A tetranuclear Mn-diamond core complex as a functional mimic of both catechol oxidase and phenoxazinone synthase enzymes

Rakesh Kumar, Rahul Keshri, Koushik Prodhan, Kanchan Shaikh, and Apparao Draksharapu*

Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology, Kanpur – 208016, India. Email: <u>appud@iitk.ac.in</u>

Experimental Section:

X-ray crystallography

Single-crystal of suitable dimensions was used for data collection. Diffraction intensities were collected on a Bruker D8 Venture Duo X-ray diffractometer¹ and software suite CCD diffractometer, with graphite-monochromated Mo K α (0.71073 Å) radiation at 100 K. Data were corrected for Lorentz and polarization effects; empirical absorption corrections (SADABS v 2.10) were applied. Using Olex2,² the structures were solved by ShelXT³ structure solution program using Intrinsic Phasing and refined with the ShelXL⁴ refinement package using Least Squares minimization. The non-hydrogen atoms were refined anisotropically, whereas the H atoms fixed to their geometrically ideal positions were refined isotropically. CCDC **2182342** contains the supplementary crystallographic data for **1**. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk</u>.

Synthesis of Mn Dimer, [Mn^{II}₂(HPTP*)]³⁺ (3):

To a 2 mL solution of 1,3-bis(bis((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amino)propan-2-ol (HPTP*H) ligand (105 mg, 0.15 mmol) in acetonitrile, a 2 mL CH₃CN solution of [Mn^{II}(H₂O)](ClO₄)₂ (110 mg, 0.30 mmol) was added dropwise with stirring in nitrogen filled glove box. The reaction mixture was stirred of 3 h at room temperature. Excess diethyl ether was poured in the reaction mixture and decanted. The obtained off white solid of **3** washed thrice with Et₂O (3 X 30 mL). UV-Vis absorption spectrum of this complex showed band at 263 nm with ε = 14400 M⁻¹cm⁻¹ (Figure S22A). ESI-MS of the complex giving m/z = 929.20 and 993.18, for the formulation [Mn₂(HPTP*)(Cl)(ClO₄)]⁺ and [Mn₂(HPTP*)(ClO₄)₂]⁺, respectively (Figure S22B). Solution state EPR also confirms the presence of Mn in +2 oxidation state (Figure S22C). However, our efforts to recrystallize this complex were unsuccessful.

Synthesis of [Mn₄(tpdp)₂(O)₂(H₂O)₄](ClO₄)₅·4H₂O (4):

Synthesis of **4** was carried out as reported procedure by *Akira et. al.*⁵ Htpdp is 1,3-bis[bis(2-pyridylmethyl)amino]-2-propanol.

Scheme S1: Synthetic procedure for HPTP*H ligand.

Scheme S2: Synthetic procedure for 1.

SynthesisofN,N,N',N'-tetrakis(2-quinolylmethyl)-2-hydroxy-1,3-propanediamine(Htqhpn): Ligand synthesis was carried out as reported procedure by *Mikata et. al.*6

¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, 4H), 7.92 (d, 4H), 7.69 (d, 4H), 7.66-7.62 (m, 4H), 7.48-7.44 (m, 8H), 4.16 (m, 9H) 2.83 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 159.06, 147.20,136.75, 129.67, 128.77, 127.59, 127.38, 126.40, 121.18, 67.20, 61.40, 59.22 ppm.

Synthesis of [Mn₄(tqhpn)₂(μ-O)₂(H₂O)₂(DMF)₂]·(ClO₄)₄·4H₂O (2·4H₂O).2: Synthesis of 2 was carried out as reported procedure by *Mikata et. al.***⁶**

Figure S1: ¹H NMR spectrum of N, N, N', N'-tetrakis(2-quinolylmethyl)-2-hydroxy-1,3propanediamine (Htqhpn) in CDCl₃ at 400 MHz. (*CDCl₃ residual peak)

Figure S2: ¹³C NMR spectrum of N, N, N', N'-tetrakis(2-quinolylmethyl)-2-hydroxy-1,3-propanediamine (Htqhpn) in CDCl₃ at 100 MHz. (*CDCl₃ residual peak)

