Supporting Information for

# Ligand exchange at tetra-coordinated beryllium centres

# Magnus R. Buchner<sup>a</sup>\*, Dušan Ćoćić<sup>b,c</sup>, Sergei I. Ivlev<sup>a</sup>, Nils Spang<sup>a</sup>, Matthias Müller<sup>a</sup> and Ralph Puchta<sup>b</sup>\*

a Philipps-Universität Marburg

b Friedrich-Alexander-Universität Erlangen-Nürnberg

c Faculty of Science, University of Kragujevac

#### **Table of Contents**

| Experimental procedures        | <u>_</u> S2       |
|--------------------------------|-------------------|
| Synthesis and characterization | <u>S</u> 3–S4     |
| X-ray crystallographic details | _S5S9             |
| NMR spectra                    | <u></u> \$10–\$48 |
| NMR line shape analysis        |                   |
| IR spectra                     | S75–S76           |
| Computational details          | <u></u> S77–S95   |
| References                     | S96               |

### **Experimental procedures**

**Caution!** Beryllium and its compounds are regarded as toxic and carcinogenic. As the biochemical mechanisms that cause beryllium associated diseases are still unknown,<sup>[1, 2]</sup> special (safety) precautions are strongly advised.<sup>[3]</sup>

#### General experimental techniques

All manipulations were performed under an inert gas atmosphere of argon either by working in a glove box or by using *Schlenk* techniques. Benzene was dried by refluxing over sodium and subsequent distillation under argon, while dichloromethane and chloroform were dried over CaH<sub>2</sub>. C<sub>6</sub>D<sub>6</sub> and toluene-d<sub>7</sub> were dried over Na/K-alloy and CD<sub>2</sub>Cl<sub>2</sub> and CDCl<sub>3</sub> over CaH<sub>2</sub>. All NMR solvents were freshly distilled before use and all NMR spectra were recorded in *J. Young* NMR tubes. BeCl<sub>2</sub>, BeBr<sub>2</sub> and Bel<sub>2</sub> were prepared according to the literature.<sup>[4, 5]</sup> PCy<sub>3</sub> was purchased from ABCR and used as received, while PMe<sub>3</sub> was synthesized following literature procedure.<sup>[6]</sup>

#### X-ray structure determination

Single crystals were selected under a pre-dried argon stream in perfluorinated polyether (Fomblin YR 1800, Solvay Solexis) and mounted using the MiTeGen MicroLoop system at ambient temperature. X-ray diffraction data was collected using the monochromated Cu- $K_{\alpha}$  ( $\lambda = 1.54178$  Å) radiation of a *Stoe* StadiVari diffractometer equipped with a Xenocs Microfocus Source and a Dectris Pilatus 300 K detector or monochromated Mo- $K_{\alpha}$  ( $\lambda = 0.71073$  Å) radiation of a *Stoe* IPDS 2 diffractometer equipped with an Image Plate detector. Evaluation, integration and reduction of the diffraction data was carried out using the X-AREA software suite.<sup>[7]</sup> Multi-scan absorption correction was applied with the LANA module of the X-AREA software suite. The structures were solved with dual-space methods (SHELXT-2018/2) and refined against  $F^2$  (SHELXL-2018/3) using the SHELXLE software package.<sup>[8-10]</sup> All atoms were located by Difference Fourier synthesis and non-hydrogen atoms refined anisotropically. Hydrogen atoms were refined using the "riding model" approach with isotropic displacement parameters 1.2 times of that of the preceding carbon atom. For the crystal data and details of the structure determination see tables S1 – S3. CCDC 2239416 – 2239422 contain the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

#### NMR spectroscopy

<sup>1</sup>H, <sup>9</sup>Be, <sup>13</sup>C and <sup>31</sup>P NMR spectra were recorded on *Bruker* Avance III HD300 and Avance III AV500 spectrometers. The latter was equipped with a *Prodigy* Cryo-Probe. <sup>1</sup>H (300 / 500 MHz) and <sup>13</sup>C (76 / 126 MHz) NMR chemical shifts are given relative to the solvent signal for C<sub>6</sub>D<sub>6</sub> (7.16 and 128.1 ppm), toluene-d<sub>7</sub> (2.09/6.98/7.00/7.09 and 20.4/125.5/128.3/129.2/137.9 ppm), CDCl<sub>3</sub> (7.26 and 77.2 ppm) and CD<sub>2</sub>Cl<sub>2</sub> (5.32 and 53.8 ppm). <sup>9</sup>Be (42 MHz) and <sup>31</sup>P (122 and 202 MHz) NMR spectroscopy used 0.43 [M] BeSO<sub>4</sub> in D<sub>2</sub>O and 85 % H<sub>3</sub>PO<sub>4</sub> as an external standard, respectively. NMR spectra were processed with the MESTRENOVA software package.<sup>[11]</sup>

#### IR spectroscopy

IR spectra were recorded on a *Bruker* alpha FTIR spectrometer equipped with a diamond ATR unit in an argon-filled glovebox. Processing of the spectra was performed with the OPUS <sup>[12]</sup> software package and MESTRENOVA.<sup>[11]</sup>

#### Synthesis and characterization

General procedure for the synthesis of [(PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub>] (**1a**-c): A Schlenk flask was charged with 100 mg beryllium halide and suspended in 20 ml of benzene. To this mixture approximately three equivalents PMe<sub>3</sub> were added with an air-displacement pipette inside a glove box. The reaction vessel was closed immediately and stirred at ambient temperature overnight. Subsequent removal of all volatiles *in vacuo* gave the title compounds in quantitative yields as colourless solids. Crystals of **1b** and **1c** were grown from an oversaturated benzene solution at ambient temperature over the course of several weeks.

 $[(PMe_3)_2BeCl_2] (1a): {}^{1}\text{H NMR} (500 \text{ MHz, } C_6D_6) \delta = 0.76 (s, 1H); {}^{1}\text{H NMR} (500 \text{ MHz, } \text{Tol-}d_8) \delta = 0.68 (vt, |^2J_{PH} + {}^{4}J_{PH}| = 3.5 \text{ Hz}); {}^{1}\text{H NMR} (300 \text{ MHz, } \text{CDCl}_3) \delta = 1.25 (d, {}^{2}J_{PH} = 8.6, 1H); {}^{9}\text{Be NMR} (70 \text{ MHz, } C_6D_6) \delta = 4.6 (bs, \omega_{1/2} = 31.9 \text{ Hz}); {}^{9}\text{Be NMR} (42 \text{ MHz, } \text{CDCl}_3) \delta = 4.1 (t, {}^{1}J_{BeP} = 41.0, \omega_{1/2} = 10.3 \text{ Hz}); {}^{3}\text{P NMR} (202 \text{ MHz, } C_6D_6) \delta = -46.2 (bs, \omega_{1/2} = 184.0 \text{ Hz}); {}^{3}\text{P NMR} (202 \text{ MHz, } \text{Tol-}d_8) \delta = -45.2 (q, {}^{1}J_{BeP} = 39.7 \text{ Hz}); {}^{3}\text{P NMR} (122 \text{ MHz, } \text{CDCl}_3) \delta = -44.1 (q, {}^{1}J_{BeP} = 41.0 \text{ Hz}).$ 

[(*PMe*<sub>3</sub>)<sub>2</sub>*BeBr*<sub>2</sub>] (**1b**): <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 0.76 (vt,  $|^{2}J_{PH} + {}^{4}J_{PH}|$  = 3.6 Hz); <sup>1</sup>H NMR (500 MHz, Told<sub>8</sub>) δ = 0.79 (dd, <sup>2</sup>J<sub>PH</sub> = 2.6 Hz, <sup>4</sup>J<sub>PH</sub> = 1.6 Hz); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ = 1.32 (dd, <sup>2</sup>J<sub>PH</sub> = 3.9 Hz, <sup>4</sup>J<sub>PH</sub> = 3.9 Hz); <sup>9</sup>Be NMR (42 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 2.8 (t, <sup>1</sup>J<sub>BeP</sub> = 42.7 Hz, ω<sub>1/2</sub> = 3.1 Hz); <sup>9</sup>Be NMR (42 MHz, Told<sub>8</sub>) δ = 2.7 (d, <sup>1</sup>J<sub>BeP</sub> = 41.7 Hz, ω<sub>1/2</sub> = 5.2 Hz); <sup>9</sup>Be NMR (42 MHz, CDCl<sub>3</sub>) δ = 2.6 (t, <sup>1</sup>J<sub>BeP</sub> = 43.6, ω<sub>1/2</sub> = 3.3 Hz); <sup>31</sup>P NMR (202 MHz, C<sub>6</sub>D<sub>6</sub>) δ = -46.5 (q, <sup>1</sup>J<sub>BeP</sub> = 42.7 Hz); <sup>31</sup>P NMR (122 MHz, Tol-d<sub>8</sub>) δ = -46.8 (q, <sup>1</sup>J<sub>BeP</sub> = 42.4 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>) δ = -45.2 (q, <sup>1</sup>J<sub>BeP</sub> = 43.6 Hz); <sup>13</sup>C NMR (126 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 9.3 (vt,  $|^{1}J_{PC} + {}^{3}J_{PC}|$  = 12.0 Hz); <sup>13</sup>C NMR (126 MHz, Tol-d<sub>8</sub>) δ = 9.2 (vt,  $|^{1}J_{PC} + {}^{3}J_{PC}|$  = 11.8 Hz); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ = 10.0 (vt,  $|^{1}J_{PC} + {}^{3}J_{PC}|$  = 12.5 Hz). IR (cm<sup>-1</sup>): 2978 (w), 2910 (w), 1473 (w), 1422 (m), 1305 (w), 1289 (m), 967 (m), 948 (s), 910 (w), 869 (w), 851 (w), 744 (s), 689 (m), 585 (s), 543 (vs), 522 (vs).

