N-heterocyclic imine-based bis-gallium(I) carbene analog featuring a fourmembered Ga₂N₂ ring

Bing Wang,^a Wenhao Chen,^a Jiangnan Yang,^a Linfang Lu,^a Jiyong Liu,^c Liang Shen,^a

Di Wu*^{a,b}

 ^aCollege of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China; wudi@hznu.edu.cn
 ^bHubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Hubei 432000, China
 ^cDepartment of Chemistry, Zhejiang University. Hangzhou 310027, China

CONTENTS

1. UV-Vis spectrum of compound 1

- 2. Crystal Structure Determination
 - 3. Theoretical calculations
 - 4. References
 - 5. NMR spectra

1. UV-Vis spectrum of compound 1

Figure S1. UV-Vis absorption spectrum of compound **1** (10⁻⁵ M) in hexane (Ultraviolet spectrum was recorded on a Perkin Elmer Lambda 750 UV/Vis spectrophotometer).

2. Crystal Structure Determination of Compounds 1, 2, 3, 4, and 5

X-ray data collection and structural refinement. Intensity data for compounds 1, 2, 3, 4, and 5 were collected using a Bruker D8 Venture diffractometer. The crystals of 1, 2, 3, 4, and 5 were measured at 170 K. The structure was solved by direct phase determination (SHELXS-97)^[S1] and refined for all data by full-matrix least squares methods on F^2 .^[S2] All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride in their respective parent atoms; they were assigned appropriate isotropic thermal parameters and included in the structure-factor calculations. CCDC: 2168820-2168824 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallography Data Center via www.ccdc.cam.ac.uk/data_request/cif.

	1	$2 \cdot (C_6 H_6)_2$	3·(C ₆ H ₆)
Formula	$C_{54}H_{72}Ga_2N_6$	$C_{70}H_{90}F_6Ga_2N_6O_6S_2$	$C_{88}H_{94}Ga_2N_6O_4$
Fw	944.61	1429.03	1439.13
cryst system	monoclinic	monoclinic	tetragonal
space group	$P2_1/c$	C2/c	P-4
Size (mm ³)	$0.36 \times 0.07 \times 0.05$	$0.08 \times 0.04 \times 0.03$	$0.48 \times 0.32 \times 0.29$
Т, К	170.00	170.00	170.00
<i>a</i> , Å	31.3223(16)	21.4469(7)	19.4930(3)
b, Å	12.3615(6)	17.9353(6)	19.4930(3)
<i>c</i> , Å	30.9147(16)	18.5471(6)	10.5729(3)
α, deg	90	90	90
β, deg	118.4170(10)	105.1940(10)	90
γ, deg	90	90	90
V, A ³	10527.6(9)	6884.9(4)	4017.46(17)
Ζ	8	4	2
$ ho_{calc} g \cdot cm^{-3}$	1.192	1.379	1.190
μ, mm ⁻¹	1.063	0.915	0.723
Refl collected	118009	48398	66333
T _{min} / T _{max}	0.62/0.746	0.699/0.746	0.636/0.746
Independent refl	23225	7583	8846
[R _{int}]	0.1165	0.0583	0.0410
R [I>2sigma(I)]	0.0558	0.0307	0.0253
<i>R</i> _w [I>2sigma(I)]	0.1093	0.0755	0.0643

Table S1. Summary of Data Collection and Structure Refinement of 1, 2, 3, 4, and 5.

GOF	1.014	1.038	1.040
Largest diff			
peak/hole[e·	0.80/-0.85	0.68/-0.48	0.24/-0.21
Å-3]			

