Electronic Supporting Information

Phosphorescent 2-phenylbenzothiazole Pt^{IV} biscyclometalated complexes with phenanthroline-based ligands

Andrea Corral-Zorzano, David Gómez de Segura, Elena Lalinde* and M^a Teresa Moreno*

Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain. E-mail: <u>elena.lalinde@unirioja.es</u>; <u>teresa.moreno@unirioja.es</u>

Contents:

Page

1 Experimental Section	S2
2 NMR Spectra	S9
3 Crystal Structures	S23
4 Photophysical Properties and Theoretical calculations	S28
5 Electrochemical Properties	S46

1. Experimental Section

General Comments. All reactions were carried out under an atmosphere of dry nitrogen, using standard Schlenk techniques. Solvents were obtained from a solvent purification system (M-BRAUN MS SPS-800). Elemental analyses were carried out with a EA FLASH 2000 (Thermo Fisher Scientific) microanalyzer. Mass spectra were recorded on a Microflex MALDI-TOF Bruker (MALDI) spectrometer operating in the linear and reflector modes using dithranol as the matrix. IR spectra were obtained on a Fourier Transform Perkin Elmer Spectrum UATR Two spectrophotometer, with the diamond crystal ATR attachment, which covers the region between 4000 and 450 cm⁻¹; data processing was carried out with Omnic. NMR spectra were recorded on a Bruker AVANCE ARX 400 spectrometer at 298 K. Chemical shifts are reported in parts per million (ppm) relative to external standards (SiMe₄ for ¹H and ¹³C{¹H} and CFCl₃ for $^{19}F{^{1}H}$ and all coupling constants are given in hertz (Hz). The UV-Vis absorption spectra were measured with a Hewlett Packard 8453 spectrophotometer. Excitation and emission spectra were obtained with a Shimazdu RF-60000 and Edimburg FLS 1000 spectrofluorimeters. Lifetime measurements were performed with Edimburg FLS 1000 spectrofluorimeter with µF2 pulse lamp (Power: 100 W, Fuse: 3.15 Amp A/S); the estimated uncertainty is $\pm 10\%$ or better. Quantum Yields were measured with Hamamatsu Absolute PL Quantum Yield Spectrometer; the estimated uncertainty is $\pm 5\%$ or better. Cyclic voltammograms were registered on a potenciostat Voltalab PST 050 with the CV cell consisting of a platinum disk as working electrode, a Pt wire counter electrode and an Ag/AgCl reference electrode. The measurements were carried out at 298 K under N₂ atmosphere, using degassed 5 x 10⁻⁴ M solutions of the complexes in dry CH₂Cl₂ and 0.1 M (NBu₄)PF₆ as the supporting electrolyte. The ferrocene/ferricinium couple served as the internal reference (+0.45 V vs Ag/AgCl). PhICl₂ was prepared according to the published procedure.¹

Complex [Pt(pbt)(Hpbt- κ N)Cl] (1) was synthesized following the published procedure² and was fully characterized. Elem. Anal. Calcd for C₂₆H₁₇N₂ClPtS₂ (652.09): C, 47.89; H, 2.63; N, 4.30; S, 9.83. Found: C, 47.58; H, 2.76; N, 4.78; S, 10.31. MALDI (+): *m/z* (%): 616.019 [M-Cl]⁺ (100), 651.962 [M]⁺ (26). IR (cm⁻¹): v(Pt-Cl) 332 (w), v(Pt-N) 436 (w). ¹H NMR (400 MHz, CDCl₃): δ 9.94 (d, ³*J*_{*H*-*H*} = 8.5, H⁷), 9.12 (d, ³*J*_{*H*-*H*} = 8.5, H⁷), 8.70 (d, 2H, ³*J*_{*H*-*H*} = 7.6, H⁸), 7.93 (d, ³*J*_{*H*-*H*} = 8.5, H⁴), 7.79 (m, H¹⁰), 7.53 – 7.60 (m, 5H,

H^{5,6,4'-6'}), 7.41 – 7.51 (m, 3H, H^{9',8}), 6.99 (t, ${}^{3}J_{H-H} = 7.5$, H⁹), 6.77 (t, ${}^{3}J_{H-H} = 7.5$, H¹⁰), 6.07 (d, ${}^{3}J_{H-H} = 8$, ${}^{3}J_{Pt-H} = 46.5$, H¹¹).