[(*PMe*<sub>3</sub>)<sub>2</sub>*Be*I<sub>2</sub>] (**1***c*): <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 0.79 (dd, <sup>2</sup>J<sub>PH</sub> = 4.2 Hz, <sup>4</sup>J<sub>PH</sub> = 4.0 Hz); <sup>1</sup>H NMR (500 MHz, Tol-d<sub>8</sub>) δ = 0.81 – 0.89 (m); <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ = 1.38 (dd, <sup>2</sup>J<sub>PH</sub> = 4.1 Hz, <sup>4</sup>J<sub>PH</sub> = 4.1 Hz, 1H); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ = 1.40 (dd, <sup>2</sup>J<sub>PH</sub> = 4.0, <sup>4</sup>J<sub>PH</sub> = 4.0, 1H); <sup>9</sup>Be NMR (42 MHz, C<sub>6</sub>D<sub>6</sub>) δ = -2.2 (t, <sup>1</sup>J<sub>BeP</sub> = 44.6 Hz,  $ω_{1/2}$  = 3.8 Hz); <sup>9</sup>Be NMR (42 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ = -2.2 (t, <sup>1</sup>J<sub>BeP</sub> = 45.6 Hz); <sup>9</sup>Be NMR (42 MHz, CDCl<sub>3</sub>) δ = -2.2 (t, <sup>1</sup>J<sub>BeP</sub> = 45.4 Hz,  $ω_{1/2}$  = 4.6 Hz); <sup>31</sup>P NMR (202 MHz, C<sub>6</sub>D<sub>6</sub>) δ = -49.6 (q, <sup>1</sup>J<sub>BeP</sub> = 44.6 Hz); <sup>31</sup>P NMR (202 MHz, Tol-d<sub>8</sub>) δ = -50.4 (q, <sup>1</sup>J<sub>BeP</sub> = 43.8 Hz); <sup>31</sup>P NMR (202 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ = -48.3 (q, <sup>1</sup>J<sub>BeP</sub> = 45.6 Hz); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>) δ = -47.9 (q, <sup>1</sup>J<sub>BeP</sub> = 45.3 Hz); <sup>13</sup>C NMR (126 MHz, C<sub>6</sub>D<sub>6</sub>) δ = -48.3 (q, <sup>1</sup>J<sub>BeP</sub> = 45.6 Hz); <sup>31</sup>P NMR (126 MHz, CDCl<sub>3</sub>) δ = 10.3 (dd, <sup>1</sup>J<sub>PC</sub> = 15.0 Hz, <sup>3</sup>J<sub>PC</sub> = 13.2 Hz). IR (cm<sup>-1</sup>): 2972 (w), 2957 (w), 2908 (w), 2809 (w), 1420 (m), 1307 (w), 1287 (m), 1034 (w), 948 (s), 851 (w), 783 (w), 744 (m), 696 (w), 594 (m), 512 (m), 483 (vs), 416 (w).

General procedure for the synthesis of [(PMe<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub> (**2a**-c): 50 mg of compound **1a**-c and an equimolar amount of the corresponding beryllium halide were weighed into a *Schlenk* flask and 20 ml benzene was added. Stirring of the obtained suspension at ambient temperature overnight resulted in a colourless solution. Removal of all volatiles *in vacuo* gave the title compounds as colourless solids in quantitative yield. Crystals of **2a**, **2b** and **2c** were grown from an oversaturated benzene solution at ambient temperature over the course of several weeks.

 $[(PMe_3)BeCl_2]_2 (2a): {}^{1}H \text{ NMR} (300 \text{ MHz}, C_6D_6) \delta = 0.69 (d, {}^{2}J_{PH} = 8.5 \text{ Hz}); {}^{1}H \text{ NMR} (500 \text{ MHz}, CD_2Cl_2) \delta = 1.32 (d, {}^{2}J_{PH} = 8.5 \text{ Hz}); {}^{1}H \text{ NMR} (500 \text{ MHz}, CDCl_3) \delta = 1.35 (d, {}^{2}J_{PH} = 8.6 \text{ Hz}); {}^{9}Be \text{ NMR} (42 \text{ MHz}, C_6D_6) \delta = 5.7 (d, {}^{1}J_{BeP} = 56.4, \omega_{1/2} = 6.4 \text{ Hz}); {}^{9}Be \text{ NMR} (42 \text{ MHz}, CD_2Cl_2) \delta = 5.2 (d, {}^{1}J_{BeP} = 56.3 \text{ Hz}, \omega_{1/2} = 9.7 \text{ Hz}); {}^{3}P \text{ NMR} (122 \text{ MHz}, C_6D_6) \delta = -47.3 (q, {}^{1}J_{BeP} = 56.4 \text{ Hz}); {}^{3}P \text{ NMR} (202 \text{ MHz}, CD_2Cl_2) \delta = -45.4 (q, {}^{1}J_{BeP} = 56.3 \text{ Hz}); {}^{3}P \text{ NMR} (122 \text{ MHz}, CDCl_3) \delta = -45.9 (q, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (76 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (120 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (120 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMR} (120 \text{ MHz}, C_6D_6) \delta = 8.2 (d, {}^{1}J_{BeP} = 56.0 \text{ Hz}); {}^{3}C \text{ NMZ} (120 \text{ MZ}); {}^{3}C \text{ NMZ} (120 \text{ MZ}); {}^{3}$ 

(d,  ${}^{1}J_{PC}$  = 25.6 Hz);  ${}^{13}C$  NMR (126 MHz,  $CD_2CI_2$ )  $\delta$  = 9.0 (d,  ${}^{1}J_{PC}$  = 26.0 Hz. IR (cm<sup>-1</sup>): 2994 (w), 2910 (w), 1587 (w), 1483 (w), 1422 (m), 1313 (w), 1291 (m), 1110 (w), 997 (m), 950 (s), 885 (m), 751 (s), 693 (s), 651 (vs), 520 (vs), 506 (vs), 449 (w), 418 (w).

[(*PMe*<sub>3</sub>)*BeBr*<sub>2</sub>]<sub>2</sub> (**2b**): <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 0.73 (d, <sup>2</sup>J<sub>PH</sub> = 8.7 Hz); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ = 1.38 (d, <sup>2</sup>J<sub>PH</sub> = 8.7 Hz); <sup>9</sup>Be NMR (42 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 3.1 (d, <sup>1</sup>J<sub>BeP</sub> = 58.2 Hz,  $ω_{1/2}$  = 7.8 Hz); <sup>31</sup>P NMR (202 MHz, C<sub>6</sub>D<sub>6</sub>) δ = -47.7 (q, <sup>1</sup>J<sub>BeP</sub> = 58.2 Hz); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>) δ = -46.7 (q, <sup>1</sup>J<sub>BeP</sub> = 57.1 Hz); <sup>13</sup>C NMR (126 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 7.9 (d, <sup>1</sup>J<sub>PC</sub> = 27.2 Hz). IR (cm<sup>-1</sup>): 2982 (w), 2910 (w), 1420 (m), 1307 (w), 1289 (m), 973 (s), 952 (s), 851 (w), 787 (w), 751 (m), 602 (vs), 502 (vs), 463 (vs).

[(*PMe*<sub>3</sub>)*Be*<sub>12</sub>]<sub>2</sub> (**2c**): <sup>1</sup>H NMR (300 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 0.77 (d, <sup>2</sup>*J*<sub>PH</sub> = 8.8 Hz); <sup>1</sup>H NMR (500 MHz, Tol-d<sub>8</sub>) δ = 0.78 (dd, <sup>2</sup>*J*<sub>PH</sub> = 8.9 Hz, <sup>4</sup>*J*<sub>PH</sub> = 1.3 Hz); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ = 1.42 (d, <sup>2</sup>*J*<sub>PH</sub> = 8.9 Hz); <sup>9</sup>Be NMR (42 MHz, C<sub>6</sub>D<sub>6</sub>) δ = -6.3 (d, <sup>1</sup>*J*<sub>BeP</sub> = 58.5 Hz,  $ω_{1/2}$  = 12.8 Hz); <sup>31</sup>P NMR (202 MHz, C<sub>6</sub>D<sub>6</sub>) δ = -53.8 (q, <sup>1</sup>*J*<sub>BeP</sub> = 58.5 Hz); <sup>31</sup>P NMR (202 MHz, Tol-d<sub>8</sub>) δ = -54.0 (q, <sup>1</sup>*J*<sub>BeP</sub> = 54.3 Hz); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>) δ = -52.0 (q, <sup>1</sup>*J*<sub>BeP</sub> = 62.6 Hz); <sup>13</sup>C NMR (76 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 7.6 (d, <sup>1</sup>*J*<sub>PC</sub> = 29.6 Hz). IR (cm<sup>-1</sup>): 2976 (w), 2904 (w), 1593 (w), 1534 (w), 1458 (w), 1458 (w), 1415 (m), 1340 (w), 1305 (w), 1287 (m), 1230 (w), 1081 (w), 1040 (w), 1003 (w), 967 (s), 950 (s), 879 (w), 863 (w), 848 (w), 834 (w), 785 (w), 749 (s), 730 (w), 683 (m), 622 (w), 575 (s), 551 (m), 457 (vs), 410 (vs).

General procedure for the synthesis of  $[(PCy_3)BeX_2]_2$  (**3a-c**): A Schlenk flask was loaded with 50 mg of beryllium halide and an equimolar amount of PCy<sub>3</sub> and 20 ml benzene were added. The obtained colourless suspension was stirred overnight at ambient temperature. Removal of all volatiles *in vacuo* gave the title compounds as colourless solids in quantitative yield. Crystals of **3a** and **3b** were grown from an oversaturated benzene solution at ambient temperature over the course of several days.

[(*PCy<sub>3</sub>*)*BeCl<sub>2</sub>*]<sub>2</sub> (**3***a*): <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 1.00 – 1.34 (m, 3H), 1.47 – 1.61 (m, 1H), 1.64 – 1.80 (m, 4H), 1.99 – 2.25 (m, 3H); <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ = 1.18 – 1.37 (m, 3H), 1.52 – 1.66 (m, 2H), 1.68 – 1.74 (m, 1H), 1.76 – 1.88 (m, 2H), 1.91 – 2.15 (m, 3H). <sup>9</sup>Be NMR (42 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 6.5 (bs,  $\omega_{1/2}$  = 53.4 Hz); <sup>9</sup>Be NMR (42 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ = 6.5 (bs,  $\omega_{1/2}$  = 74.0 Hz); <sup>9</sup>Be NMR (42 MHz, CDCl<sub>3</sub>) δ = 7.9 (bs,  $\omega_{1/2}$  = 53.6 Hz); <sup>31</sup>P NMR (202 MHz, C<sub>6</sub>D<sub>6</sub>) δ = -12.8 (bs); <sup>31</sup>P NMR (202 MHz, C<sub>7</sub>D<sub>8</sub>) δ = -15.0 (q, <sup>1</sup>J<sub>BeP</sub> = 41.5 Hz); <sup>31</sup>P NMR (202 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ = -12.2 (bq, <sup>1</sup>J<sub>BeP</sub> = 62.8 Hz); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>) δ = -12.7 (bs); <sup>13</sup>C NMR (126 MHz, C<sub>6</sub>D<sub>6</sub>) δ = 26.3 (s), 27.8 (d, <sup>2</sup>J<sub>PC</sub> = 10.0 Hz), 29.4 (s), 31.3 (d, <sup>1</sup>J<sub>PC</sub> = 17.4 Hz); <sup>13</sup>C NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ = 26.4 (s), 27.9 (d, <sup>2</sup>J<sub>PC</sub> = 10.4 Hz), 29.3 (s), 31.1 (d, <sup>1</sup>J<sub>PC</sub> = 18.7 Hz). IR (cm<sup>-1</sup>): 2923 (s), 2851 (s), 1479 (m), 1446 (s), 1348 (w), 1328 (w), 1301 (w), 1271 (w), 1216 (w), 1177 (m), 1122 (w), 1081 (w), 1034 (w), 1006 (m), 918 (w), 889 (m), 853 (m), 822 (w), 677 (vs), 651 (vs), 551 (vs), 512 (s), 492 (s), 463 (s), 445 (vs), 428 (s).