Figure S3: ¹H NMR spectrum of 1,3-bis(bis((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amino)propan-2-ol (HPTP*H) in CDCl₃ at 500 MHz. (*CDCl₃ residual peak, # peak for dichloromethane solvent)

Figure S4: ¹³C NMR spectrum of 1,3-bis(bis((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amino)propan-2-ol (HPTP*H) in CDCl₃ at 125 MHz. (*CDCl₃ residual peak)

Figure S5: (A) UV-Vis absorption spectrum of 0.25 mM **1** in CH₃CN at room temperature. Inset: UV-Vis absorption spectrum of 5 μ M **1** in CH₃CN. (B) X-band EPR spectrum of **1** (in MeOH with a few drops of toluene) measured at 120 K; modulation amplitude 1.98 G, modulation frequency 100 kHz, and microwave frequency 9.466 GHz.

Figure S6. (A) Formation of **1** followed by UV-Vis absorption spectroscopy upon the reaction of HPTP*H (red) with $[Mn^{II}(H_2O)_6](CIO_4)_2$ (black) in CH₃CN at room temperature with dioxygen purging. Inset: The corresponding change in the absorption at 550 nm. (B) Changes observed at 550 nm over time in the presence (purple) and absence of (red) dioxygen.

Figure S7. UV-Vis absorption spectral changes observed upon adding HPTP*H to $[Mn^{II}(H_2O)_6](CIO_4)_2$ (black) in CH₃CN at room temperature with N₂ purging. Inset: The corresponding change in the absorption at 550 nm over time.

Figure S8: UV-Vis absorption changes observed at 402 nm with time during the reaction of 1 mM 3,5-DTBC with **1** at various concentrations 75 μ M (red), 50 μ M (blue), 30 μ M (magenta), 20 μ M (green), 10 μ M (dark blue) and 0 μ M (purple) in acetonitrile.

Figure S9: Time-dependent UV-Vis absorption spectral changes upon the reaction of 1 mM 3,5-DTBC with **1** (0.03 mM) in CH_3CN under nitrogen atmosphere. Inset: The corresponding changes in the absorption at 402 nm over time in seconds.

Figure S10: Time-dependent UV-Vis absorption spectral changes upon the reaction of 1 mM 3,5-DTBC with **2** (0.10 mM) in CH₃CN under open air atmosphere. Inset: The corresponding changes in the absorption at 402 nm over time in seconds. *Reaction condition:* Stock of **2** (4 mM in DMF), 3,5 DTBC (100 mM in CH₃CN) prepared. To a 2 mL CH₃CN in a cuvette 3,5-DTBC (20 μ L, 100 mM) and **2** (4 mM, 15 μ L) were added.

Figure S12: ¹³C NMR of 3,5-DTBQ. (*CDCl₃ residual peak)

Figure S13: Reaction of 3,5-DTBC with **1** in CH₃CN under open air atmosphere monitored using UV-Vis absorption spectroscopy. (A) Plot of concentration of 3,5-DTBQ (in molar) vs. time (in hours). (Blue) 0.0005% catalyst **1** loading, (Red) in absence of catalyst **1**. (B) Plot of turn over number vs. time (in hours) of the reaction conducted in the aerobic conditions.

Figure S14. Time-dependent UV-Vis absorption spectral changes upon the reaction of **1** (10 μ M) with 0.1 mM 2-aminophenol in CH₃CN in open air atmosphere. Inset: The corresponding changes in the absorption at 425 nm over time in seconds.

Figure S15. Time-dependent UV-Vis absorption spectral changes upon purging O_2 to 0.1 mM 2-aminophenol in CH₃CN. Inset: Corresponding changes in the absorption at 425 nm over time in seconds.