Synthesis of *cis*-[Pt(pbt)₂Cl₂] (2). To a yellow suspension of 1 (0.190 g, 0.292 mmol) in 30 mL of CH₂Cl₂ at 0 °C, PhICl₂ (0.105 g, 0.379 mmol) was added. After 6 h of stirring, the solvent was evaporated to dryness and the residue treated with Et₂O (15 mL) to obtain 2 as a pale-yellow solid (0.185 g, 93 %). Elem. Anal. Calcd for C₂₆H₁₆Cl₂N₂PtS₂(686,53): C, 45.49; H, 2.35; N, 4.08; S, 9.34. Found: C, 45.01; H, 2.47; N, 3.98; S, 8.94. MALDI (+): *m/z* (%) 651.088 [M-Cl]⁺ (100), 709.098 [M+Na]⁺ (18). IR (cm⁻¹): v(Pt-Cl) 332 (m), v(Pt-N) 461(m). ¹H NMR (400 MHz, DMSO-d⁶): δ 9.84 (d, ³J_{H-H} = 8.5, H⁷), 8.45 (d, ³J_{H-H} = 8.3, H⁴), 7.99 (d, ³J_{H-H} = 7.6, H⁸), 7.79 - 7.71 (m, 2H, H^{5,6}), 7.24 (t, ³J_{H-H} = 7.6, H⁹), 7.05 (t, ³J_{H-H} = 7.6, H¹⁰), 6.16 (d, ³J_{H-H} = 8.1, ³J_{Pt-H} = 31.4, H¹¹).

Synthesis of *cis*-[Pt(pbt)₂(OCOCF₃)₂] (3). A mixture of 2 (0.264 g, 0.384 mmol) and silver trifluoroacetate (0.180 g, 0.814 mmol) was refluxed in 40 mL of acetone. After 6 h, the suspension was filtered through celite and the filtrate was evaporated to dryness. The residue was dissolved in 2 mL of CHCl₃ and treated with *n*-hexane (10 mL) to obtain **3** as a pale-yellow solid (0.192 g, 59 %). Elem. Anal. Calcd for C₃₀H₁₆F₆N₂O₄PtS₂ (841,66): C, 42.81; H, 1.92; N, 3.33; S, 7.62. Found: C, 42.37; H, 1.87; N, 3.20; S, 7.65. MALDI (+): *m/z* (%) 616.039 [M-2CF₃CO₂]⁺ (68), 728.040 [M-CF₃CO₂]⁺ (100), 865.220 [M+Na]⁺ (20). IR (cm⁻¹): v(Pt-N) 451 (m), v(CO) 1699 (s). ¹H NMR (400 MHz, CDCl₃): δ 9.36 (d, ³*J*_{*H*-*H*} = 7.5, H⁹), 6.93 (t, ³*J*_{*H*-*H*} = 7.9, H¹⁰), 6.09 (d, ³*J*_{*H*-*H*} = 7.9, ³*J*_{*Pt*-*H*} = 32.5, H¹¹). ¹³C {¹H} NMR (100.6 MHz, CDCl₃): δ 179.6 (s, *J*_{*Pt*-*C*} = 90.6, C²), 168.8 (c, *J*_{*C*-*F*</sup> = 37, CO), 147.9 (s, *J*_{*Pt*-*C*} = 33.1, C^{7a}), 137.9 (s, *J*_{*Pt*-*C*} = 21.8, C¹³), 133.1 (s, *J*_{*Pt*-*C*} = 39.5, C¹⁰), 130.7 (s, *J*_{*Pt*-*C*} = 805, C¹²), 130.0 (s, *J*_{*Pt*-*C*} = 35.6, C^{3a}), 129.2 (s, C⁶), 128.4 (s, *J*_{*Pt*-*C* = 26.4, C¹¹), 127.4 (m, C^{8,9}), 126.8 (s, *J*_{*Pt*-*C*} = 26.8, C⁵), 122.7 (s, C⁴), 122.1 (s, C⁷), 116.4 (c, *J*_{*C*-*F*} = 292, CF₃). ¹⁹F {¹H} NMR (282.4 MHz, CDCl₃): δ -74.9 (s, ⁴*J*_{*Pt*-*F* = 4.6 Hz).}}}