 $[(PCy_3)BeBr_2]_2 (3b): {}^{1}H NMR (300 MHz, C_6D_6) \delta = 1.09 - 1.33 (m, 3H), 1.45 - 1.62 (m, 1H), 1.63 - 1.84 (m, 4H), 2.02 - 2.39 (m, 3H); {}^{9}Be NMR (42 MHz, C_6D_6) \delta = 4.1 (bs, <math>\omega_{1/2} = 65.7 \text{ Hz}); {}^{31}P NMR (122 MHz, C_6D_6) \delta = -17.2 (bs); {}^{13}C NMR (76 MHz, C_6D_6) \delta = 26.3 (s), 27.8 (d, {}^{2}J_{PC} = 10.1 Hz), 29.4 (s), 31.8 (d, {}^{1}J_{PC} = 18.1 \text{ Hz}). IR (cm^{-1}): 2927 (s), 2849 (m), 1595 (w), 1532 (w), 1483 (w), 1444 (m), 1413 (w), 1389 (w), 1344 (w), 1328 (w), 1301 (w), 1269 (w), 1260 (w), 1230 (w), 1207 (w), 1179 (w), 1169 (w), 1124 (w), 1114 (w), 1081 (w), 1044 (w), 1028 (w), 1006 (m), 963 (w), 918 (w), 885 (m), 851 (m), 824 (w), 598 (s), 522 (vs), 492 (s), 463 (s), 430 (vs).$ 

 $[(PCy_3)Bel_2]_2 (\textbf{3c}): {}^{1}\text{H} \text{ NMR} (500 \text{ MHz}, C_6D_6) \delta = 1.04 - 1.24 (m, 3\text{H}), 1.46 - 1.58 (m, 1\text{H}), 1.62 - 1.76 (m, 4\text{H}), 2.00 - 2.19 (m, 2\text{H}), 2.26 - 2.39 (m, 1\text{H}); {}^{9}\text{Be} \text{ NMR} (42 \text{ MHz}, C_6D_6) \delta = -1.1 (bm, <math>\omega_{1/2} = 134.0 \text{ Hz}); {}^{31}\text{P} \text{ NMR} (202 \text{ MHz}, C_6D_6) \delta = -24.0 (bm); {}^{13}\text{C} \text{ NMR} (126 \text{ MHz}, C_6D_6) \delta = 26.2 (s), 27.6 (d, {}^{2}J_{PC} = 9.8 \text{ Hz}), 29.3 (s), 32.4 (d, {}^{1}J_{PC} = 19.3 \text{ Hz}). \text{ IR (cm}^{-1}): 2929 (vs), 2851 (s), 1442 (s), 1346 (w), 1324 (w), 1299 (w), 1269 (w), 1212 (w), 1201 (w), 1173 (w), 1116 (w), 1073 (w), 1046 (w), 1030 (w), 1003 (m), 914 (w), 887 (m), 851 (m), 820 (w), 783 (w), 753 (w), 702 (w), 573 (m), 496 (s), 473 (vs), 461 (s), 441 (s), 424 (vs).$ 

## X-ray crystallographic details

|                                                                         | [(PMe <sub>3</sub> ) <sub>2</sub> BeBr <sub>2</sub> ] ( <b>1b</b> ) | [(PMe <sub>3</sub> ) <sub>2</sub> Bel <sub>2</sub> ] ( <b>1c</b> ) |
|-------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| Empirical formula                                                       | $C_6H_{18}BeBr_2P_2$                                                | $C_6H_{18}Bel_2P_2$                                                |
| Relative molecular mass                                                 | 320.97                                                              | 414.95                                                             |
| Crystal system                                                          | monoclinic                                                          | monoclinic                                                         |
| Space group (No.)                                                       | P21/m (11)                                                          | P21 (4)                                                            |
| Radiation / Å                                                           | 1.54186                                                             | 0.71073                                                            |
| a / Å                                                                   | 6.4872(13)                                                          | 12.590(3)                                                          |
| b / Å                                                                   | 14.511(3)                                                           | 16.310(3)                                                          |
| c / Å                                                                   | 21.904(4)                                                           | 14.450(3)                                                          |
| $\alpha$ / deg                                                          | 90                                                                  | 90                                                                 |
| β / deg                                                                 | 93.41(3)                                                            | 92.60(3)                                                           |
| γ/deg                                                                   | 90                                                                  | 90                                                                 |
| <i>V</i> / Å <sup>3</sup>                                               | 2058.3(7)                                                           | 2964.2(10)                                                         |
| Ζ                                                                       | 6                                                                   | 8                                                                  |
| F(000) / e                                                              | 948.0                                                               | 1552.0                                                             |
| $ ho_{calc.}$ / g·cm <sup>-3</sup>                                      | 1.554                                                               | 1.860                                                              |
| $\mu$ / mm <sup>-1</sup>                                                | 9.307                                                               | 4.417                                                              |
| ϑ range / °                                                             | 3.66 – 75.40                                                        | 1.41 – 25.75                                                       |
| Range of Miller indices                                                 | -8 ≤ h ≤ 6                                                          | -15 ≤ h ≤ 15                                                       |
|                                                                         | $-10 \le k \le 18$                                                  | $-19 \le k \le 19$                                                 |
|                                                                         | -26 ≤ l ≤ 26                                                        | –17 ≤   ≤ 17                                                       |
| Reflections collected,<br>unique                                        | 15324, 4285                                                         | 63958, 18009                                                       |
| Restraints, parameters                                                  | 0, 182                                                              | 41, 422                                                            |
| Rint                                                                    | 0.026                                                               | 0.0295                                                             |
| $R_1  (l \geq 2 \sigma(l))$                                             | 0.034                                                               | 0.032                                                              |
| R₁ (all data)                                                           | 0.048                                                               | 0.035                                                              |
| $wR_2 (l \geq 2\sigma(l))$                                              | 0.089                                                               | 0.079                                                              |
| wR2 (all data)                                                          | 0.095                                                               | 0.080                                                              |
| S                                                                       | 0.986                                                               | 1.031                                                              |
| $\Delta  ho_{ m min}$ , $\Delta  ho_{ m max}$ / $e \cdot { m \AA}^{-3}$ | -0.70, 0.68                                                         | -0.91, 1.50                                                        |
| Flack parameter x                                                       |                                                                     | 0.01(3)                                                            |
| Volume fraction of the 2 <sup>nd</sup><br>twin component                |                                                                     | 0.3930(13)                                                         |

Table S1: Crystal data and details of the structure determination for [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) and [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c).

|                                                            | [(PMe <sub>3</sub> )BeCl <sub>2</sub> ] <sub>2</sub> ( <b>2a</b> ) | [(PMe <sub>3</sub> )BeBr <sub>2</sub> ] <sub>2</sub> ( <b>2b</b> ) | [(PMe <sub>3</sub> )Bel <sub>2</sub> ] <sub>2</sub> ( <b>2c</b> ) |
|------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|
| Empirical formula                                          | $C_6H_{18}Be_2CI_4P_2$                                             | $C_6H_{18}Be_2Br_4P_2$                                             | $C_6H_{18}Be_2I_4P_2$                                             |
| Relative molecular mass                                    | 311.96                                                             | 489.80                                                             | 677.76                                                            |
| Crystal system                                             | monoclinic                                                         | monoclinic                                                         | monoclinic                                                        |
| Space group (No.)                                          | $P2_{1}/c$ (14)                                                    | $P2_{1}/c$ (14)                                                    | $P2_{1}/c$ (14)                                                   |
| Radiation / Å                                              | 0.71073                                                            | 0.71073                                                            | 1.54178                                                           |
| <i>a</i> / Å                                               | 6.2043(13)                                                         | 6.4585(4)                                                          | 6.9935(2)                                                         |
| <i>b</i> / Å                                               | 9.517(3)                                                           | 13.3248(11)                                                        | 13.2512(2)                                                        |
| c / Å                                                      | 13.879(3)                                                          | 9.9155(9)                                                          | 10.5272(2)                                                        |
| $\alpha$ / deg                                             | 90                                                                 | 90                                                                 | 90                                                                |
| <i>β</i> / deg                                             | 100.175(17)                                                        | 91.180(6)                                                          | 96.498(2)                                                         |
| γ/deg                                                      | 90                                                                 | 90                                                                 | 90                                                                |
| V / Å <sup>3</sup>                                         | 806.6(3)                                                           | 853.13(12)                                                         | 969.31(4)                                                         |
| Ζ                                                          | 2                                                                  | 2                                                                  | 2                                                                 |
| F(000) / e                                                 | 320.0                                                              | 464.0                                                              | 608.0                                                             |
| $\rho_{calc.}$ / g·cm <sup>-3</sup>                        | 1.284                                                              | 1.907                                                              | 2.322                                                             |
| μ / mm <sup>-1</sup>                                       | 0.898                                                              | 9.590                                                              | 51.819                                                            |
| ϑ range / °                                                | 2.608 – 26.756                                                     | 2.561 – 29.368                                                     | 5.388 – 78.522                                                    |
| Range of Miller indices                                    | -7 ≤ h ≤ 7                                                         | -8 ≤ h ≤ 8                                                         | -8 ≤ h ≤ 8                                                        |
|                                                            | -12 ≤ k ≤ 12                                                       | -16 ≤ k ≤ 18                                                       | $-16 \le k \le 16$                                                |
|                                                            | −17 ≤ l ≤ 17                                                       | -13 ≤   ≤ 13                                                       | -13 ≤   ≤ 7                                                       |
| Reflections collected,<br>unique                           | 10259, 1703                                                        | 11112, 2298                                                        | 17624, 2067                                                       |
| Restraints, parameters                                     | 0, 67                                                              | 0, 67                                                              | 0, 67                                                             |
| R <sub>int</sub>                                           | 0.179                                                              | 0.048                                                              | 0.069                                                             |
| $R_1 (l \geq 2\sigma(l))$                                  | 0.092                                                              | 0.044                                                              | 0.057                                                             |
| R1 (all data)                                              | 0.106                                                              | 0.049                                                              | 0.058                                                             |
| $wR_2 (l \geq 2\sigma(l))$                                 | 0.247                                                              | 0.115                                                              | 0.154                                                             |
| wR2 (all data)                                             | 0.260                                                              | 0.117                                                              | 0.155                                                             |
| S                                                          | 1.112                                                              | 0.987                                                              | 1.092                                                             |
| $\Delta  ho_{min}$ , $\Delta  ho_{max}$ / $e \cdot Å^{-3}$ | -0.99, 1.08                                                        | -0.89, 1.18                                                        | -1.73, 2.71                                                       |
| Volume fraction of the 2 <sup>nd</sup><br>twin component   |                                                                    | 0.273(2)                                                           |                                                                   |

*Table S2:* Crystal data and details of the structure determination for [(PMe<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (**2a**), [(PMe<sub>3</sub>)BeBr<sub>2</sub>]<sub>2</sub> (**2b**) and [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (**2c**).

