-0.78492500	-3.62948900	-2.17611100
С	0.60377500	-3.92362200	-2.21972500
С	1.28792600	-4.42006700	-1.06504500
С	0.57925200	-4.67296000	0.11225400
С	1.10935800	-4.25790300	1.38163900
С	-0.00318900	-4.08508900	2.28232400
С	0.07076900	-2.96974700	3.21513300
С	-1.18175400	-2.37602100	3.54573300
С	-1.30142300	-0.99629600	3.93064700
С	-2.60772800	-0.53134700	3.61199900
С	-2.83713900	0.82062500	3.20730300
С	-3.93213000	1.06346900	2.28328900
С	-4.64028700	-0.04444000	1.71446700
С	-4.99662700	-0.02301200	0.30171100
С	-4.79337400	-1.36201800	-0.18891100
С	-4.35652600	-1.55944000	-1.49220400
С	-3.39470300	-2.59724400	-1.76666300
С	-2.85623300	-3.42620100	-0.74363000
С	-1.56620500	-4.04698300	-1.00060400
С	-0.85655800	-4.62415300	0.14049600
С	-1.24932600	-4.36709500	1.51828100
С	-2.46319200	-3.61978600	1.76134600
С	-2.43882600	-2.75456200	2.91472800
С	-3.30769700	-1.62447000	3.01561200
С	-4.28205600	-1.38529300	2.04320000
С	-4.31756800	-2.21242000	0.86713600
С	-3.32408600	-3.23306200	0.64363900
Pt	0.24891500	-0.07394600	-0.97580600
La	2.26728800	0.99406500	0.63371500
La	-2.03840000	1.49745400	-0.34868600
La	-0.43501000	-2.13302600	0.74255000

5 Supplementary References

- 77 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman and G. Scalmani, Gaussian09 (2009). Gaussian Inc, Wallingford, CT.
- 78 J. M. Campanera, C. Bo, M. M. Olmstead, A. L. Balch and J. M. Poblet, Bonding within the Endohedral Fullerenes Sc3N@C78 and Sc3N@C80 as Determined by Density Functional Calculations and Reexamination of the Crystal Structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHCl3), *The Journal of Physical Chemistry A*, 2002, **106**, 12356-12364.
- 79 G. Brinkmann, O. D. Friedrichs, S. Lisken, A. Peeters and N. Van Cleemput, CaGe a Virtual Environment for Studying Some Special Classes of Plane Graphs an Update, *Match-Commun Math Co*, 2010, **63**, 533-552.
- 80 T. Lu, gau_xtb: A Gaussian interface for xtb code, http://sobereva.com/soft/gau_xtb (accessed 4 1, 2022)).
- 81 P. C. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, *Theoretica Chimica Acta*, 1973, **28**, 213-222.
- 82 W. J. Hehre, R. Ditchfield and J. A. Pople, Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, *The Journal of Chemical Physics*, 1972, 56, 2257-2261.
- 83 C. E. White, J. L. Provis, T. Proffen, D. P. Riley and J. S. van Deventer, Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin, *Phys Chem Chem Phys*, 2010, **12**, 3239-3245.
- 84 Z. Slaninaj, Equilibrium isomeric mixtures: potential energy hypersurfaces as the origin of the overall thermodynamics and kinetics, *International Reviews in Physical Chemistry*, 1987, **6**, 251-267.
- 85 A. E. Reed, L. A. Curtiss and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, *Chemical Reviews*, 2002, **88**, 899-926.
- 86 W. Humphrey, A. Dalke and K. Schulten, VMD: Visual molecular dynamics, *Journal of Molecular Graphics*, 1996, **14**, 33-38.