Lanthanide Doped Na₂MgScF₇ with Downshifting and Upconversion Emissions for Multicolor Anti-Counterfeiting

Chengyu Zhuo^{*a,b*}, Zeyu Lyu^{*b}, Dashuai Sun^{*b*}, Sida Shen^{*b*}, Taixing Tan^{*b*}, Shuai Wei^{*a,b*}, Zhijun Li^{*a,b*}, Pengcheng Luo^{*a,b*}, and Hongpeng You^{**a,b,c*}

^{a.}School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China.

^{b.}Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.

^{c.}State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. *E-mail address: <u>hpyou@ciac.ac.cn</u>, zylyu@gia.cas.cn.

Fig. S1 XRD patterns of the prepared TbF₃, EuF₃, ErF₃ and YbF₃ samples.

Fig. S2 XRD patterns of the $(NH_4)_2NaScF_6$ samples and the Rietveld refinement results of the $(NH_4)_3NaScF_6$ samples.

Fig. S3 The products from direct high-temperature solid-state reaction of MgF₂, NaF, $(NH_4)ScF_6$, and hydrothermal reaction of precipitation of Na⁺, Mg²⁺, Sc³⁺, and F⁻ in solution. Noted that both these two reactions cannot obtain the target NMSF.

Fig. S4 PL spectra of the NMSF phosphors doped with different concentrations of Tb^{3+} or Eu^{3+} .

Table S1. Rietveld refinement results and crystal data for NMSF and NMSF:5%Tb³⁺

Sample	NMSF	NMSF:5%Tb ³⁺
Symmetry	Orthorhombic	Orthorhombic
Space group	<i>Imma</i> (no. 74)	<i>Imma</i> (no. 74)
Cell parameters	a = 10.40860(18) Å	a = 10.36956(15) Å
	b = 7.32804m(12) Å	b = 7.30959(9) Å
	c = 7.52879(11)Å	c = 7.51215(7)Å
	$\alpha=\beta=\gamma=90^\circ$	$\alpha=\beta=\gamma=90^\circ$
	$V = 574.256(24) Å^3$	V = 569.400(12)Å ³
	Z=4	Z=4