|                                                                         | [(PCy <sub>3</sub> )BeCl <sub>2</sub> ] <sub>2</sub> ( <b>3a</b> )                                               | [(PCy <sub>3</sub> )BeBr <sub>2</sub> ] <sub>2</sub> ( <b>3b</b> ) |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Empirical formula                                                       | C <sub>36</sub> H <sub>66</sub> Be <sub>2</sub> Cl <sub>4</sub> P <sub>2</sub> 2(C <sub>6</sub> D <sub>6</sub> ) | $C_{36}H_{66}Be_2Br_4P_2$                                          |
| Relative molecular mass                                                 | 889.00                                                                                                           | 898.48                                                             |
| Crystal system                                                          | triclinic                                                                                                        | triclinic                                                          |
| Space group (No.)                                                       | <i>P</i> 1(2)                                                                                                    | <i>P</i> 1(2)                                                      |
| Radiation / Å                                                           | 0.71073                                                                                                          | 0.71073                                                            |
| a / Å                                                                   | 8.3749(4)                                                                                                        | 9.5773(19)                                                         |
| b / Å                                                                   | 10.6551(5)                                                                                                       | 10.134(2)                                                          |
| c / Å                                                                   | 15.0815(7)                                                                                                       | 10.971(2)                                                          |
| $\alpha$ / deg                                                          | 69.384(3)                                                                                                        | 95.17(3)                                                           |
| β / deg                                                                 | 82.093(4)                                                                                                        | 110.54(3)                                                          |
| γ/deg                                                                   | 71.718(4)                                                                                                        | 90.53(3)                                                           |
| V / Å <sup>3</sup>                                                      | 1195.48(10)                                                                                                      | 992.1(4)                                                           |
| Ζ                                                                       | 1                                                                                                                | 1                                                                  |
| F(000) / e                                                              | 472.0                                                                                                            | 460.0                                                              |
| $\rho_{calc.}$ / g·cm <sup>-3</sup>                                     | 1.218                                                                                                            | 1.504                                                              |
| $\mu$ / mm <sup>-1</sup>                                                | 0.346                                                                                                            | 4.161                                                              |
| ϑ range / °                                                             | 1.443 – 26.745                                                                                                   | 1.992 – 29.277                                                     |
| Range of Miller indices                                                 | $-10 \le h \le 10$                                                                                               | -13 ≤ h ≤ 13                                                       |
|                                                                         | $-13 \le k \le 13$                                                                                               | $-13 \le k \le 13$                                                 |
|                                                                         | −17 ≤ l ≤ 19                                                                                                     | –14 ≤   ≤ 15                                                       |
| Reflections collected,<br>unique                                        | 15532, 5046                                                                                                      | 16237, 5339                                                        |
| Restraints, parameters                                                  | 0, 253                                                                                                           | 0, 199                                                             |
| R <sub>int</sub>                                                        | 0.038                                                                                                            | 0.067                                                              |
| $R_1 (I \geq 2\sigma(I))$                                               | 0.027                                                                                                            | 0.035                                                              |
| R1 (all data)                                                           | 0.031                                                                                                            | 0.057                                                              |
| $wR_2 (l \geq 2\sigma(l))$                                              | 0.074                                                                                                            | 0.081                                                              |
| wR2 (all data)                                                          | 0.076                                                                                                            | 0.086                                                              |
| S                                                                       | 1.028                                                                                                            | 1.007                                                              |
| $\Delta  ho_{ m min}$ , $\Delta  ho_{ m max}$ / $e \cdot { m \AA}^{-3}$ | -0.15, 0.42                                                                                                      | -0.61, 0.65                                                        |

Table S3: Crystal data and details of the structure determination for [(PCy<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (3a) and [(PCy<sub>3</sub>)BeBr<sub>2</sub>]<sub>2</sub> (3b).



Fig. S1 Solid state structures of [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c). Ellipsoids are depicted at 70 % probability at 100 K. Hydrogen atoms are omitted for clarity.



Fig. S2 Solid state structures of [(PMe<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (2a). Ellipsoids are depicted at 70 % probability at 100 K. Hydrogen atoms are omitted for clarity.



Fig. S3 Solid state structures of [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c). Ellipsoids are depicted at 70 % probability at 100 K. Hydrogen atoms are omitted for clarity.



Fig. S4 Solid state structures of [(PCy<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (3a). Ellipsoids are depicted at 70 % probability at 100 K. Carbon atoms are shown as wire frame and hydrogen atoms as well as crystal benzene are omitted for clarity.

| Table S4: Selected atomic distances ( | (Å) in | ı[(PMe₃ | $)_2$ Bel <sub>2</sub> ] | (1c). |
|---------------------------------------|--------|---------|--------------------------|-------|
|---------------------------------------|--------|---------|--------------------------|-------|

| Be1—P1 | 2.129(18) | Be1—I1 | 2.397(16) |  |
|--------|-----------|--------|-----------|--|
| Be1—P2 | 2.124(18) | Be1—I2 | 2.401(16) |  |
| Be2—P3 | 2.144(19) | Be2—I3 | 2.368(17) |  |
| Be2—P4 | 2.196(19) | Be2—I4 | 2.380(17) |  |
| Be3—P5 | 2.153(17) | Be3—I5 | 2.402(16) |  |
| Be3—P6 | 2.137(18) | Be3—I6 | 2.377(16) |  |
| Be4—P7 | 2.170(18) | Be4—I7 | 2.374(16) |  |
| Be4—P8 | 2.160(17) | Be4—I8 | 2.386(17) |  |



Fig. S6 <sup>1</sup>H NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) in Tol-d<sub>8</sub>.



-1.26

Fig. S8 9Be NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) in C<sub>6</sub>D<sub>6</sub>.



Fig. S10 <sup>31</sup>P NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) in C<sub>6</sub>D<sub>6</sub>.



Fig. S12 <sup>31</sup>P NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) in CDCl<sub>3</sub>.



Fig. S14 <sup>1</sup>H NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) in Tol-d<sub>8</sub>.



Fig. S16  ${}^{9}$ Be NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) in C<sub>6</sub>D<sub>6</sub>.



Fig. S18 9Be NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) in CDCl<sub>3</sub>.



Fig. S20 <sup>31</sup>P NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) in Tol-d<sub>8</sub>.



Fig. S22  $^{13}$ C NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) in C<sub>6</sub>D<sub>6</sub>.





Fig. S24 <sup>13</sup>C NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) in CDCl<sub>3</sub>.



Fig. S26 <sup>1</sup>H NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c) in Tol-d<sub>8</sub>.



Fig. S28 <sup>1</sup>H NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c) in CDCl<sub>3</sub>.



Fig. S30  ${}^{9}$ Be NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>BeI<sub>2</sub>] (1c) in CD<sub>2</sub>CI<sub>2</sub>.



Fig. S32  $^{31}P$  NMR spectrum of [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c) in C<sub>6</sub>D<sub>6</sub>.



50.09 50.31 50.53 50.75

Fig. S34  $^{31}\text{P}$  NMR spectrum of [(PMe\_3)\_2BeI\_2] (1c) in CD\_2CI\_2.



Fig. S36  $^{13}\text{C}$  NMR spectrum of [(PMe\_3)\_2Bel\_2] (1c) in C\_6D\_6.















Fig. S44 <sup>31</sup>P NMR spectrum of [(PMe<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (2a) in C<sub>6</sub>D<sub>6</sub>.



Fig. S45 <sup>31</sup>P NMR spectrum of [(PMe<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (2a) in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. S46 <sup>31</sup>P NMR spectrum of [(PMe<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (2a) in CDCl<sub>3</sub>.



Fig. S48 <sup>13</sup>C NMR spectrum of [(PMe<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (2a) in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. S50 <sup>1</sup>H NMR spectrum of [(PMe<sub>3</sub>)BeBr<sub>2</sub>]<sub>2</sub> (2b) in CDCl<sub>3</sub>.











Fig. S56 <sup>1</sup>H NMR spectrum of [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c) in Tol-d<sub>8</sub>.



Fig. 558 9Be NMR spectrum of [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c) in C<sub>6</sub>D<sub>6</sub>.


Fig. S60 <sup>31</sup>P NMR spectrum of [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c) in Tol-d<sub>8</sub>.



Fig. S62 <sup>13</sup>C NMR spectrum of [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c) in C<sub>6</sub>D<sub>6</sub>.



Fig. S64 <sup>1</sup>H NMR spectrum of  $[(PCy_3)BeCl_2]_2$  (3a) in  $CD_2Cl_2$ .



Fig. S66 <sup>9</sup>Be NMR spectrum of [(PCy<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (3a) in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. S68 <sup>31</sup>P NMR spectrum of [(PCy<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (3a) in C<sub>6</sub>D<sub>6</sub>.

-7.86



Fig. S70 <sup>31</sup>P NMR spectrum of [(PCy<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (3a) in CDCl<sub>3</sub>.



Fig. S72 <sup>13</sup>C NMR spectrum of [(PCy<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (3a) in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. S74  ${}^{9}$ Be NMR spectrum of [(PCy<sub>3</sub>)BeBr<sub>2</sub>]<sub>2</sub> (**3b**) in C<sub>6</sub>D<sub>6</sub>.



Fig. S76 <sup>13</sup>C NMR spectrum of [(PCy<sub>3</sub>)BeBr<sub>2</sub>]<sub>2</sub> (3b) in C<sub>6</sub>D<sub>6</sub>.

#### 



Fig. S77 <sup>1</sup>H NMR spectrum of [(PCy<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (3c) in C<sub>6</sub>D<sub>6</sub>.





Fig. S78  ${}^{9}$ Be NMR spectrum of [(PCy<sub>3</sub>)BeI<sub>2</sub>]<sub>2</sub> (3c) in C<sub>6</sub>D<sub>6</sub>.



Fig. S80 <sup>13</sup>C NMR spectrum of [(PCy<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (3c) in C<sub>6</sub>D<sub>6</sub>.



Fig. S81 <sup>31</sup>P (left) and <sup>9</sup>Be (right) NMR spectra of  $[(PCy_3)BeCl_2]_2$  (3a) with the addition of a) zero, b) one and c) two equivalents of PCy<sub>3</sub> in C<sub>6</sub>D<sub>6</sub>.

# NMR line shape analysis

## Phospine dissociation

*Table S5:* Activation energies for PMe<sub>3</sub> dissociation from compounds **1a-c** in toluene and chloroform.

|         | <i>E</i> <sub>A</sub> [kJ / mol] |                   |  |  |  |
|---------|----------------------------------|-------------------|--|--|--|
| solvent | C7D8                             | CDCl <sub>3</sub> |  |  |  |
| 1a      | 22.18 ± 3.73                     | 69.62 ± 4.22      |  |  |  |
| 1b      | a                                | a                 |  |  |  |
| 1c      | a                                | a                 |  |  |  |

<sup>a</sup> Too high for determination via VT NMR experiments.



Fig. S82 Temperature dependent <sup>31</sup>P NMR spectra of (PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub> (1a) in C<sub>7</sub>D<sub>8</sub>.

Table S6: Temperature dependent linewidths and derived parameters for 1a in C7D8.

| T [K] | ω <sub>1/2</sub> [Hz] | k     | ln k |
|-------|-----------------------|-------|------|
| 250   | 8.0                   | 25.1  | 3.22 |
| 270   | 13.3                  | 41.8  | 3.73 |
| 290   | 42.8                  | 134.5 | 4.90 |
| 310   | 53.5                  | 168.1 | 5.12 |



Fig. S83 Arrhenius plot for (PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub> (1a) in C<sub>7</sub>D<sub>8</sub>.



