Supporting Information

Iridium-(κ²-NSi) Catalyzed Dehydrogenation of Formic Acid: Effect of Auxiliary Ligands on the Catalytic Performance

Alejandra Gómez-España,^{a,b} Jorge L. Lopez-Morales,^a Belinda Español,^a Pilar García-Orduña,^a Manuel Iglesias,^a and Francisco J. Fernández-Alvarez^{*,a}

^aDepartamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza–CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain, e-mail, F. J. Fernández-Alvarez: paco@unizar.es

^bUniversidad Pedagógica Nacional Francisco Morazán (UPNFM)- Colonia el Dorado, Frente a Plaza Miraflores, Tegucigalpa-Honduras.

1. Experimental Details

1. 1. Selected spectra of complexes 2 y 3

Figure S1. ¹H NMR spectrum of 2 in CD_2Cl_2 (300 MHz, 298K).

Figure S2. ¹H-¹H COSY NMR spectrum of 2 in CD₂Cl₂ (300 MHz, 298K).

Figure S3. ¹³C APT NMR spectrum of 2 in CD₂Cl₂ (75 MHz, 298K).

Figure S4. $^{1}H^{-13}C$ HSQC NMR spectrum of 2 in CD₂Cl₂ (298K).

Figure S5. $^{1}H^{-29}Si$ HMBC spectrum of 2 in CD₂Cl₂ (60 MHz, 298K).

Figure S6. HR-MS of complex 2.

11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 f1(ppm)

Figure S7. ¹H NMR spectrum of 3 in CD_2Cl_2 (300 MHz, 298K).

-80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 f1 (ppm) L0 -15 -20 -25 -30 -40 -45 -50 -75 -35 -55 -60 -65 -70

Figure S8. ¹⁹F{¹H} NMR spectrum of **3** in CD₂Cl₂ (282 MHz, 298K)

Figure S9. ¹H-¹H COSY NMR spectrum of 3 in CD_2Cl_2 (300 MHz, 298K).

Figure S10. ¹³C APT NMR spectrum of 3 in CD_2Cl_2 (75 MHz, 298K).

Figure S11. $^{1}H^{-13}C$ HSQC NMR spectrum of 3 in CD₂Cl₂ (298K).

Figure S12. $^{1}H^{-29}Si$ HMBC spectrum of 3 in CD₂Cl₂ (60 MHz, 298K).

Figure S13. HR-MS of complex 3.

2. TON and TOF determination

$$P_{H2} = \frac{P_{measured}}{2}$$

Amount of H₂ formed calculated with the Ideal Gas Law: $n_{H2} =$

Total Volume = 0.0162 L; R constant= 0.08205 atm L mol⁻¹ K⁻¹

$$TON = \frac{n_{H2}}{n_{cat}}$$
$$TOF = \frac{TON}{t}$$

 $\frac{P_{H2}V}{RT}$

Figure S14. TON vs time representation of the 3-catalyzed (0.1 and 0.05 mol%) FA solvent-less dehydrogenation with NEt₃ (40 mol %) at 353 K

Figure S15. TON vs time (min) from the 3-catalyzed (0.1 mol %) in presence of Et_3N (40 mol %) and the blue-residue catalyzed solventless dehydrogenation of HCOOH at 353 K until 24 hours later.

Entry	Temperature (K)	TOF (5 min)
1	323	86
2	333	205
3	343	778
4	353	1210
5	363	1500
6	373	3260

Table S16. TOF_{5min} for the **3**-catalyzed (0.1 mol%) FA solvent-less dehydrogenation with NEt₃ (40 mol %) from 323 K to 373 K.

Figure S17. FT-IR spectrum of the gaseous product from the catalytic reaction. Up: reaction at 373 K. Down: reaction at 353 K.

3. NMR study of the blue residue from the catalytic reactions

Figure S18. ¹H NMR spectrum of the blue-residue from the solvent-free FA dehydrogenation using **3** in DMSO (400 MHz, 298K).

Figure S19. $^{1}H^{-29}Si$ HMBC spectrum of the blue-residue from the solvent-free FA dehydrogenation using 3 in DMSO (400 MHz, 298K).