Electronic Supplementary Information (ESI)

Low-content CeO_x dually promoted Ni₃Fe@CNTs electrocatalyst for overall water splitting

Mingqi Sun, Shuai Zhang, Yaru Li, Chen Yang, Ying Guo,* Lan Yang and Sailong Xu*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

*Corresponding authors. E-mail addresses: xusl@buct.edu.cn (S.X.); guoying@buct.edu.cn (Y.G.)

Fig. S1

Fig. S1 SEM image of the Ni₃Fe@CNTs/CeO_x/NF composites and the corresponding EDS elements mappings of C, O, Ni, Fe and Ce elements.

Fig. S2 Raman spectra of $Ni_3Fe@CNTs/CeO_x/NF$ and $Ni_3Fe@CNTs/NF$.

Fig. S3

Fig. S3 Thermogravimetric analysis and derivative thermogravimetry (TGA/DTG) of the $Ni_3Fe@CNTs/CeO_x/NF$ composite.

Fig. S4 LSV curve for CeO_x/NF : (a) The HER performance (b) The OER performance

Fig. S5 (a) Electrochemical impedance spectra for the OER between $Ni_3Fe@CNTs/CeO_x/NF$, $Ni_3Fe@CNTs/NF$, together with NiFeCe-LDH/NF and NF for comparison; (b) the equivalent circuit diagram of $Ni_3Fe@CNTs/CeO_x/NF$.

Fig. S6 XPS spectra of the Ni₃Fe@CNTs/CeO_x/NF composite after the OER testing: (a) a full spectrum, (b) O 1s, (c) Ni 2p, and (d) Fe 2p.

Fig. S7

Fig. S7 SEM of Ni₃Fe@CNTs/CeO_x/NF after OER test.

Fig. S8 Electrochemical impedance spectra of $Ni_3Fe@CNTs/CeOx/NF$ and $Ni_3Fe@CNTs/NF$ for the HER, together with NiFeCe-LDH/NF and NF for comparison.

Fig. S9

Fig.S9 Cyclic voltammograms (CVs) for (a) $Ni_3Fe@CNTs/CeO_x/NF$, (b) $Ni_3Fe@CNTs/NF$, (c) NF measured at sweep speeds from 20 to 100 mV s⁻¹ and (d) the current densities at 0.15 V vs. SCE plotted as a function of scan rates.

Fig. S10 The OER LSV curves normalized by ECSA for Ni₃Fe@CNTs/CeO_x/NF, Ni₃Fe-CNTs/NF, and NF.

Element	Mass fraction (wt.%)	Mole fraction
Ni	19.29	3.28
Fe	5.33	0.95
Ce	1.34	0.09

The ICP-OES result of Ni, Fe and Ce in the Ni_3Fe/CeO_x -CNTs.

Comparison Rct between $Ni_3Fe@CNTs/CeO_x/NF$, $Ni_3Fe@CNTs/NF$, and NF for the OER.

Catalyst	Ni ₃ Fe@CNTs/CeO _x /NF	Ni ₃ Fe@CNTs/NF	NF
Rct / Ω	0.27	0.60	1.73

Comparison of OER performance at 10 mA cm⁻² between the Ni₃Fe@CNTs/CeO_x composite and those Ni₃Fe-based electrocatalysts reported previously (in 1.0 M KOH solution).

Catalysts	Overpotenti	Long-term	References
Cutury Stis	al (mV)	stability (h)	
NE EA NC/NE	203	110	J. Mater. Chem. A, 2023,
113FE-INC/INF			11, 6452
Ea Ni Sa/NE	207	70	J. Electroanal. Chem.,
1°C4111-SC/111			2022, 906, 116014
Hollow FoNi N	210	30	J. Mater. Chem. A, 2021,
Hollow Feinigin			9, 7750
Ea Ni /NC	270	12	Chem. Eng. J., 2020, 394,
re _{0.2} 111 _{0.8} /11C			124977
Fe-enriched-	200	2000	J. Colloid Interface Sci.,
FeNi ₃ /NC	300	5000 cycles	2021, 582, 977
Ni ₃ Fe@B-doped	280	20	J. Alloys Compd., 2020,
carbon			835, 155267
Ni FoN/Ni Fo	250	2000 cycles	J. Mater. Chem. A, 2021,
11131 (011/11131) (9, 4036
Ni ₃ Fe/N-C	330	10	Carbon, 2021, 174, 475
FaNic@NC	277	20	Appl. Catal. B, 2020, 268,
Feini ₃ @inC			118729
Ni-Fe CW	237	50	Chem. Eng. J., 2022, 439,
1N131°C-C VV		50	135722
Ni ₃ Fe@CNTs/CeO	105	100	This work
X	175	100	

Comparison of HER performance at 10 mA cm⁻² between the Ni₃Fe@CNTs/CeO_x composite and those Ni₃Fe-based electrocatalysts reported previously (in 1.0 M KOH solution).