Fig. S84 Temperature dependent <sup>31</sup>P NMR spectra of (PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub> (1b) in C<sub>7</sub>D<sub>8</sub>.



Fig. S85 Temperature dependent <sup>31</sup>P NMR spectra of (PMe<sub>3</sub>)<sub>2</sub>BeI<sub>2</sub> (1c) in C<sub>7</sub>D<sub>8</sub>.



Fig. S86 Temperature dependent <sup>31</sup>P NMR spectra of (PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub> (1a) in CDCl<sub>3</sub>.

Table S7: Temperature dependent linewidths and derived parameters for 1a in CDCl<sub>3</sub>.



Fig. S87 Arrhenius plot for (PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub> (1a) in CDCl<sub>3</sub>.



Fig. S89 Temperature dependent <sup>31</sup>P NMR spectra of (PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub> (1c) in CDCl<sub>3</sub>.

### Phosphine exchange

*Table S8:* Activation energies for the exchange of PMe<sub>3</sub> at compounds **1a-c** in toluene and chloroform with complex to ligand ration in parenthesis.

|              |                                                                                                                 |                          | E <sub>A</sub>                | [kJ / mol]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | solvent                                                                                                         |                          | C <sub>7</sub> D <sub>8</sub> | CDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | 1a                                                                                                              | 31.38                    | ± 9.44 (1 / 8.4)              | 38.92 ± 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1 / 0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                 |                          |                               | 32.80 ± 4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1 / 1.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                 |                          |                               | 37.24 ± 2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1 / 25.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1b                                                                                                              | 28.98                    | ± 3.14 (1 / 7.9)              | 77.66 ± 20.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 (1 / 3.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1c                                                                                                              | 19.99                    | ± 0.50 (1 / 6.1)              | 50.23 ± 9.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1 / 5.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 230 K        |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 250 K        |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 270 K        |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 290 K        |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 310 K        |                                                                                                                 |                          |                               | Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | man man and a second |                          |                               | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | frances and the second |
| 330 K        |                                                                                                                 |                          |                               | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>8</sup> са<br>Мак                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| www.alenanya | harder in the form of the second                                                                                | philliphysicalism. Allei | upperson have been            | and the state of t | """"I'ller of the standard and a standard and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | -45                                                                                                             | -50                      | -55                           | -60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                 |                          | δ/ppm                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Fig. S90 Temperature dependent <sup>31</sup>P NMR spectra of a 1 / 8.4 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in C<sub>7</sub>D<sub>8</sub>.

*Table S9:* Temperature dependent linewidths and derived parameters of a 1 / 8.4 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in C<sub>7</sub>D<sub>8</sub>.

| T [K] | ω <sub>1/2</sub> [Hz] | k    | ln k |
|-------|-----------------------|------|------|
| 250   | 3.1                   | 10   | 2.28 |
| 270   | 3.4                   | 11   | 2.37 |
| 290   | 11.3                  | 35   | 3.57 |
| 310   | 58.1                  | 183  | 5.21 |
| 330   | 326.8                 | 1027 | 6.93 |



Fig. S91 Arrhenius plot for a 1 / 8.4 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in C<sub>7</sub>D<sub>8</sub>.



Fig. S92 Temperature dependent <sup>31</sup>P NMR spectra of a 1 / 7.9 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) and PMe<sub>3</sub> in C<sub>7</sub>D<sub>8</sub>.

*Table S 10:* Temperature dependent linewidths and derived parameters of a 1 / 7.9 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (**1b**) and PMe<sub>3</sub> in C<sub>7</sub>D<sub>8</sub>.

| T [K] | ω <sub>1/2</sub> [Hz] | k  | ln k |
|-------|-----------------------|----|------|
| 250   | 0.8                   | 3  | 0.92 |
| 270   | 1.6                   | 5  | 1.61 |
| 290   | 6.5                   | 20 | 3.02 |
| 310   | 14.4                  | 45 | 3.81 |
| 330   | 17.6                  | 55 | 4.01 |



Fig. S93 Arrhenius plot for a 1 / 7.9 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) and PMe<sub>3</sub> in C<sub>7</sub>D<sub>8</sub>.



Fig. S94 Temperature dependent <sup>31</sup>P NMR spectra of a 1 / 6.1 mixture of [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c) and PMe<sub>3</sub> in C<sub>7</sub>D<sub>8</sub>.

*Table S11:* Temperature dependent linewidths and derived parameters of a 1 / 6.1 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeI<sub>2</sub>] (**1c**) and PMe<sub>3</sub> in C<sub>7</sub>D<sub>8</sub>.

| Т [К] | ω <sub>1/2</sub> [Hz] | k   | ln k |
|-------|-----------------------|-----|------|
| 290   | 0.7                   | 2.2 | 0.78 |
| 300   | 0.9                   | 2.8 | 1.04 |
| 330   | 1.9                   | 6.0 | 1.78 |



Fig. S95 Arrhenius plot for a 1 / 6.1 mixture of [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c) and PMe<sub>3</sub> in C<sub>7</sub>D<sub>8</sub>.



Fig. S96 Temperature dependent <sup>31</sup>P NMR spectra of a 1 / 0.5 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

*Table S12:* Temperature dependent linewidths and derived parameters of a 1 / 0.5 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

|   | T [K] | ω <sub>1/2</sub> [Hz] | k    | ln k |
|---|-------|-----------------------|------|------|
| _ | 250   | 4.1                   | 13   | 2.56 |
|   | 270   | 26.6                  | 84   | 4.43 |
|   | 290   | 44.2                  | 139  | 4.93 |
|   | 310   | 111.2                 | 349  | 5.86 |
|   | 330   | 593.5                 | 1865 | 7.53 |



Fig. S97 Arrhenius plot for a 1 / 0.5 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in CDCl<sub>3</sub>.



Fig. S98 Temperature dependent <sup>31</sup>P NMR spectra of a 1 / 1.9 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

*Table S13:* Temperature dependent linewidths and derived parameters of a 1 / 1.9 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (**1a**) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

| T [K] | ω <sub>1/2</sub> [Hz] | k   | ln k |
|-------|-----------------------|-----|------|
| 250   | 2.0                   | 6   | 1.84 |
| 270   | 14.4                  | 45  | 3.81 |
| 290   | 18.6                  | 58  | 4.07 |
| 310   | 40.3                  | 127 | 4.84 |
| 330   | 139.7                 | 438 | 6.08 |



Fig. S99 Arrhenius plot for a 1 / 1.9 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

| 230 K   |                                                                                      |                 |
|---------|--------------------------------------------------------------------------------------|-----------------|
| 240 K   |                                                                                      |                 |
| 250 K   | uu                                                                                   |                 |
| 260 K   | <u>uu</u>                                                                            |                 |
| 270 K   |                                                                                      |                 |
| 280 K   |                                                                                      |                 |
| 290 K   |                                                                                      |                 |
| 300 K   |                                                                                      |                 |
| 310 K   |                                                                                      |                 |
| 320 K   |                                                                                      |                 |
| 330 K   |                                                                                      |                 |
|         |                                                                                      | · · · · · · · · |
| -41 -42 | -43 -44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61<br>[ppm] | -62 -63 -64     |

Fig. S100 Temperature dependent <sup>31</sup>P NMR spectra of a 1 / 25.5 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

| T [K] | ω <sub>1/2</sub> [Hz] | k   | ln k |
|-------|-----------------------|-----|------|
| 240   | 0.4                   | 1   | 0.23 |
| 250   | 1.2                   | 4   | 1.33 |
| 260   | 3.4                   | 11  | 2.37 |
| 270   | 7.5                   | 24  | 3.16 |
| 280   | 11.4                  | 36  | 3.58 |
| 290   | 15.0                  | 47  | 3.85 |
| 300   | 18.8                  | 59  | 4.08 |
| 310   | 29.2                  | 92  | 4.52 |
| 320   | 58.5                  | 184 | 5.21 |
| 330   | 117.1                 | 368 | 5.91 |

*Table S14:* Temperature dependent linewidths and derived parameters of a 1 / 25.5 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (**1a**) and PMe<sub>3</sub> in CDCl<sub>3</sub>.



Fig. S101 Arrhenius plot for a 1 / 25.5 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a) and PMe<sub>3</sub> in CDCl<sub>3</sub>.



Fig. S102 Temperature dependent <sup>31</sup>P NMR spectra of a 1 / 3.8 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

*Table S15:* Temperature dependent linewidths and derived parameters of a 1 / 3.8 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (**1b**) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

| T [K] | ω <sub>1/2</sub> [Hz] | k    | ln k  |
|-------|-----------------------|------|-------|
| 290   | 0.1                   | 0.3  | -1.16 |
| 300   | 1.2                   | 3.8  | 1.33  |
| 310   | 1.7                   | 5.3  | 1.68  |
| 330   | 7                     | 22.0 | 3.09  |



Fig. S103 Arrhenius plot for a 1 / 3.8 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) and PMe<sub>3</sub> in CDCl<sub>3</sub>.



Fig. S104 Temperature dependent <sup>31</sup>P NMR spectra of a 1 / 5.2 mixture of [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

*Table S16:* Temperature dependent linewidths and derived parameters of a 1 / 5.2 mixture of [(PMe<sub>3</sub>)<sub>2</sub>BeI<sub>2</sub>] (**1c**) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

| T [K] | ω <sub>1/2</sub> [Hz] | k    | ln k  |
|-------|-----------------------|------|-------|
| 270   | 0.1                   | 0.3  | -1.16 |
| 290   | 1.2                   | 3.8  | 1.33  |
| 310   | 3.3                   | 10.4 | 2.34  |
| 330   | 6.1                   | 19.2 | 2.95  |



Fig. S105 Arrhenius plot for a 1 / 5.2 mixture of [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c) and PMe<sub>3</sub> in CDCl<sub>3</sub>.

#### **Dimer Dissoziation**

Table S17: Activation energies for the dissociation of compounds 2a-c in toluene and chloroform.

|         | <i>E</i> <sub>A</sub> [kJ / mol] |               |  |
|---------|----------------------------------|---------------|--|
| solvent | C <sub>7</sub> D <sub>8</sub>    | CDCl₃         |  |
| 2a      | a                                | <u> </u>      |  |
| 2b      | a                                | a             |  |
| 2c      | a                                | 50.32 ± 26.52 |  |

<sup>a</sup> Too high for determination via VT NMR experiments.



Fig. S106 Temperature dependent <sup>31</sup>P NMR spectra of [(PMe<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (2a) in C<sub>7</sub>D<sub>8</sub>.



Fig. S108 Temperature dependent <sup>31</sup>P NMR spectra of [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c) in C<sub>7</sub>D<sub>8</sub>.



Fig. S109 Temperature dependent <sup>31</sup>P NMR spectra of [(PMe<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (2a) in CDCl<sub>3</sub>.



Fig. S110 Temperature dependent <sup>31</sup>P NMR spectra of [(PMe<sub>3</sub>)BeBr<sub>2</sub>]<sub>2</sub> (2b) in CDCl<sub>3</sub>.