	4	5
Formula	$C_{78}H_{92}Ga_2N_6S_4$	C ₅₄ H ₇₂ Cl ₂ Ge ₂ N ₆
Fw	1381.25	1021.25
cryst system	monoclinic	monoclinic
space group	$P2_1/c$	$P2_1/n$
Size (mm ³)	$0.38 \times 0.2 \times 0.19$	$0.09 \times 0.04 \times 0.03$
Т, К	170.00	170.00
<i>a</i> , Å	12.7756(18)	12.797(2)
<i>b</i> , Å	23.239(3)	13.824(2)
<i>c</i> , Å	12.8137(17)	15.574(2)
α, deg	90	90
β, deg	114.876(5)	103.570(5)
γ, deg	90	90
V, A ³	3451.3(8)	2678.2(7)
Z	2	2
$\rho_{calc}g \cdot cm^{-3}$	1.329	1.266
μ, mm ⁻¹	0.950	1.262
Refl collected	46214	23120
T _{min} / T _{max}	0.525/0.746	0.602/0.746
Independent refl	7593	5886
[R _{int}]	0.092	0.0961
R [I>2sigma(I)]	0.0596	0.0779
<i>R</i> _w [I>2sigma(I)]	0.1618	0.1891
GOF	1.053	1.036
Largest diff peak/hole[e· Å ⁻³]	1.75/-1.31	1.27/-1.04

 Figure S2. Twinned molecular structure of 1 (H atoms are omitted for clarity). Selected bond

 lengths (Å) and angles (°): Ga3-N7 2.015(3), Ga3-N10 2.014(3), Ga4-N7 2.012(3), Ga4-N10

 2.009(3), N7-C82 1.283(4), N10-C55 1.287(4), C82-N8 1.396(4), C82-N9 1.397(4); N7-Ga3-N10

 82.20(11), N7-Ga4-N10 82.40(11), Ga3-N7-Ga4 97.64(10), Ga3-N10-Ga4 97.72(11), Ga3-N7-C82

 C82
 131.6(2), Ga4-N7-C82

 130.7(2).

3. Theoretical calculations

Gaussian 09E (16 C.01) was used for all density functional theory (DFT) calculations.^[S3] Geometry optimization, frequency calculations, and Natural bond order (NBO) analysis on compound **1** was performed at the B3LYP/6-311G(d,p) level of theory.

Figure S3. Calculated optimized structures for 1 at B3LYP/6-311G(d,p) level of theory.

Ga	0.00512609	-1.02457421	-1.17762328
Ga	0.00567019	1.02452939	1.17763679
N	-1.36718296	0.00062991	-0.00026587
N	-3.52759927	1.08697549	0.20090186
N	-3.52885384	-1.08286177	-0.20282873
N	1.35621550	-0.00036234	-0.00006055
N	3.51722569	-1.03761333	0.37990793
N	3.51888003	1.03367863	-0.37889929
С	-2.65195045	0.00149014	-0.00066468
С	-4.85697572	-0.65800107	-0.12453281
Н	-5.67535583	-1.34411807	-0.25226150
С	-4.85621374	0.66375946	0.12192727
Н	-5.67379825	1.35094088	0.24903646
С	-3.14883337	-2.44474637	-0.45910978
С	-3.23979693	-2.94339166	-1.77299897
С	-2.91421440	-4.28633874	-1.98638836
Н	-2.97450335	-4.69609012	-2.98780819
С	-2.50018378	-5.09802016	-0.94025350
Н	-2.24112414	-6.13434639	-1.12818616
С	-2.41798683	-4.58633241	0.34994440
Н	-2.09668531	-5.23289537	1.15678673

Table S2. Optimized structures of 1 (atom, x-, y-, z- positions in Å)