Synthesis of $[Pt(pbt)_2(phen)](CF_3CO_2)_2$ (4-CF_3CO_2). 1,10-phenanthroline (0.022 g, 0.123 mmol) was added to a solution of 3 (0.102 g, 0.121 mmol) in 15 mL of CH₂Cl₂ and the solution was stirred for 3 h. Then, the solvent was removed to 2 mL and treated with *n*-hexane (10 mL) to obtain 4-CF₃CO₂ as a pale-orange solid (0.101 g, 77 %). Elem. Anal. Calcd for C₄₂H₂₄F₆N₄O₄PtS₂ (1021,87): C, 49.37; H, 2.37; N, 5.48; S, 6.27. Found: C, 49.89; H, 2.23; N, 4.98; S, 5.73. MALDI (+): *m/z* (%) 903.029 [M-CF₃CO₂]⁺ (32),

795.108 [M-2CF₃CO₂]⁺ (19), 728.014 [M-phen-CF₃CO₂]⁺ (55), 585.059 [M-pbt-2CF₃CO₂]⁺ (100). IR (cm⁻¹): v(Pt-N) 453 (m), v(CO) 1699 (s). ¹H NMR (400 MHz, CDCl₃): δ 9.36 (d, ${}^{3}J_{H-H} = 8.4$, H⁷), 9.17 (d, ${}^{3}J_{H-H} = 4.1$, H¹'), 8.33 (d, ${}^{3}J_{H-H} = 8.3$, H³'), 7.99 (d, ${}^{3}J_{H-H} = 7.9$, H⁴), 7.87 (s, H⁵'), 7.71 (m, 2H, H⁶,²'), 7.62 (m, 2H, H⁸, H⁵), 7.18 (t, ${}^{3}J_{H-H} = 7.4$, H⁹), 6.93 (t, ${}^{3}J_{H-H} = 7.7$, H¹⁰), 6.1 (d, ${}^{3}J_{H-H} = 7.9$, ${}^{3}J_{Pt-H} = 32.6$, H¹¹). ¹³C {¹H} NMR (100.6 MHz, CDCl₃): δ 179.5 (s, ${}^{3}J_{Pt-C} = 91.3$, C²), 168.8 (c, $J_{C-F} = 37$, CO), 150.6 (s, C¹'), 147.8 (s, ${}^{3}J_{Pt-C} = 32.9$, C^{7a}), 145.5 (s, C^{12'}), 137.8 (s, ${}^{3}J_{Pt-C} = 21.7$, C¹³), 136.6 (s, C^{3'}), 132.9 (s, ${}^{3}J_{Pt-C} = 39.5$, C¹⁰), 130.6 (s, C¹²), 129.9 (s, ${}^{3}J_{Pt-C} = 36.9$, C^{3a}), 129.1 (s, C⁶), 128.9 (s, C⁴), 128.3 (s, ${}^{3}J_{Pt-C} = 26.3$, C¹¹), 127.3 (s, C^{8,9}), 126.8 (s, C⁵), 126.7 (s, C^{5'}), 123.6 (s, C²), 122.6 (s, C⁴), 122.0 (s, C⁷), 116.4 (c, $J_{C-F} = 292$, CF₃). ¹⁹F {¹H} NMR (376.5 MHz, CDCl₃): δ -74.9 (s, -CF₃).