Fig. S111 Temperature dependent <sup>31</sup>P NMR spectra of [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c) in CDCl<sub>3</sub>.

Table S18: Temperature dependent linewidths and derived parameters for 2c in CDCl<sub>3</sub>.

| Т [К] | ω <sub>1/2</sub> [Hz] | k   | ln k |
|-------|-----------------------|-----|------|
| 290   | 37                    | 199 | 5.29 |
| 300   | 237                   | 733 | 6.60 |
| 310   | 244                   | 755 | 6.63 |
|       |                       |     |      |






Fig. S113 Temperature dependent <sup>31</sup>P NMR spectra of [(PCy<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (3a) in C<sub>7</sub>D<sub>8</sub>.



Fig. S115 Temperature dependent <sup>31</sup>P NMR spectra of [(PCy<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (3c) in C<sub>7</sub>D<sub>8</sub>.

# IR spectra



Fig. S116 IR spectra of [(PMe<sub>3</sub>)<sub>2</sub>BeCl<sub>2</sub>] (1a), [(PMe<sub>3</sub>)<sub>2</sub>BeBr<sub>2</sub>] (1b) and [(PMe<sub>3</sub>)<sub>2</sub>Bel<sub>2</sub>] (1c) (from top to bottom).



Fig. S117 IR spectra of [(PMe<sub>3</sub>)BeCl<sub>2</sub>]<sub>2</sub> (2a), [(PMe<sub>3</sub>)BeBr<sub>2</sub>]<sub>2</sub> (2b) and [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c) (from top to bottom).



 $\textit{Fig. S118} \ \mbox{IR spectra of } [(PCy_3)BeCl_2]_2 \ (\textbf{3a}), \ [(PCy_3)BeBr_2]_2 \ (\textbf{3b}) \ \mbox{and } [(PCy_3)Bel_2]_2 \ (\textbf{3c}) \ (from top to bottom).$ 

## Computational details

All computational calculations were performed using the  $\omega$ B97XD<sup>[13]</sup>[ChaiHead-Gordon2008] theory level in combination with the def2tzvp<sup>[14, 15]</sup>[AhlrichsWeigendHaeserEtAl1998,WeigendAhlrichs2005] basis set. All structures were characterized as local minima or true transition states by computation of vibration frequencies at the same level of theory ( $\omega$ B97XD/def2tzvp). The reactions were followed along with the IRC (IRC =  $\xi$ ), which determines the minimum energy path connecting the transition state to reactant and product states.<sup>[16]</sup>[FukuiKatoFujimoto1975] Reaction work was calculated and examine as previously described.<sup>[17]</sup>[CocicPetrovicPuchtaEtAl2022] The influence of bulk solvent was formalism<sup>[18,</sup> evaluated via single point calculations using the CPCM <sup>19]</sup>[BaroneCossi1998,CossiRegaScalmaniEtAl2003] on the same theory level ( $\omega$ B97XD/def2tzvp) and with chloroform and toluene as a solvent. Additionally different computation methods B3LYP, [20-<sup>22]</sup>[Becke1993,LeeYangParr1988,StephensDevlinChabalowskiEtAl1994] B3LYP with the extension by Grimme's dispersion correction<sup>[23]</sup>[GrimmeAntonyEhrlichEtAl2010] and MP2<sup>[24-28]</sup>[FrischHead-GordonPople1990, FrischHead-GordonPople1990a, Head-

GordonPopleFrisch1988,SaeboAlmloef1989,Head-GordonHead-Gordon1994] for comparison reasons were used. All calculations were performed using the Gaussian 09 program package.<sup>[29]</sup>[Frischextitetal.2009] Hydrogen bond strength<sup>[30]</sup>[EspinosaMolinsLecomte1998] evaluation was performed using the Multiwfn program package.<sup>[31]</sup>[TianChen2012]

#### Relative cis/trans stability



Fig. S119 Potential quilibrium between cis- and trans-isomer (X = Cl, Br, I).

Table S19: Calculated relative cis/trans stabilities of [(PMe<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub> (2) in the gas phase using wb97xd/def2tzvp method.

|    | _            | cis-                |                  | tı                  | rans-            |
|----|--------------|---------------------|------------------|---------------------|------------------|
| Х  | E (kcal/mol) | <i>d</i> (Be-Be) /Å | dipole moment /D | <i>d</i> (Be-Be) /Å | dipole moment /D |
| Cl | -5.28        | 2.74                | 11.531           | 2.75                | 0.128            |
| Br | -5.07        | 2.90                | 11.889           | 2.90                | 0.463            |
| I  | -4.90        | 3.11                | 12.175           | 3.12                | 1.296            |

*Table S20:* Calculated relative cis/trans stabilities of  $[(PMe_3)BeX_2]_2$  (2) using wb97xd/def2tzvp method by applying the CPCM model in chlorophorm as a solvent.

|    |              |                     | cis-             | ti                  | rans-            |
|----|--------------|---------------------|------------------|---------------------|------------------|
| Х  | E (kcal/mol) | <i>d</i> (Be-Be) /Å | dipole moment /D | <i>d</i> (Be-Be) /Å | dipole moment /D |
| Cl | -1.72        | 2.76                | 15.529           | 2.77                | 0.126            |
| Br | -1.78        | 2.91                | 16.241           | 2.92                | 0.125            |
| I  | -2.17        | 3.10                | 16.905           | 3.14                | 0.335            |

*Table S21:* Calculated relative cis/trans stabilities of  $[(PMe_3)BeX_2]_2$  (2) using wb97xd/def2tzvp method by applying the CPCM model in toluene as a solvent.

|    | _            |                     | cis-             | ti                  | rans-            |
|----|--------------|---------------------|------------------|---------------------|------------------|
| Х  | E (kcal/mol) | <i>d</i> (Be-Be) /Å | dipole moment /D | <i>d</i> (Be-Be) /Å | dipole moment /D |
| Cl | -3.05        | 2.75                | 14.203           | 2.76                | 0.139            |

| Br | -3.01 | 2.91 | 14.769 | 2.92 | 0.187 |
|----|-------|------|--------|------|-------|
| I  | -3.41 | 3.11 | 15.311 | 3.13 | 0.836 |



Fig. S120 Optimised gas phase structure of the cis-isomer of [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c) at the wb97xd/def2tzvp level of theory.



Fig. S121 Optimised gas phase structure of the cis-isomer of [(PMe<sub>3</sub>)Bel<sub>2</sub>]<sub>2</sub> (2c) at the wb97xd/def2tzvp level of theory.

**Table S22:** Calculated dipole moments of  $BeX_2(PMe_3)_2$  (1) and *cis-/trans*-[(PMe\_3)BeX\_2]\_2 (2) in the gas phase the wb97xd/def2tzvp level of theory

|    | 1                | cis- <b>2</b>    | trans- <b>2</b>  |
|----|------------------|------------------|------------------|
| X  | dipole moment /D | dipole moment /D | dipole moment /D |
| Cl | 7.382            | 11.531           | 0.128            |
| Br | 7.828            | 11.889           | 0.463            |
| I  | 8.339            | 12.175           | 1.296            |

**Table S23:** Calculated dipole moments of  $BeX_2(PMe_3)_2$  (1) and *cis-/trans*-[(PMe\_3)BeX\_2]\_2 (2) at the wb97xd/def2tzvp level of theory with the CPCM model in chlorophorm as solvent

|    | 1                | cis- <b>2</b>    | trans- <b>2</b>  |
|----|------------------|------------------|------------------|
| X  | dipole moment /D | dipole moment /D | dipole moment /D |
| Cl | 10.518           | 15.529           | 0.126            |

| Br | 11.175 | 16.241 | 0.125 |
|----|--------|--------|-------|
| Ι  | 11.935 | 16.905 | 0.335 |

*Table S24:* Calculated dipole moments of  $BeX_2(PMe_3)_2$  (1) and *cis-/trans*-[(PMe\_3)BeX\_2]\_2 (2) at the wb97xd/def2tzvp level of theory with the CPCM model in toluene as solvent

|    | 1                | cis- <b>2</b>    | trans- <b>2</b>  |
|----|------------------|------------------|------------------|
| X  | dipole moment /D | dipole moment /D | dipole moment /D |
| Cl | 9.503            | 14.203           | 0.139            |
| Br | 10.070           | 14.769           | 0.187            |
| Ι  | 10.732           | 15.311           | 0.836            |



Fig. S122 Optimised gas phase structure of (Me<sub>3</sub>P)<sub>2</sub>BeCl<sub>2</sub> (1a) at the wb97xd/def2tzvp level of theory.



Fig. S123 Optimised structure of (Me<sub>3</sub>P)<sub>2</sub>BeCl<sub>2</sub> (1a) at the wb97xd/def2tzvp level of theory with application of CPCM to take solvation effects in chloroform into account.

H-bond evaluation of (Me<sub>3</sub>P)<sub>2</sub>BeX<sub>3</sub> molecule with three additional solvent molecules



Fig. S124 Optimised gas phase structure of (Me<sub>3</sub>P)<sub>2</sub>BeCl<sub>2</sub> (1a) at the wb97xd/def2tzvp level of theory including three additional chloroform molecules to model solvent interactions.



*Fig. S125* Selected bond lengths and hydrogen bond strengths from the gas phase optimisation of (Me<sub>3</sub>P)<sub>2</sub>BeCl<sub>2</sub> (**1a**) at the wb97xd/def2tzvp level of theory including three additional chloroform molecules to model solvent interactions.



*Fig. S126* Selected bond lengths and hydrogen bond strengths from the gas phase optimisation of (Me<sub>3</sub>P)<sub>2</sub>BeBr<sub>2</sub> (**1b**) at the wb97xd/def2tzvp level of theory including three additional chloroform molecules to model solvent interactions.



*Fig. S127* Selected bond lengths and hydrogen bond strengths from the gas phase optimisation of (Me<sub>3</sub>P)<sub>2</sub>BeI<sub>2</sub> (**1c**) at the wb97xd/def2tzvp level of theory including three additional chloroform molecules to model solvent interactions.



Fig. S128 Selected bond lengths and hydrogen bond strengths from the gas phase optimisation of (Me<sub>3</sub>P)<sub>2</sub>BeCl<sub>2</sub> (1a) at the wb97xd/def2tzvp level of theory including three additional toluene molecules to model solvent interactions.



*Fig. S129* Selected bond lengths and hydrogen bond strengths from the gas phase optimisation of (Me<sub>3</sub>P)<sub>2</sub>BeBr<sub>2</sub> (**1b**) at the wb97xd/def2tzvp level of theory including three additional toluene molecules to model solvent interactions.



*Fig. S130* Selected bond lengths and hydrogen bond strengths from the gas phase optimisation of (Me<sub>3</sub>P)<sub>2</sub>BeI<sub>2</sub> (**1c**) at the wb97xd/def2tzvp level of theory including three additional toluene molecules to model solvent interactions.

Trimethylphosphine dissociation



Fig. S131 Trimethylphosphine dissociation from (PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub> (1) (X = Cl, Br, I).