С	-2.74710653	-3.25695661	0.62161662
C	-3.69779994	-2.08237137	-2.94583145
Н	-3.73286658	-1.04660542	-2.60282201
С	-5.12002587	-2.47110271	-3.39580878
Н	-5.14742737	-3.50161653	-3.76255999
Н	-5.45689818	-1.81753014	-4.20598532
Н	-5.83938791	-2.39110729	-2.57697857
C	-2.71969224	-2.13529846	-4.13306241
Н	-1.70781459	-1.87171773	-3.81872013
Н	-3.03602353	-1.43142560	-4.90878703
Н	-2.68678467	-3.12953382	-4.58786441
C	-2.72644680	-2.72588130	2.05130402
Н	-2 54479746	-1 65114302	1 99835594
C	-4 09547057	-2.94314318	2.72844581
Н	-4 90191053	-2 45981968	2.17269062
Н	-4 09055151	-2 52989557	3 74169182
Н	-4 32676670	-4 01047406	2 79997811
C	-1 60371096	-3 32509474	2.1191420
Н	-1 77117326	-4 38491505	3 12635812
Н	-1 56059504	-2 80605500	3.87337889
Н	-0.62924932	-3 22555957	2 42992271
C	-3 14604965	2 44826392	0.45807537
C	-2 74225129	3 26037902	-0.62197676
C	-2 41151536	4 58916980	-0 34947049
н	-2 08850280	5 23559762	-1 15573408
C	-2 49428719	5.10048162	0.94085088
н	-2 23400379	6 13638394	1 12942603
C	-2 91040247	4 28895621	1.98626814
Н	-2 97111797	4 69840396	2 98778471
C	-3 23751832	2 94650352	1 77206878
C	-2 72103444	2 72973165	-2 05182111
Н	-2 53973355	1 65491022	-1 99908923
C	-4 08967190	2.94764427	-2 72955610
Н	-4 89653695	2.91701127	-2 17440588
Н	-4 08437003	2.53478757	-3 74295927
Н	-4 32058503	4.01507862	-2 80078520
C	-1 59779124	3 32889183	-2 91178952
н	-1.76495548	4.38879338	-3,12608092
н	-1.55439242	2.81005914	-3.87335099
н	-0.62353298	3.22905097	-2.42944603
C	-3.69751715	2.08561641	2.94423391
Н	-3.73371787	1.05003497	2.60077934
C	-5.11952887	2.47601953	3.39340350
	2.1.202007		0.0000

Н	-5.14585912	3.50644311	3.76048348
Н	-5.45777354	1.82260975	4.20313938
Н	-5.83845439	2.39720897	2.57407606
С	-2.72012634	2.13676005	4.13214684
Н	-1.70832947	1.87223630	3.81833817
Н	-3.03775874	1.43280261	4.90726215
Н	-2.68640197	3.13069626	4.58754270
С	2.64199030	-0.00131814	0.00031070
С	4.84618387	0.62818380	-0.23228528
Н	5.66508735	1.27994953	-0.48000280
С	4.84516754	-0.63402006	0.23388625
Н	5.66303785	-1.28696697	0.48190338
С	3.13674262	2.31055421	-0.91551655
С	2.85361084	2.41277657	-2.29308664
С	2.53857523	3.67500830	-2.80256684
Н	2.31672367	3.78561398	-3.85706795
С	2.51153551	4.79517658	-1.98037635
Н	2.26587742	5.76613777	-2.39680903
С	2.80190392	4.67393652	-0.62862038
Н	2.78111026	5.55554597	0.00085224
С	3.12021440	3.43388043	-0.06561366
С	2.95225335	1.21085488	-3.22690510
Н	2.86594657	0.30929794	-2.61809198
С	4.33077243	1.17812516	-3.91814164
Н	4.47509553	2.06568883	-4.54179218
Н	4.41622425	0.29619703	-4.56006184
Н	5.14390065	1.14379538	-3.18931272
С	1.82409417	1.15310484	-4.26898693
Н	0.84211346	1.19078034	-3.79369002
Н	1.88665586	0.21675776	-4.82987766
Н	1.88867378	1.97141575	-4.99218647
С	3.48237691	3.34438864	1.41338726
Н	3.46984121	2.28912091	1.69299275
С	4.90976492	3.87379418	1.65962477
Н	5.65009232	3.33291914	1.06514056
Н	5.18052034	3.76553397	2.71410916
Н	4.98482012	4.93425238	1.40038575
С	2.47222624	4.06584086	2.32130836
Н	2.47179737	5.14678731	2.15412747
Н	2.73173732	3.89872482	3.37089390
Н	1.46033296	3.68838313	2.16118185
С	3.13295693	-2.31391973	0.91636948
С	3.11521912	-3.43725779	0.06650236