Synthesis of [Pt(pbt)₂(pyraphen)](CF₃CO₂)₂ (5-CF₃CO₂). This complex was obtained as a pale-orange solid (0.104 g, 75 %) following the same procedure as 5-CF₃CO₂ starting from **3** (0.102 g, 0.121 mmol) and pyrazino[2,3-f][1,10]-phenanthroline (0.029 g, 0.121 mmol). Elem. Anal. Calcd for C₄₄H₂₄F₆N₆O₄PtS₂ (1073,91): C, 49.21; H, 2.25; N, 7.83; S, 5.97. Found: C, 49.09; H, 2.20; N, 7.83; S, 5.48. MALDI (+): m/z (%) 847.135 [M- $2CF_{3}CO_{2}^{+}$ (55), 728.022 [M-pyraphen-CF₃CO₂]⁺ (69), 637.069 [M-pbt-2CF₃CO₂]⁺ (100), 571.029 [M-pyraphen-2CF₃CO₂]⁺ (55). IR (cm⁻¹): v(Pt-N) 442(m), v(CO) 1697 (s). ¹H NMR (400 MHz, CDCl₃): δ 9.50 (d, ³*J*_{*H*-*H*} = 8.3, H³), 9.35 (d, ³*J*_{*H*-*H*} = 8.7, H⁷), 9.30 $(d, {}^{3}J_{H-H} = 4.2, H^{1'}), 8.99 (s, H^{6'}), 7.98 (d, {}^{3}J_{H-H} = 8.1, H^{4}), 7.81 (dd, {}^{3}J_{H-H} = 8.1, 4.2, H^{2'}),$ 7.69 (t, ${}^{3}J_{H-H} = 7.6$, H⁶), 7.62 (m, H⁸, H⁵), 7.18 (t, ${}^{3}J_{H-H} = 7.4$, H⁹), 6.92 (t, ${}^{3}J_{H-H} = 7.8$, H¹⁰), 6.08 (d, ${}^{3}J_{H-H} = 8.8$, ${}^{3}J_{Pt-H} = 32.5$, H¹¹). ${}^{13}C\{{}^{1}H\}$ NMR (100.6 MHz, CDCl₃): δ 179.6 (s, ${}^{3}J_{Pt-C} = 90$, C²), 168.8 (c, $J_{C-F} = 37$, CO), 152.5 (s, C¹), 147.8 (s, ${}^{3}J_{Pt-C} = 30.9$, C^{7a}), 147.6 (s, C¹²), 144.7 (s, C⁶), 140.7 (s, C⁵), 137.9 (s, ${}^{3}J_{Pt-C} = 21.6$, C¹³), 133.4 (s, C³), 133.1 (s, ${}^{3}J_{Pt-C} = 39.1$, C¹⁰), 130.7 (s, ${}^{1}J_{Pt-C} \sim 780$, C¹²), 130.0 (s, ${}^{3}J_{Pt-C} = 36.5$, C^{3a}), 129.2 (s, C⁶), 128.4 (s, ${}^{3}J_{Pt-C} = 26.3$, C¹¹), 127.4 (m, C^{8,9}), 127.2 (s, C^{4'}), 126.8 (s, ${}^{3}J_{Pt-C} = 27.2$, C⁵), 124.2 (s, C²), 122.7 (s, C⁴), 122.1 (s, C⁷), 116.4 (c, J_{C-F} = 292, CF₃). ¹⁹F{¹H} NMR (376.5 MHz, CDCl₃): δ -74.9 (s, -CF₃).