Figure S16. Time-dependent UV-Vis absorption spectral changes upon (A) the reaction of 0.01 mM **2** with 0.1 mM 2-aminophenol under constant purging of O_2 in CH₃CN. Inset: The corresponding changes in the absorption at 425 nm over time in seconds. *Reaction condition:* Stock solutions of **2** (4 mM in DMF), and 2-aminophenol (10 mM in CH₃CN) were prepared. 3 mL CH₃CN taken in a cuvette to which (30 µL, 10 mM) 2-aminophenol and (4 mM, 7.5 µL) **2** were added. (B) The reaction of 0.05 mM **2** with 0.1 mM 2-aminophenol under constant purging of O_2 in CH₃CN. Inset: The corresponding changes in the absorption at 425 nm over time in seconds. *Reaction* at 425 nm over time in seconds. *Reaction* condition: Stock solutions of **2** (4 mM in DMF), and 2-aminophenol and (4 mM, 7.5 µL) **2** were added. (B) The reaction of 0.05 mM **2** with 0.1 mM 2-aminophenol and the absorption at 425 nm over time in seconds. *Reaction condition:* Stock solutions of **2** (4 mM in DMF), and 2-aminophenol (10 mM in CH₃CN) were prepared. 3 mL CH₃CN taken in a cuvette to which 2-aminophenol (10 mM in CH₃CN) were prepared. 3 mL CH₃CN taken in a cuvette to which 2-aminophenol (10 mM in CH₃CN) were prepared. 3 mL CH₃CN taken in a cuvette to which 2-aminophenol (30 µL, 10 mM) and **2** (4 mM, 37.5 µL) were added.

Figure S17. (A) Time-dependent UV-Vis absorption spectral changes upon reaction of 0.1 mM **2** and 0.1 mM 2-aminophenol with purging of O₂ in CH₃CN. Inset: The corresponding changes in the absorption at 425 nm over time in seconds. *Reaction condition:* Stock solutions of **2** (4 mM in DMF), and 2-aminophenol (10 mM in CH₃CN) were prepared. To 3 mL CH₃CN in a cuvette, 2-aminophenol (30 μ L, 10 mM) and **2** (4 mM, 75 μ L) were added. (B) The changes observed at 425 nm upon adding different equivalents of **2** to 0.1 mM 2-aminophenol (blue) 1 eq. (0.1 mM), (red) 0.5 eq. (0.05 mM) and (black) 0.1 eq. (0.01 mM)

Figure S18: Time-dependent UV-Vis absorption spectral changes upon the reaction of 5 μ M **1** and 0.5 mM 2-aminophenol under constant purging of O₂ in CH₃CN at 40 °C. Inset: The corresponding changes in the absorption at 425 nm over time in seconds. *Reaction condition:* Stock solutions of **1** (1 mM in CH₃CN) and 2-aminophenol (100 mM in CH₃CN) were prepared. To a 3 mL CH₃CN in a cuvette, 2-aminophenol (15 μ L, 100 mM) and **1** (1 mM, 15 μ L) were added.

Figure S19: (A) Time-dependent UV-Vis absorption spectral changes upon treating 0.5 mM 2-aminophenol with O₂ (purging) in CH₃CN at 40 °C. Inset: The corresponding changes in the absorption at 425 nm over time in seconds. (B) Time trace at 425 nm for catalytic reaction of 0.5 mM 2-aminophenol with 5 μ M **1** (red) and only 0.5 mM 2-aminophenol (black) with purging O₂ in CH₃CN at 40 °C. *Reaction condition:* 2-aminophenol (100 mM in CH₃CN) stock prepared. To a 3 mL CH₃CN in a cuvette 2-aminophenol (15 μ L, 100 mM) was added.

Figure S20: ¹H NMR of 2-amino-3*H*-phenoxazin-3-one. (*DMSO-d6 residual peak, # peak for H₂O in DMSO-d6)

Figure S21: ¹³C NMR of 2-amino-3*H*-phenoxazin-3-one. (*DMSO-d6 residual peak)

Figure S22: (A) UV-Vis absorption spectrum of 0.05 mM Mn dimer, $[Mn^{II}_2(HPTP^*)]^{3+}$, **3** in CH₃CN. (B) ESI-MS of **3** in CH₃CN. (C) X-band EPR spectrum of **3** in solution state measured in MeOH with a few drops of toluene at 120 K; modulation amplitude 1.98 G, modulation frequency 100 kHz, and microwave frequency 9.466 GHz.