*Table S25:* Calculated dissociation energies of PMe<sub>3</sub> from (PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub> (1) (X = Cl, Br, I) in the **gas phase** at the wb97xd/def2tzvp level of theory.

| X  | E (kcal/mol) |
|----|--------------|
| Cl | +19.38       |
| Br | + 23.24      |
| 1  | + 26.39      |

*Table S26:* Calculated dissociation energies of  $PMe_3$  from  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) at the wb97xd/def2tzvp level of theory with a CPCM model of **chloroform** as the solvent.

| X  | E (kcal/mol) |
|----|--------------|
| Cl | + 18.26      |
| Br | + 21.56      |
| I  | + 25.18      |

*Table S27:* Calculated dissociation energies of  $PMe_3$  from  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) at the wb97xd/def2tzvp level of theory with a CPCM model of **toluene** as the solvent.





Fig. S132 Trimethylphosphine dissociation from (PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub> (1) (X = Cl, Br, I) with three additional chloroform molecules to model solvent interactions.

*Table S28:* Calculated dissociation energies of  $PMe_3$  from  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) with three additional chloroform molecules to model solvent interactions at the wb97xd/def2tzvp level of theory.

| X  | E (kcal/mol) |
|----|--------------|
| Cl | +18.08       |
| Br | +17.47       |
| I  | +22.46       |



Fig. S133 Trimethylphosphine dissociation from (PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub> (1) (X = Cl, Br, I) with three additional toluene molecules to model solvent interactions.

*Table S29:* Calculated dissociation energies of  $PMe_3$  from  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) with three additional toluene molecules to model solvent interactions at the wb97xd/def2tzvp level of theory.

| X  | E (kcal/mol) |  |
|----|--------------|--|
| Cl | +11.96       |  |
| Br | +15.70       |  |
| I  | +18.16       |  |

#### Solvent coordination



*Fig. S134* Solvent molecule migration during trimethylphosphine dissociation from  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) with three additional chloroform molecules to model solvent interactions.

Table S30: Comparison of the stabilities of species A, B and C (Fig. S134) in the gas phase at the wb97xd/def2tzvp level of theory.

| Х  | A (kcal/mol) | B (kcal/mol) | C (kcal/mol) |
|----|--------------|--------------|--------------|
| Cl | 0            | +14.38       | +18.08       |
| Br | 0            | +19.54       | +17.47       |
| Ι  | 0            | +21.15       | +22.46       |

### Chloroform trimethylphosphine exchange



Fig. S135 Displacement of trimethylphosphine by chloroform in (PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub> (1) (X = Cl, Br, I).

*Table S31:* Calculated relative energies required for trimethylphosphine displeacement by chloroform in  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) in the **gas phase** at the wb97xd/def2tzvp level of theory.

| Х                                               | E (kcal/mol)                           | d (Å) <sup>a</sup> |
|-------------------------------------------------|----------------------------------------|--------------------|
| Cl                                              | +0.026                                 | 3.317              |
| Br                                              | +0.031                                 | 3.356              |
| I                                               | +0.033                                 | 3.404              |
| <sup>a</sup> distance between the chloride from | coordinated chloroform and the Be meta | l center           |
| CHCl <sub>3</sub> + Me <sub>3</sub> P Be        | $PMe_3$ $\longrightarrow$ $PMe_3$      | + $         -$     |

*Fig. S136* Displacement of trimethylphosphine by chloroform in (PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub> (1) (X = Cl, Br, I) with three additional chloroform molecules to model solvent interactions.

CCl<sub>3</sub>

*Table S32:* Calculated relative energies required for trimethylphosphine displacement by chloroform in  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) in the **gas phase** at the wb97xd/def2tzvp level of theory with three additional chloroform molecules to model solvent interactions.

| X  | E (kcal/mol) | d (Å) <sup>a</sup> |
|----|--------------|--------------------|
| Cl | +0.026       | 3.294              |
| Br | +0.031       | 3.330              |
| I  | +0.037       | 3.124              |

<sup>a</sup> distance between the chloride from coordinated chloroform and the Be metal center

#### Halide Dissociation



Fig. S137 Halide dissociation from (PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub> (1) (X = Cl, Br, I).

**Table S33:** Calculated dissociation energies of halide X from  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) in the **gas phase** at the wb97xd/def2tzvp level of theory.

| Х  | E (kcal/mol) |
|----|--------------|
| Cl | +49.98       |
| Br | +46.83       |
| Ι  | +41.99       |

All species were calculated as a isomers to avoid the influence of the Coulomb term.

*Table S34:* Calculated dissociation energies of halide X from  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) at the wb97xd/def2tzvp level of theory with a CPCM model of **chloroform** as the solvent.

| Х  | E (kcal/mol) |
|----|--------------|
| Cl | +29.78       |
| Br | +25.34       |
| I  | +20.86       |

All species were calculated as a isomers to avoid the influence of the Coulomb term.

*Table S35:* Calculated dissociation energies of halide X from  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) at the wb97xd/def2tzvp level of theory with a CPCM model of **toöuene** as the solvent.



All species were calculated as a isomers to avoid the influence of the Coulomb term.

#### Chloroform halide exchange



Fig. S138 Displacement of halide X by chloroform in (PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub> (1) (X = Cl, Br, I)-

*Table S36:* Calculated relative energies required for halide displacement by chloroform in  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) in the gas phase at the wb97xd/def2tzvp level of theory.

| Х  | E (kcal/mol) | d (Å) <sup>a</sup> |
|----|--------------|--------------------|
| Cl | 51.058       | 2.992              |
| Br | 47.361       | 2.606              |
| 1  | 43.777       | 2.440              |

 $^{\it a}$  distance between the chloride from coordinated chloroform and the Be metal center

All species were calculated as a isomers to avoid the influence of the Coulomb term.

#### Chloroform halide exchange in the presence of three additional chloroform molecules



*Fig. S139* Displacement of halide X by chloroform in  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) with three additional chloroform molecules to model solvent interactions

*Table S37:* Calculated relative energies required for halide displacement by chloroform in  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) in the gas phase at the wb97xd/def2tzvp level of theory with three additional chloroform molecules to model solvent interactions.

| X  | E (kcal/mol) | d (Å) <sup>a</sup> |
|----|--------------|--------------------|
| Cl | 52.647       | 2.907              |
| Br | 49.395       | 2.540              |
| I  | 44.763       | 2.435              |

<sup>*a*</sup> distance between the chloride from coordinated chloroform and the Be metal center

All species were calculated as a isomers to avoid the influence of the Coulomb term.

## Energy profile of PMe<sub>3</sub> exchange



Reaction coordinate

Fig. S140 Energy profile of  $PMe_3$  exchange at  $(PMe_3)_2BeBr_2$  (1b) calculated in the gas phase at the wb97xd/def2tzvp level of theory.



Reaction coordinate

Fig. S141 Energy profile of  $PMe_3$  exchange at  $(PMe_3)_2Bel_2$  (1c) calculated in the gas phase at the wb97xd/def2tzvp level of theory.



Fig. S142 Energetic properties through the intrinsic reaction coordinate of the PMe3 exchange reaction at 1b.



Fig. S143 Energetic properties through the intrinsic reaction coordinate of the PMe3 exchange reaction at 1c.

### Halide exchange by phosphine



Fig. S144 Consecutive halide displacement by PMe<sub>3</sub> in (PMe<sub>3</sub>)<sub>2</sub>BeX<sub>2</sub> (1) (X = Cl, Br, I).



Fig. S145 Energy profile of the consecutive halide displacement by  $PMe_3$  in  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) in the gas phase at the wb97xd/def2tzvp level of theory.

*Table S38:* Relative stabilities [kcal/mol] of  $(PMe_3)_2BeX_2$  (1) (X = Cl, Br, I) with two molecules of PMe<sub>3</sub>, the corresponding reaction complex, [ $(PMe_3)_3BeX$ ]X with one molecule of PMe<sub>3</sub> and [ $(PMe_3)_4Be$ ]X<sub>2</sub> in the gas phase at the wb97xd/def2tzvp level of theory.

| х  | (PMe <sub>3</sub> ) <sub>2</sub> BeX <sub>2</sub><br>+ 2 PMe <sub>3</sub> | Reaction complex | [(PMe <sub>3</sub> ) <sub>3</sub> BeX]X<br>+ PMe <sub>3</sub> | [(PMe <sub>3</sub> ) <sub>4</sub> Be]X <sub>2</sub> |
|----|---------------------------------------------------------------------------|------------------|---------------------------------------------------------------|-----------------------------------------------------|
| Cl | +10.60                                                                    | 0                | +23.81                                                        | +57.65                                              |
| Br | +10.41                                                                    | 0                | +18.59                                                        | +48.13                                              |
| I  | +11.97                                                                    | 0                | +13.32                                                        | +39.12                                              |

#### Dimer dissociation on three different theory levels



Fig. S146 Dissociation of [(PMe<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub> (2) (X = Cl, Br, I).

*Table S39:* Calculated dissociation energies [kcal/mol] for [(PMe<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub> (**2**) (X = Cl, Br, I) in the **gas phase** using full optimization on the wb97xd/def2tzvp level of theory and single point calculations on b3lyp/def2tzvp, b3lyp-GD3/def2tzvp and MP2(fc)/def2tzvp levels of theory using previously optimized (wb97xd/def2tzvp) structures.

|    | Full optimization (gas phase) | Single point calculations (gas phase) |                    |                  |
|----|-------------------------------|---------------------------------------|--------------------|------------------|
| Х  | wb97xd/def2tzvp               | b3lyp/def2tzvp                        | b3lyp-GD3/def2tzvp | MP2(fc)/def2tzvp |
| Cl | +23.41                        | +14.40                                | +23.70             | +29.74           |
| Br | +23.91                        | +13.24                                | +24.31             | +32.50           |
| Ι  | +23.40                        | +10.49                                | +23.23             | +33.99           |

*Table S40:* Calculated dissociation energies [kcal/mol] for [(PMe<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub> (**2**) (X = Cl, Br, I) employing a CPCM model of chloroform using full optimization on the wb97xd/def2tzvp level of theory and single point calculations on b3lyp/def2tzvp, b3lyp-GD3/def2tzvp and MP2(fc)/def2tzvp levels of theory using previously optimized (wb97xd/def2tzvp) structures.

|    | Single point calculations (CPCM chloroform) |                |                    |                    |  |
|----|---------------------------------------------|----------------|--------------------|--------------------|--|
| Х  | wb97xd/def2tzvp                             | b3lyp/def2tzvp | b3lyp-GD3/def2tzvp | MP2(full)/def2tzvp |  |
| Cl | +14.52                                      | +5.96          | +15.26             | +22.14             |  |
| Br | +14.89                                      | +4.55          | +15.62             | +25.44             |  |
| Ι  | +14.64                                      | +2.03          | +14.77             | +27.33             |  |

**Table S41:** Calculated dissociation energies [kcal/mol] for [(PMe<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub> (**2**) (X = Cl, Br, I) employing a CPCM model of toluene using full optimization on the wb97xd/def2tzvp level of theory and single point calculations on b3lyp/def2tzvp, b3lyp-GD3/def2tzvp and MP2(fc)/def2tzvp levels of theory using previously optimized (wb97xd/def2tzvp) structures.

|    | Single point calculations (CPCM toluene) |                |                    |                    |
|----|------------------------------------------|----------------|--------------------|--------------------|
| Х  | wb97xd/def2tzvp                          | b3lyp/def2tzvp | b3lyp-GD3/def2tzvp | MP2(full)/def2tzvp |
| Cl | +17.09                                   | +8.45          | +17.75             | +24.78             |
| Br | +17.59                                   | +7.17          | +18.24             | +28.21             |
| Ι  | +17.33                                   | +4.64          | +17.38             | +30.11             |



Fig. S147 Dissociation of  $[(PCy_3)BeX_2]_2$  (3) (X = Cl, Br, I).