Synthesis of $[Pt(pbt)_2(NH_2-phen)](CF_3CO_2)_2$ (6-CF₃CO₂). 5-amine-1,10phenanthroline (0.018 g, 0.093 mmol) dissolved in ⁱPrOH (10 mL) was added to a solution of **3** (0.076 g, 0.091 mmol) in 20 mL of CH₂Cl₂ and the mixture was refluxed for 48 h. Then, the suspension was evaporated to dryness and the residue was extracted with acetone (20 mL) and filtered through celite. The filtrate was evaporated to dryness and the oil was treated with $Et_2O(4 \times 5 \text{ mL})$ to obtain 6-CF₃CO₂ as a dark-orange solid (0.068) g, 73 %). Elem. Anal. Calcd for C₄₂H₂₅F₆N₅O₄PtS₂(1036,89): C, 48.65; H, 2.43; N, 6.75; S, 6.18. Found: C, 48.25; H, 2.72; N, 6.94; S, 5.90. MALDI (+): m/z (%) 810.109 [M- $2CF_{3}CO_{2}^{+}(100), 600.040 \text{ [M-pbt-}2CF_{3}CO_{2}^{+}(49). \text{ IR (cm^{-1}): v(Pt-N) 451 (m), v(CO)}$ 1687 (s). ¹H NMR (400 MHz, CD₃COCD₃): δ 9.98 (d, ³J_{H-H} = 8.4, H⁸), 8.78 (d, ³J_{H-H} = 5.3, ${}^{3}J_{Pt-H} = 15.1 \text{ H}^{10''}$), 8.64 (d, ${}^{3}J_{H-H} = 8.4, \text{ H}^{3''}$), 8.40 - 8.34 (m, 4H, H^{8,8',4,4'}), 8.29 (d, ${}^{3}J_{H-H} = 5.3, {}^{3}J_{Pt-H} = 15.4, \text{H}^{1}$, 8.19 (dd, ${}^{3}J_{H-H} = 8.4, {}^{3}J_{H-H} = 5.3, \text{H}^{9}$), 7.96 (dd, ${}^{3}J_{H-H} =$ 8.4, ${}^{3}J_{H-H} = 5.3$, H²''), 7.69 (s br, NH₂), 7.62 (2 t, ${}^{3}J_{H-H} = 7.4$, H^{9,9'}), 7.46 (2 t, ${}^{3}J_{H-H} = 7.4$, $H^{5,5'}$), 7.39 (s, $H^{6''}$), 7.34 (2 t, ${}^{3}J_{H-H} = 7.4$, $H^{10,10'}$), 7.17 (2 t, ${}^{3}J_{H-H} = 7.4$, $H^{6,6'}$), 6.68, 6.64 $(2d, {}^{3}J_{H-H} = 8, {}^{3}J_{Pt-H} = 28.8, H^{11,11'}), 6.06 (d, {}^{3}J_{H-H} = 8.6, H^{7}), 5.97 (d, {}^{3}J_{H-H} = 8.6, H^{7'}).$ ¹³C{¹H} NMR (100.6 MHz, CD₃COCD₃): δ 182.6, 182.3 (2 s, ²J_{Pt-C} = 75, C^{2,2}), 151.3 $(s, {}^{3}J_{Pt-C} = 18.2, C^{10"}), 148.6 (s, C^{12"}), 147.4 (s, C^{5"}), 146.0 (2 s, {}^{3}J_{Pt-C} = 34.8, C^{7a,7a"}), 145.3$ $(s, {}^{3}J_{Pt-C} = 17.4, C^{1"}), 141.0 (s, C^{8"}), 140.0 (s, C^{3"}), 139.4 (s, C^{11"}), 138.1, 137.9 (2 s, {}^{3}J_{Pt-C} = 17.4, C^{1"}), 138.1, 137.9$ $_{C}$ = 17.4, C^{3a, 3a'}), 137.3, 137.0 (2 s, C^{12, 12'}), 136.1 (2 s, ${}^{3}J_{Pt-C}$ = 34.8, C^{10,10'}), 136.0 (s, C^{4''}), 132.5, 132.3 (C^{13,13'}), 130.8, 130.7, 130.6, 130.5 (4 s, C^{11,11',6,6'}), 103.2 - 130.1 (4 s, $C^{9,9',8,8'}$), 128.8 (s, ${}^{3}J_{Pt-C} = 17.1, C^{2''}$), 128.5 (2 s, $C^{5,5'}$), 128 (s, ${}^{3}J_{Pt-C} = 17.1, C^{9''}$), 126.4 – 126.3 (2 s, C^{7",4,4"}), 117.3 (s, C^{7,7"}), 103.3 (s, C^{6"}). ¹⁹F{¹H} NMR (376.5 MHz, CD_3COCD_3): $\delta = -74.9$ (s, $-CF_3$).