0 h. 1 h. 3 h. 9 h. Figure S23: Conversion of $Mn_2(II)$ dimer, $[Mn^{II}_2(HPTP^*)]^{3+}$, (3) to 1 upon the exposure to open air.

Figure S24: (A) Time-dependent UV-Vis absorption spectral changes upon the reaction of 1 mM 3,5-DTBC with $[Mn^{II}_{2}(HPTP^{*})]^{3+}$, **3** (60 μ M) in CH₃CN under aerobic condition. Inset: The corresponding changes in the absorption at 402 nm due to the formation of 3,5-DTBQ over time (in seconds). (B) Comparison of the rate of reaction monitored using 402 nm (due to the formation of 3,5-DTBQ over time) for the reaction of 3,5-DTBC with **1** (black) and $[Mn^{II}_{2}(HPTP^{*})]^{3+}$, **3** (red).

Figure S25: Time-dependent UV-Vis absorption spectral changes upon (A) the reaction of 1.5 mM **1** in CH₃CN with 100 eq. H₂O₂. Inset: The corresponding changes in the absorption at 550 nm over time (in seconds). (B) The reaction of 1 mM 3,5-DTBC with 30 μ M **1** in CH₃CN with 5 eq. H₂O₂ under nitrogen atmosphere. Inset: The corresponding changes in the absorption at 402 nm due to the formation of 3,5-DTBQ over time (in seconds).

Figure S26: UV/Vis absorption spectral changes observed upon the reaction of 0.5 mM $[Mn^{II}_2(HPTP^*)]^{3+}$, **3** with 5 eq. H₂O₂ under nitrogen atmosphere.

Figure S27: Time-dependent UV-Vis absorption spectral changes upon the reaction of 0.1 mM 2-aminophenol with 10 μ M **1** in CH₃CN with 5 eq. H₂O₂ under nitrogen atmosphere. Inset: The corresponding changes in the absorption at 425 nm due to the formation of 2-amino-3*H*-phenoxazin-3-one (APX) over time (in seconds).

Figure S28: Concentration dependent UV-Vis absorption spectra of $[Mn_4(tpdp)_2(O)_2(H_2O)_4](ClO_4)_5$ (4) (where Htpdp = 1,3-bis[bis(2-pyridylmethyl)amino]-2-propanol) (1 mM red, 0.25 mM blue, and 0.025 mM black) in CH₃CN at room temperature.

Figure S29: Time-dependent UV-Vis absorption spectral changes upon the reaction of (A) 1 mM 3,5-DTBC with 30 μ M [Mn₄(tpdp)₂(O)₂(H₂O)₄](ClO₄)₅ (**4**) at room temperature. Inset: The corresponding absorption changes at 402 nm due to 3,5-DTBQ over time. (B) 0.1 mM Aminophenol with 10 μ M **4** along with oxygen purging at room temperature. Inset: The corresponding changes in the absorption at 425 nm (due to APX) over time.

Figure S30: UV/Vis absorption changes upon the reaction of (A) 1.5 mM **1** with 100 eq. 3,5-DTBC at -40 °C. (B) 30 μ M **1** with 33 eq. 3,5-DTBC at -20 °C. (C) 1.5 mM **1** with 100 eq. 3,5-DTBC at -20 °C.

