Supplementary Material

Modulating the Schottky barrier of Pt/PbTiO₃ for efficient piezo-photocatalytic hydrogen evolution

Xueyan Huang^{a,*}, Zhi-Bin Fang^{c,*}, Wenhui Feng^d, Qinfen Tian^e, Zhiqiang Li^a, Ping Liu^{b,*}

^aSchool of Automobile, Fujian Chuanzheng Communications College, Fuzhou 350007, P.R. China.

^bResearch Institute of Photocatalysis, State Key Laboratory of

Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou

350002, P.R. China.

^c State Key Laboratory of Structural Chemistry, Fujian Institute of

Research on the Structure of Matter, Chinese Academy of Sciences,

Fuzhou 350002, PR China.

^d Hunan Province Key Laboratory of Applied Environmental

Photocatalysis, Changsha University, Changsha 410022, P. R. China.

^e College of Media and Exhibition, Fujian Business University, Fuzhou

350500, P. R. China

*Corresponding author.

E-mail addresses: huang920829@163.com (X. Huang), liuping@fzu.edu.cn (P. Liu), fangzhibin@fjirsm.ac.cn (Z. B. Fang).

Fig. S1 Typical XRD patterns of bare PbTiO₃, 0.1% Pt/PbTiO₃, 0.5%

Pt/PbTiO₃ and 1.0% Pt/PbTiO₃.

Fig. S2 SEM images of bare PbTiO₃, 0.1% Pt/PbTiO₃, 0.5% Pt/PbTiO₃

and 1.0% Pt/PbTiO₃.

Fig. S3 Comparison diagram of piezocatalytic hydrogen evolution rates.

Fig. S4 Time-circle piezo-photocatalytic H₂ evolution rate on 0.5%-

```
Pt/PbTiO<sub>3</sub>.
```

The following formula can be used to calculate the band gap energy for one semiconductor[1].

$$\alpha h\nu = A(h\nu - E_g)^{n/2}$$

Where hv, α , A, and Eg are light energy, absorption index, constant value, and band-gap energy of semiconductor, respectively. What is more, n relies on the transition type of semiconductor. The n for direct transition is equal to 1, while n is 4 for indirect transition.

	W ₃		T ₃ [2]	d ₃₃ [3]	$\varepsilon_0[4]$	ε _r [5]
	172 r	nm	1.01×10^5	70 pm/V	8.85×10^-12	550
(according		5	kPa		F/m	
1	to PF	M				
image)						

Table S1 Related parameters for the calculation of V_p of PbTiO₃

Because of the different between the work function of Pt and the electron affinity of PbTiO₃, a Schottky junction forms between the PbTiO₃ nanoplate and Pt-coated tip. The bottom of PbTiO₃ nanoplate was connected to ITO conductive film. Since the piezoelectric polarization charges only existed at the top surface of nanoplate and the bottom surface of nanoplate contact with ITO and the contact between ITO and bottom nanoplate surface was rather large, the influence of the piezopotential on the bottom PbTiO₃-ITO contact can be neglected. Therefore, it is reasonable to assume that the Schottky barrier formed at the Pt-PbTiO₃ interface and dominates the IV characteristics.

Catalysts	Catalytic	Sacrificial	Catalytic Activity	Ref.
Cuturysts	Conditions	Agents	Cutury the Then vity	
$Bi_{0.5}Na_{0.5}TiO_3$ nanosphere	Ultrasonic (40 kHz,110 W); Xe lamp (300 W)	Triethanolamin e	158 μmol h ⁻¹ g ⁻¹	[6]
PbTiO ₃ -CdS- 10%	Ultrasonic (40 kHz, 100 W); Xe lamp (300 W)($\lambda \ge 420$ nm)	0.1 M Na ₂ S/Na ₂ SO ₃	849 μmol h ⁻¹ g ⁻¹	[7]
KNbO ₃ /MoS ₂ heterostructure	Ultrasonic (40 kHz,110 W); Xe lamp (300 W)	Triethanolamin e	96 µmol h ⁻¹ g ⁻¹	[8]
R3C ZnSnO ₃ Nanowires	Ultrasonic (40 kHz,250 W); Xe lamp (150 W)	Ethyl alcohol	857 μmol h ⁻¹ g ⁻¹	[9]
ZnO nanowires	Ultrasonic(40kHz,50W);Xelamp (50 W)	Methanol	1.9 μmol h ⁻¹ g ⁻¹	[10]
TiO ₂ /ZnO nanowires	Ultrasonic(40kHz,50W);Xelamp (50 W)	Methanol	3.1 μmol h ⁻¹ g ⁻¹	[10]
0.5%- Pt/PbTiO ₃	Ultrasonic (40 kHz, 100 W); $\lambda \ge 400$ nm, Xe lamp (300 W)	0.1 M Na ₂ SO ₃	1181.3 μmol h ⁻¹ g ⁻ 1	This work

Table S2 Comparison results of H₂ production rate via piezo-photocatalysis

Reference

[1] F. Chen, Z. Ren, S. Gong, X. Li, G. Shen and G. Han, *Chemistry*, 2016, **22**, 12160-12165.

[2] H. You, Z. Wu, L. Zhang, Y. Ying, Y. Liu, L. Fei, X. Chen, Y. Jia, Y. Wang, F. Wang, S. Ju, J. Qiao, C. H. Lam and H. Huang, Angewandte Chemie, 2019,

[3] A. L. Kholkin, M. L. Calzada, P. Ramos, J. Mendiola and N. Setter, Applied Physics Letters, 1996, 69, 3602-3604.

[4] K. Sun, J. Xin, Y. Li, Z. Wang, Q. Hou, X. Li, X. Wu, R. Fan and K. Leong Choy, *Journal of Materials Science & Technology*, 2019, **35**, 2463-2469.

[5] Sahu, Niranjan, M. Kar, and S. Panigrahi, Rietveld refinement. *Arch Phys Res* 1 (2010): 75-87.

[6] Z. Zhao, L. Wei, S. Li, L. Zhu, Y. Su, Y. Liu, Y. Bu, Y. Lin, w. Liu and Z. Zhang. Journal of Materials Chemistry A, 2020.

[7] X. Huang, R. Lei, J. Yuan, F. Gao, C. Jiang, W. Feng, J. Zhang, P. Liu. Applied

Catalysis B: Environmental, 2021, 282: 119586.

[8] S. Jia, Y. Su, B. Zhang, Z. Zhao, S. Li, Y. Zhang, P. Li, M. Xu and R. Ren. Nanoscale, 2019, 11(16): 7690-7700.

[9] Y. Wang, J. Wu. Advanced Functional Materials, 2019, 30(5): 1907619.

[10] Z. Wang, T. Hu, H. He, Y. Fu, X. Zhang, J. Sun, L. Xing, B. Liu, Y. Zhang, X.

xue. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10162-10172.