*Table S42:* Calculated dissociation energies [kcal/mol] for [(PCy<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub> (**3**) (X = Cl, Br, I) in the **gas phase** using full optimization on the wb97xd/def2tzvp level of theory and single point calculations on b3lyp/def2tzvp, b3lyp-GD3/def2tzvp and MP2(fc)/def2tzvp levels of theory using previously optimized (wb97xd/def2tzvp) structures.

|    | Full optimization (gas phase) | Single point calculations (gas phase) |                    |                  |
|----|-------------------------------|---------------------------------------|--------------------|------------------|
| Х  | wb97xd/def2tzvp               | b3lyp/def2tzvp                        | b3lyp-GD3/def2tzvp | MP2(fc)/def2tzvp |
| Cl | +39.98                        | +26.74                                | +42.54             | +53.65           |
| Br | +37.91                        | +23.00                                | +40.89             | +55.04           |
| Ι  | +35.18                        | +17.18                                | +36.98             | +55.21           |

*Table S43:* Calculated dissociation energies [kcal/mol] for  $[(PCy_3)BeX_2]_2$  (**3**) (X = Cl, Br, I) employing a CPCM model of chloroform using full optimization on the wb97xd/def2tzvp level of theory and single point calculations on b3lyp/def2tzvp, b3lyp-GD3/def2tzvp and MP2(fc)/def2tzvp levels of theory using previously optimized (wb97xd/def2tzvp) structures.

|    | Single point calculations (chloroform) |                |                    |                    |
|----|----------------------------------------|----------------|--------------------|--------------------|
| Х  | wb97xd/def2tzvp                        | b3lyp/def2tzvp | b3lyp-GD3/def2tzvp | MP2(full)/def2tzvp |
| Cl | +30.85                                 | +17.62         | +33.42             | +46.48             |
| Br | +29.21                                 | +14.37         | +32.26             | +50.53             |
| Ι  | +26.96                                 | +9.02          | +28.83             | +50.77             |

*Table S44:* Calculated dissociation energies [kcal/mol] for  $[(PCy_3)BeX_2]_2$  (3) (X = Cl, Br, I) employing a CPCM model of toluene using full optimization on the wb97xd/def2tzvp level of theory and single point calculations on b3lyp/def2tzvp, b3lyp-GD3/def2tzvp and MP2(fc)/def2tzvp levels of theory using previously optimized (wb97xd/def2tzvp) structures.

|    | Single point calculations (toluene) |                |                    |                    |
|----|-------------------------------------|----------------|--------------------|--------------------|
| Х  | wb97xd/def2tzvp                     | b3lyp/def2tzvp | b3lyp-GD3/def2tzvp | MP2(full)/def2tzvp |
| Cl | +33.47                              | +20.26         | +36.06             | +49.15             |
| Br | +31.75                              | +16.91         | +34.80             | +53.10             |
| Ι  | +29.41                              | +11.47         | +31.28             | +53.24             |

Chloroform coordination to [(PR<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub>



Fig. S148 Coordination of one  $CHCI_3$  molecule to of  $[(PR_3)BeX_2]$  (R = Me (4)) R = Cy (10)) (X = Cl, Br, I).

*Table S45:* Calculated association energies [kcal/mol] for the coordination of one CHCl<sub>3</sub> molecule to [(PR<sub>3</sub>)BeX<sub>2</sub>] (R = Me (4)) R = Cy (10)) (X = Cl, Br, I) in the **gas phase** using full optimization on the wb97xd/def2tzvp level of theory.

| R  | Х  | E (kcal/mol) | R[Å] |
|----|----|--------------|------|
| Me | Cl | -6.51        | 3.31 |
|    | Br | -5.15        | 3.32 |
|    | Ι  | -6.64        | 3.36 |
| Су | Cl | -5.82        | 3.42 |
| -  | Br | -5.03        | 3.43 |
|    | Ι  | -5.28        | 3.46 |



Fig. S149 Optimised gas phase structure of (Me<sub>3</sub>P)(CHCl<sub>3</sub>)BeX<sub>2</sub> (5) and (Cy<sub>3</sub>P)(CHCl<sub>3</sub>)BeX<sub>2</sub> (11) and at the wb97xd/def2tzvp level of theory including three additional chloroform molecules to model solvent interactions.

Phosphine dissociation from dinuclear complexes



Fig. S150 Phosphine dissociation from [(PMe<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub> (2) (X = Cl, Br, I).

*Table S46:* Calculated dissociation energies [kcal/mol] for the dissociation of phosphine from  $[(PR_3)BeX_2]_2$  (R = Me (2)) R = Cy (3)) (X = Cl, Br, I) in the **gas phase** using full optimization on the wb97xd/def2tzvp level of theory.

|       | Equation (1)        |                  |              |
|-------|---------------------|------------------|--------------|
|       | R                   | Х                | E (kcal/mol) |
|       | Me                  | Cl               | 24.96        |
|       |                     | Br               | 28.18        |
|       |                     | Ι                | 28.07        |
|       | Су                  | Cl               | 27.62        |
|       |                     | Br               | 29.09        |
|       |                     | Ι                | 29.90        |
| Be Be | + CHCl <sub>2</sub> | ×.               |              |
| X     | X                   | R <sub>3</sub> P | x x x        |

Fig. S151 Phosphine dissociation from  $[(PCy_3)BeX_2]_2$  (3) (X = Cl, Br, I).

equation (2)

*Table S47:* Calculated association energies [kcal/mol] for the coordination of one CHCl<sub>3</sub> molecule to  $[(PR_3)(BeX_2)_2]$  (R = Me (12)) R = Cy (13)) (X = Cl, Br, I) in the **gas phase** using full optimization on the wb97xd/def2tzvp level of theory.

| Equation(2) |    |              |      |
|-------------|----|--------------|------|
| R           | Х  | E (kcal/mol) | R[Å] |
| Me          | Cl | -2.71        | 3.29 |
|             | Br | -2.94        | 3.31 |
|             | Ι  | -3.23        | 3.39 |
| Су          | Cl | -5.16        | 2.77 |
|             | Br | -4.85        | 2.88 |
|             | Ι  | -5.01        | 3.17 |
|             |    |              |      |



*Fig. S152* Optimised gas phase structure of  $(Me_3P)(CHCl_3)(BeX_2)_2$  (5) and  $(Cy_3P)(CHCl_3)(BeX_2)_2$  (11) and at the wb97xd/def2tzvp level of theory including three additional chloroform molecules to model solvent interactions.

Dimer dissociation in the presence of six additional chloroform



Fig. S153 Dissociation of [(PMe<sub>3</sub>)BeX<sub>2</sub>]<sub>2</sub> (2) (X = Cl, Br, I) with three additional chloroform molecules to model solvent interactions

*Table S48:* Dissociation energies of  $[(PMe_3)BeX_2]_2$  (2) (X = Cl, Br, I) in the **gas phase** at the wb97xd/def2tzvp level of theory with three additional chloroform molecules to model solvent interactions.

| X  | E (kcal/mol) |  |
|----|--------------|--|
| Cl | 17.033       |  |
| Br | 16.640       |  |
| I  | 17.655       |  |

## References

- [1] M. R. Buchner, *Chem. Commun.*, **2020**, *56*, 8895–8907.
- [2] M. R. Buchner, Z. Naturforsch., B: J. Chem. Sci., 2020, 75, 405–412.

[3] D. Naglav, M. R. Buchner, G. Bendt, F. Kraus, S. Schulz, *Angew. Chem. Int. Ed.*, **2016**, *55*, 10562–10576.

[4] M. R. Buchner, F. Dankert, N. Spang, F. Pielnhofer, C. von Hänisch, *Inorg. Chem.*, **2020**, *59*, 16783–16788.

[5] M. Müller, F. Pielnhofer, M. R. Buchner, *Dalton Trans.*, **2018**, *47*, 12506–12510.

[6] M. L. Luetkens, A. P. Sattelberger, H. H. Murray, J. D. Basil, J. P. Fackler, *Inorg. Synth.*, **1990**, *28*, 305–310.

- [7] X-AREA, Stoe & Cie GmbH, Darmstadt, Germany **2017**.
- [8] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281–1284.
- [9] G. Sheldrick, Acta Crystallogr., **2015**, C71, 3–8.
- [10] G. Sheldrick, Acta Crystallogr., 2015, A71, 3–8.
- [11] MESTRENOVA 14.2.1, Mestrelab Research S.L., Santiago de Compostela, Spain, **2021**.
- [12] OPUS, Bruker Optik GmbH, Ettlingen, Germany, 2009.
- [13] J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615–6620.
- [14] R. Ahlrichs, F. Weigend, M. Häser, H. Patzelt, *Chem. Phys. Lett.*, **1998**, *294*, 143–152.
- [15] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, **2005**, *7*, 3297–3305.
- [16] K. Fukui, S. Kato, H. Fujimoto, J. Am. Chem. Soc., **1975**, *97*, 1–7.
- [17] D. Ćoćić, B. Petrović, R. Puchta, M. Chrzanowska, A. Katafias, R. van Eldik, *J. Comput. Chem.*, **2022**, *43*, 1161–1175.
- [18] V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995–2001.
- [19] M. Cossi, M. Rega, G. Scalmani, V. Barone, J. Comput. Chem., 2003, 24, 669–681.
- [20] A. D. Becke, J. Phys. Chem., **1993**, *97*, 5648–5652.
- [21] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B: Condens. Matter*, **1988**, *37*, 785–789.
- [22] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, *J. Phys. Chem.*, **1994**, *98*, 11623–11627.
- [23] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [24] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett., 1990, 166, 275–280.
- [25] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett., 1990, 166, 281–289.
- [26] M. Head-Gordon, J. A. Pople, M. J. Frisch, *Chem. Phys. Lett.*, **1988**, 153, 503–506.
- [27] S. Saebø, J. Almlöf, *Chem. Phys. Lett.*, **1989**, *154*, 83–89.
- [28] M. Head-Gordon, T. Head-Gordon, Chem. Phys. Lett., 1994, 220, 122–128.
- [29] M. J. Frisch, et al., Gaussian 09, Revision B.01. Gaussian Inc., 2009, Wallingford.
- [30] E. Espinosa, E. Molins, C. Lecomte, *Chem. Phys. Lett.*, **1998**, *285*, 170–173.
- [31] L. Tian, F. Chen, J. Comput. Chem., **2012**, *33*, 580–592.