Empirical formula	C ₇₈ H ₁₁₁ Cl ₄ Mn ₄ N ₁₂ O ₃₂
Formula weight	2090.34
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.6386(11)
b/Å	14.8042(14)
c/Å	16.7878(16)
α/°	95.953(2)
в/°	93.623(2)
γ/°	108.608(2)
Volume/ų	2712.3(4)
Ζ	1
$ ho_{ m calc} m g/cm^3$	1.280
µ/mm ⁻¹	0.628
F(000)	1087.0
Crystal size/mm ³	$0.18 \times 0.16 \times 0.16$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.606 to 50.094
Index ranges	$-13 \le h \le 13, -17 \le k \le 17, -19 \le l \le 19$
Reflections collected	38201
Independent reflections	9595 [R _{int} = 0.0528, R _{sigma} = 0.0571]
Data/restraints/parameters	9595/155/616
Goodness-of-fit on F ²	1.020
Final R indexes [I>=2σ (I)]	R ₁ = 0.0826, wR ₂ = 0.2078
Final R indexes [all data]	$R_1 = 0.1172$, $wR_2 = 0.2406$
Largest diff. peak/hole / e Å ⁻³	1.14/-1.45

Table S1: Crystal data and structure refinement of 1.

 Table S2: Selected Bond Lengths for 1.

<u> </u>									
Atom	Atom	Length/Å		Atom	Atom	Length/Å			
Mn1	Mn1 ¹	2.7204(15)		Mn2	06	2.181(4)			
Mn1	06	1.932(4)		Mn2	N6	2.284(4)			
Mn1	05	1.822(4)		Mn2	N4	2.192(3)			
Mn1	05 ¹	1.840(4)		Mn2	07	2.101(5)			
Mn1	N5	2.075(4)		Mn2	N3	2.198(4)			
Mn1	N2	2.089(2)		Mn2	08	2.290(6)			
Mn1	N1	2.116(4)							

¹1-X,1-Y,-Z

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
06	Mn1	N5	86.50(17)	06	Mn2	N6	78.89(16)
06	Mn1	N2	87.52(14)	06	Mn2	N4	96.28(13)
06	Mn1	N1	87.44(17)	06	Mn2	N3	100.67(16)
05	Mn1	06	97.17(17)	06	Mn2	08	177.0(2)
05 ¹	Mn1	06	178.78(17)	N6	Mn2	08	103.2(2)
05	Mn1	O5 ¹	84.0(2)	N4	Mn2	N6	75.57(13)
05	Mn1	N5	176.32(19)	N4	Mn2	N3	141.63(15)
05 ¹	Mn1	N5	92.29(18)	N4	Mn2	08	82.30(18)
05	Mn1	N2	102.04(14)	07	Mn2	06	88.94(19)
05 ¹	Mn1	N2	92.38(15)	07	Mn2	N6	167.6(2)
05	Mn1	N1	102.14(16)	07	Mn2	N4	103.5(2)
05 ¹	Mn1	N1	92.17(17)	07	Mn2	N3	110.9(2)
N5	Mn1	N2	78.27(15)	07	Mn2	08	88.8(3)
N5	Mn1	N1	77.73(17)	N3	Mn2	N6	74.33(15)
N2	Mn1	N1	155.73(16)	N3	Mn2	08	82.0(2)
Mn1	06	Mn2	135.68(17)	05 ¹	Mn1	Mn1 ¹	41.76(12)
Mn1	05	Mn1 ¹	96.0(2)	05	Mn1	Mn1 ¹	42.28(12)
N2	Mn1	Mn1 ¹	99.66(10)	06	Mn1	Mn1 ¹	139.45(12)
N1	Mn1	Mn1 ¹	99.58(13)	N5	Mn1	Mn1 ¹	134.05(15)

Table S3: Selected Bond Angles for 1.

¹1-X,1-Y,-Z

References:

- [1] M. APEX2 (Version 2008. 6-1), SAINT (V7.60A), SADABS (Version 2008/1), XPREP (Version 2008/2). (2005-2009) Bruker AXS Inc., Madison.
- [2] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* **2009**, *42*, 339–341.
- [3] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
- [4] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.

[6] Y. Mikata, M. Wakamatsu, H. So, Y. Abe, M. Mikuriya, K. Fukui and S. Yano, *Inorg. Chem.*, 2005, **44**, 7268–7270.

^[5] S. Masatatsu, S. Hitoshi, S. Machiko, S. Toshiharu and U. Akira, *Chem. lett.*, 1990, **19**, 923-926.