,			
С	2.79459434	-4.67679080	0.62935802
Н	2.77284773	-5.55839400	-0.00009107
С	2.50314389	-4.79751430	1.98091982
Н	2.25564632	-5.76806403	2.39722246
С	2.53146768	-3.67736724	2.80310001
Н	2.30876913	-3.78759420	3.85746055
С	2.84887271	-2.41566433	2.29379042
С	3.47848888	-3.34843048	-1.41227172
Н	3.46792379	-2.29315815	-1.69194011
С	4.90515490	-3.88024088	-1.65752397
Н	5.64597008	-3.34068289	-1.06245266
Н	5.17685349	-3.77233927	-2.71180257
Н	4.97822912	-4.94085097	-1.39833931
С	2.46775000	-4.06824757	-2.32083405
Н	2.46525347	-5.14916048	-2.15345008
Н	2.72838238	-3.90180282	-3.37024817
Н	1.45640840	-3.68894304	-2.16155982
С	2.94908636	-1.21391335	3.22765743
Н	2.86423934	-0.31220663	2.61886106
С	4.32754065	-1.18329595	3.91913795
Н	4.47039620	-2.07115134	4.54271010
Н	4.41419777	-0.30156321	4.56116583
Н	5.14084938	-1.15010013	3.19046478
С	1.82088695	-1.15451659	4.26959302
Н	0.83889821	-1.19082449	3.79420235
Н	1.88471514	-0.21821730	4.83041754
Н	1.88425646	-1.97286012	4.99286146

HOMO-2 (isosurface value = 0.02)

HOMO (isosurface value = 0.02)

LUMO (isosurface value = 0.02)

HOMO-3 (isosurface value = 0.02)

LUMO+2 (isosurface value = 0.02)

HOMO-4 (isosurface value = 0.02)

Figure S4. Plots of the frontier orbitals of compounds 1.

Atom	No	Charge	Core	Valence	Rydberg	Total
Ga	1	0.83813	27.99286	2.10792	0.06109	30.16187
Ga	2	0.83810	27.99286	2.10795	0.06109	30.16190
Ν	3	-1.43588	1.99943	6.39516	0.04129	8.43588
Ν	4	-0.45995	1.99916	5.44762	0.01317	7.45995
Ν	5	-0.45995	1.99916	5.44762	0.01317	7.45995
Ν	6	-1.45424	1.99943	6.41774	0.03707	8.45424
Ν	7	-0.45709	1.99917	5.44468	0.01324	7.45709
Ν	8	-0.45708	1.99917	5.44467	0.01324	7.45708
С	9	0.65902	1.99881	3.30386	0.03831	5.34098
С	10	-0.05652	1.99906	4.03816	0.01930	6.05652
Н	11	0.21779	0.00000	0.77910	0.00312	0.78221

 Table S3. The NPA charges of 1 calculated at B3LYP/6-311G(d,p) level of theory.

С	12	-0.05654	1.99906	4.03818	0.01930	6.05654
Н	13	0.21779	0.00000	0.77909	0.00312	0.78221
С	14	0.14470	1.99862	3.83501	0.02167	5.85530
С	15	0.00444	1.99882	3.97686	0.01988	5.99556
С	16	-0.20652	1.99899	4.19195	0.01559	6.20652
Н	17	0.20077	0.00000	0.79562	0.00361	0.79923
С	18	-0.17150	1.99908	4.15684	0.01558	6.17150
Н	19	0.19947	0.00000	0.79790	0.00263	0.80053
С	20	-0.20908	1.99899	4.19460	0.01550	6.20908
Н	21	0.20251	0.00000	0.79404	0.00345	0.79749
С	22	0.00645	1.99884	3.97558	0.01913	5.99355
С	23	-0.21287	1.99911	4.19797	0.01579	6.21287
Н	24	0.20585	0.00000	0.79007	0.00408	0.79415
С	25	-0.55473	1.99926	4.54556	0.00991	6.55473
Н	26	0.18963	0.00000	0.80794	0.00243	0.81037
Н	27	0.19446	0.00000	0.80331	0.00223	0.80554
Н	28	0.19115	0.00000	0.80680	0.00205	0.80885
С	29	-0.56222	1.99929	4.55249	0.01044	6.56222
Н	30	0.21735	0.00000	0.78046	0.00219	0.78265
Н	31	0.19215	0.00000	0.80573	0.00212	0.80785
Н	32	0.18462	0.00000	0.81322	0.00216	0.81538
С	33	-0.20897	1.99913	4.19457	0.01528	6.20897
Н	34	0.21207	0.00000	0.78312	0.00481	0.78793
С	35	-0.55631	1.99926	4.54721	0.00984	6.55631
Н	36	0.19620	0.00000	0.80170	0.00209	0.80380
Н	37	0.19316	0.00000	0.80455	0.00229	0.80684
Н	38	0.18911	0.00000	0.80825	0.00264	0.81089
С	39	-0.56822	1.99928	4.55851	0.01042	6.56822
Н	40	0.18377	0.00000	0.81379	0.00244	0.81623
Н	41	0.19727	0.00000	0.80039	0.00234	0.80273