Synthesis of [Pt(pbt)₂(phen)](PF₆)₂ (4-PF₆). A suspension of [Pt(pbt)₂Cl₂] (2) (0.1412 g, 0.205 mmol), 1,10-phenanthroline (0.0744 g, 0.411 mmol), TlPF₆ (0.8740 g, 0.823 mmol) and an excess of KClO₄ (0.8521 g, 6.15 mmol) were refluxed in 25 mL of 1,2-dichloroethane for 14 h. Then, the solvent was removed under reduced pressure, the residue treated with CH₂Cl₂ (80 mL) and filtered through celite. The filtrate was evaporated to dryness and treated consecutively with ⁱPrOH (2 mL) and Et₂O (10 mL) to obtain **4-PF**₆ as a pale pink solid (0.171 g, 77 %). Elem. Anal. Calcd for C₃₈H₂₄F₁₂N₄P₂PtS₂ (1085.77): C, 42.04; H, 2.23; N, 5.16; S, 5.91. Found: C 41.84; H 2.34; N 4.86; S 5.45. MALDI (+): *m/z* (%) 939.268 [M-PF₆]⁺ (46), 794.262 [M-2PF₆]⁺ (100), 614.030 [M-phen-2PF₆]⁺ (27), 584.096 [M-pbt-2PF₆]⁺ (34). IR (cm⁻¹): v(Pt-N) 453 (m), v(PF₆) 837, 557 (s). ¹H NMR (400 MHz, CD₃COCD₃): δ 9.27 (d, ³J_{H-H} = 8.4, H^{3'}), 8.95 (d, ³J_{H-H} = 5.3, ³J_{Pt-H} = 15.3, H^{1'}), 8.54 (s, H^{5'}), 8.39 (m, H⁸, H^{2'}, H⁴), 7.68 (t, ³J_{H-H} = 7.8, H⁹), 7.50 (t, ³J_{H-H} = 7.7, H⁵), 7.39 (t, ³J_{H-H} = 7.9, H¹⁰), 7.15 (t, ³J_{H-H} = 8.3, H⁶), 6.73 (d, ³J_{H-H} = 8.0, ³J_{Pt-H} = 28.7, H¹¹), 5.99 (d, ³J_{H-H} = 8.6, H⁷). ¹³C {¹H} NMR (100.6 MHz, CD₃COCD₃): δ 182.6 (s, ²J_{Pt-H} = 76.8, C²), 152.2 (s, ³J_{Pt-C} = 17.5, C^{1'}), 146.6 (s, C^{4'}),

146.0 (s, ${}^{3}J_{Pt-C} = 37.6$, C^{3a}), 144.3 (s, C^{3'}), 138.0 (s, ${}^{3}J_{Pt-C} = 17.8$, C¹³), 136.6 (s, C¹²), 136.4 (s, ${}^{3}J_{Pt-C} = 35$, C¹⁰), 133.7 (s, ${}^{3}J_{Pt-C} = 8.8$, C^{12'}), 132.3 (s, ${}^{3}J_{Pt-C} = 35.4$, C^{7a}), 130.8 (s, C¹¹), 130.7 (s, C⁶), 130.5 (s, C⁹), 130.4 (s, C^{5'}), 130.4 (s, C^{2'}), 130.0 (s, ${}^{3}J_{Pt-C} = 16.8$, C⁸), 128.7 (s, C⁵), 126.2 (s, C⁴), 117.3 (s, C⁷). ¹⁹F{¹H} NMR (376.5 MHz, CD₃COCD₃): δ -72.5 (d, ${}^{1}J_{F-P} = 709$, PF₆). ³¹P{¹H} NMR (161.9 MHz, CD₃COCD₃): δ -144.3 (sept, ${}^{1}J_{P-F} = 709$, PF₆).