Catalysts	Overpotential (mV)	Long-term stability (h)	References	
Fe₄Ni-Se/NF	93	70	J. Electroanal. Chem.,	
Т	20		2022, 906, 116014	
(Ni, Fe)S2@MoS2	130	44	Appl. Catal. B Environ.,	
			2019, 247, 107	
Hollow FeNi ₂ N	185	30	J. Mater. Chem. A, 2021,	
		20	9, 7750	
Ni ₂ Fe/NiFe ₂ O4			ACS Appl. Mater.	
NPs@CNT	128	40	Interfaces 2020, 12, 50,	
1115@0111			55782	
Fe Ni@NC CNTs	202	11	Angew. Chem. Int. Ed.,	
re-mane-ents			2018, 57, 8921	
Ni Fa@PC	330	20	J. Alloys Compd., 2020,	
MI3PE WDC			835, 155267	
NE EaN/NE Ea	125	2000 avalas	J. Mater. Chem. A, 2021,	
IN13FEIN/IN13FE	123	2000 Cycles	9, 4036	
NE Eq(OII) /NE Eq	217	10	ACS Appl. Energy	
MI3Fe(OH)9/MI3Fe		12	Mater. 2018, 1, 3, 986-992	
Nº Es CW	76	50	Chem. Eng. J., 2022, 439,	
N ₁₃ Fe-Cw			135722	
NE EA NO/NE	98	110	J. Mater. Chem. A, 2023,	
1N13FC-INC/INF		110	11, 6452	
Ni ₃ Fe@CNTs/CeO _x	125	100	This work	

Comparison of electrocatalytic performance as the electrolyzer at 10 mA cm⁻² between the Ni₃Fe@CNTs/CeO_x composite and those Ni₃Fe-based electrocatalysts reported previously (in 1.0 M KOH solution).

Catalysts	Overall voltage (V)	References
Ni ₃ Fe-NC/NF	1.49	J. Mater. Chem. A, 2023, 11, 6452
S-Fe-Ni/NF	1.49	J. Mater. Chem. A, 2023, 11, 4661– 4671
Fe ₄ Ni-Se/NF	1.55	J. Electroanal. Chem., 2022, 906, 116014
Hollow FeNi ₃ N	1.63	J. Mater. Chem. A, 2021, 9, 7750
Ni ₃ Fe/NiFe ₂ O ₄	1.62	ACS Appl. Mater. Interfaces 2020,
NPs@CNT	1.02	12, 50, 55782
Ni ₃ FeN/Ni ₃ Fe	1.61	J. Mater. Chem. A, 2021, 9, 4036
Fe-enriched-FeNi ₃ /NC	1.59	J. Colloid Interface Sci., 2021, 582, 977
Ni ₃ Fe-CW	1.54	Chem. Eng. J., 2022, 439, 135722
Ni ₃ Fe–FeV ₂ O ₄ @C/NF	1.51	ACS Sustainable Chem. Eng. 2021, 9, 24, 8249
Ni ₃ Fe/Co-N-C	1.54	Chem. Eng. J., 2020, 395, 125151
Ni ₃ Fe@CNTs/CeO _x	1.641	This work

Catalyst	Ni ₃ Fe@CNTs/CeO _x /NF	Ni ₃ Fe@CNTs/NF	NF	IrO ₂
Exchange current densities (mA/cm ²)	5.16×10 ⁻³	1.83×10 ⁻³	2.85×10-4	1.38×10 ⁻⁴

Catal	yst	Ni ₃ Fe@CNTs/CeO _x /NF	Ni ₃ Fe@CNTs/NF	NF	Pt
Exchange	current	2 65×10−7	1 70×10-7	6 7×10-7	1.05×10-3
densities (mA/cm ²)		5.05~10	1.79~10	0.7~10	1.95~10