Н	42	0.21308	0.00000	0.78460	0.00232	0.78692
С	43	0.14469	1.99862	3.83502	0.02168	5.85531
С	44	0.00645	1.99884	3.97558	0.01913	5.99355
С	45	-0.20909	1.99899	4.19460	0.01550	6.20909
Н	46	0.20252	0.00000	0.79402	0.00345	0.79748
С	47	-0.17150	1.99908	4.15683	0.01558	6.17150
Н	48	0.19947	0.00000	0.79790	0.00263	0.80053
С	49	-0.20652	1.99899	4.19194	0.01559	6.20652
Н	50	0.20076	0.00000	0.79563	0.00361	0.79924
С	51	0.00443	1.99882	3.97687	0.01988	5.99557
С	52	-0.20898	1.99913	4.19458	0.01527	6.20898
Н	53	0.21210	0.00000	0.78308	0.00481	0.78790
С	54	-0.55631	1.99926	4.54721	0.00984	6.55631
Н	55	0.19621	0.00000	0.80170	0.00209	0.80379
Н	56	0.19316	0.00000	0.80455	0.00229	0.80684
Н	57	0.18911	0.00000	0.80825	0.00264	0.81089
С	58	-0.56825	1.99928	4.55855	0.01042	6.56825
Н	59	0.18378	0.00000	0.81378	0.00244	0.81622
Н	60	0.19728	0.00000	0.80037	0.00234	0.80272
Н	61	0.21308	0.00000	0.78460	0.00232	0.78692
С	62	-0.21287	1.99911	4.19797	0.01579	6.21287
Н	63	0.20585	0.00000	0.79007	0.00408	0.79415
С	64	-0.55474	1.99926	4.54556	0.00991	6.55474
Н	65	0.18963	0.00000	0.80794	0.00243	0.81037
Н	66	0.19446	0.00000	0.80331	0.00223	0.80554
Н	67	0.19116	0.00000	0.80679	0.00205	0.80884
С	68	-0.56221	1.99929	4.55248	0.01044	6.56221
Н	69	0.21735	0.00000	0.78047	0.00219	0.78265
Н	70	0.19215	0.00000	0.80572	0.00212	0.80785
Н	71	0.18462	0.00000	0.81321	0.00216	0.81538

С	72	0.66455	1.99880	3.29861	0.03804	5.33545
С	73	-0.05496	1.99907	4.03660	0.01930	6.05496
Н	74	0.21710	0.00000	0.77981	0.00309	0.78290
С	75	-0.05496	1.99907	4.03659	0.01930	6.05496
Н	76	0.21710	0.00000	0.77981	0.00309	0.78290
С	77	0.15113	1.99865	3.82957	0.02065	5.84887
С	78	0.00644	1.99886	3.97527	0.01942	5.99356
С	79	-0.21381	1.99899	4.19929	0.01552	6.21381
Н	80	0.20210	0.00000	0.79436	0.00355	0.79790
С	81	-0.17524	1.99908	4.16049	0.01567	6.17524
Н	82	0.19947	0.00000	0.79786	0.00267	0.80053
С	83	-0.20855	1.99900	4.19401	0.01555	6.20855
Н	84	0.20125	0.00000	0.79511	0.00364	0.79875
С	85	0.00515	1.99885	3.97653	0.01947	5.99485
С	86	-0.20924	1.99912	4.19456	0.01555	6.20924
Н	87	0.20952	0.00000	0.78601	0.00447	0.79048
С	88	-0.55557	1.99926	4.54642	0.00990	6.55557
Н	89	0.18911	0.00000	0.80835	0.00254	0.81089
Н	90	0.19409	0.00000	0.80368	0.00223	0.80591
Н	91	0.19487	0.00000	0.80303	0.00210	0.80513
С	92	-0.55984	1.99929	4.55029	0.01026	6.55984
Н	93	0.20908	0.00000	0.78900	0.00192	0.79092
Н	94	0.19972	0.00000	0.79823	0.00205	0.80028
Н	95	0.18308	0.00000	0.81468	0.00224	0.81692
С	96	-0.21137	1.99912	4.19641	0.01585	6.21137
Н	97	0.20673	0.00000	0.78918	0.00408	0.79327
С	98	-0.55448	1.99926	4.54532	0.00990	6.55448
Н	99	0.19123	0.00000	0.80673	0.00204	0.80877
Н	100	0.19449	0.00000	0.80328	0.00223	0.80551
Н	101	0.18926	0.00000	0.80826	0.00248	0.81074

С	102	-0.56344	1.99929	4.55358	0.01058	6.56344
Н	103	0.18226	0.00000	0.81557	0.00217	0.81774
Н	104	0.19427	0.00000	0.80363	0.00210	0.80573
Н	105	0.21931	0.00000	0.77824	0.00245	0.78069
С	106	0.15112	1.99865	3.82958	0.02065	5.84888
С	107	0.00516	1.99885	3.97652	0.01948	5.99484
С	108	-0.20855	1.99900	4.19401	0.01555	6.20855
Н	109	0.20125	0.00000	0.79511	0.00364	0.79875
С	110	-0.17523	1.99908	4.16048	0.01567	6.17523
Н	111	0.19947	0.00000	0.79786	0.00268	0.80053
С	112	-0.21382	1.99899	4.19930	0.01553	6.21382
Н	113	0.20210	0.00000	0.79435	0.00354	0.79790
С	114	0.00644	1.99886	3.97528	0.01942	5.99356
С	115	-0.21138	1.99912	4.19641	0.01585	6.21138
Н	116	0.20673	0.00000	0.78918	0.00408	0.79327
С	117	-0.55448	1.99926	4.54532	0.00990	6.55448
Н	118	0.19122	0.00000	0.80674	0.00204	0.80878
Н	119	0.19449	0.00000	0.80328	0.00223	0.80551
Н	120	0.18926	0.00000	0.80826	0.00248	0.81074
С	121	-0.56346	1.99929	4.55359	0.01058	6.56346
Н	122	0.18226	0.00000	0.81557	0.00217	0.81774
Н	123	0.19426	0.00000	0.80364	0.00210	0.80574
Н	124	0.21932	0.00000	0.77823	0.00245	0.78068
С	125	-0.20924	1.99912	4.19456	0.01555	6.20924
Н	126	0.20952	0.00000	0.78601	0.00447	0.79048
С	127	-0.55557	1.99926	4.54641	0.00990	6.55557
Н	128	0.18911	0.00000	0.80835	0.00254	0.81089
Н	129	0.19409	0.00000	0.80368	0.00223	0.80591
Н	130	0.19487	0.00000	0.80303	0.00210	0.80513
С	131	-0.55986	1.99929	4.55030	0.01026	6.55986

 * Total *		0.00000	175.92995	322.75428	1.31578	500.00000
Н	134	0.18308	0.00000	0.81468	0.00224	0.81692
Н	133	0.19972	0.00000	0.79823	0.00205	0.80028
Н	132	0.20908	0.00000	0.78899	0.00192	0.79092

4. References

- [S1] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.
- [S2] Bruker AXS SHELXTL, Madison, WI; SHELX-97G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112–122, SHELX-2013, http://shelx.uni-ac.gwdg.de/SHELX/index.php.
- [S3] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.

5. NMR spectrum

Figure S8. HRMS spectrum of 1.

Figure S10. ¹³C NMR (126 MHz) spectrum of 2 in C_6D_6 .

Figure S12. FT-IR spectrum of 2.

Figure S13. HRMS spectrum of 2.

Figure S14. ¹H NMR (500 MHz) spectrum of 3 in C_6D_6 .

Figure S15. ¹³C NMR (126 MHz) spectrum of 3 in C₆D₆.

Figure S16. FT-IR spectrum of 3.

Figure S17. HRMS spectrum of 3.

Figure S18. ¹H NMR (500 MHz) spectrum of 4 in C₆D₆.

Figure S20. FT-IR spectrum of 4.

Figure S21. HRMS spectrum of 4.

Figure S22. ¹H NMR (500 MHz) spectrum of 5 in THF-*d*₈.

Figure S23. ¹³C NMR (126 MHz) spectrum of 5 in THF- d_8 .

Figure S24. HRMS spectrum of 5.