Synthesis of $[Pt(pbt)_2(pyraphen)](PF_6)_2$ (5-PF₆). A suspension of $[Pt(pbt)_2Cl_2]$ (2) (0.1426 g, 0.208 mmol), pyrazino[2,3-f][1,10]-phenanthroline (0.0581 g, 0.249 mmol), $TlPF_6$ (0.1755 g, 0.498 mmol) and an excess KClO₄ (0.8646 g, 6.24 mmol) were refluxed in 10 mL of 1,2-dichloroethane for 24 h. Then, the solvent was removed, the residue treated with CH₃CN (20 mL) and filtered through celite. The filtrate was evaporated to dryness and treated with n-hexane (10 mL) to give 5-PF₆ as a white solid (0.180 g, 74 %). Elem. Anal. Calcd for C₄₀H₂₄F₁₂N₆P₂PtS₂ (1137.81): C, 42.23; H, 2.13; N, 7.39; S, 5.64. Found: C 42.59; H 2.61; N 7.06; S 5.70. MALDI (+): *m/z* (%) 991.137 [M-PF₆]⁺ (35), 846.135 $[M-2PF_6]^+$ (100), 613.914 $[M-pyraphen-2PF_6]^+$ (19). IR (cm⁻¹): v(Pt-N) 487 (m), v(PF₆) 839, 555 (s). ¹H NMR (400 MHz, CD₃COCD₃): δ 10.09 (d, ³*J*_{*H*-*H*} = 8.3, ${}^{3}J_{Pt-H} = 24.3, \text{H}^{3'}$), 9.39 (s, H^{6'}), 9.07 (d, ${}^{3}J_{H-H} = 5.4, {}^{3}J_{Pt-H} = 20.1, \text{H}^{1'}$), 8.58 (dd, ${}^{3}J_{H-H} =$ 8.6, ${}^{4}J_{H-H} = 3.2, H^{2}$), 8.41 (d, ${}^{3}J_{H-H} = 7.8, H^{8}$), 8.33 (d, ${}^{3}J_{H-H} = 8.4, H^{4}$), 7.70 (t, ${}^{3}J_{H-H} = 3.4, H^{4}$), 7.70 (t, 7.8, H⁹), 7.48 (t, ${}^{3}J_{H-H} = 7.9$, H⁵), 7.40 (t, ${}^{3}J_{H-H} = 8.4$, H¹⁰), 7.15 (t, ${}^{3}J_{H-H} = 8.1$, H⁶), 6.71 (d, ${}^{3}J_{H-H} = 8.2$, ${}^{3}J_{Pt-H} = 28.3$, H¹¹), 6.16 (d, ${}^{3}J_{H-H} = 8.6$, H⁷). ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CD₃COCD₃): δ 182.7 (s, C², pbt), 153.2 (s, ${}^{3}J_{Pt-C} = 17.3$, C¹), 148.9 (s, C⁶), 148.2 (s, ${}^{3}J_{Pt-H} = 5.1, C^{12'}$, 146.1 (s, ${}^{3}J_{Pt-H} = 36.9, C^{7a}$), 140.7 (s, C^{5'}), 140.4 (s, ${}^{3}J_{Pt-H} = 30.3, C^{3'}$), 138.0 (s, 17.9, C¹³), 136.5 (s, ${}^{4}J_{Pt-H} = 33.8$, C¹⁰), 133.1 (s, C⁴), 132.4 (s, tentatively assigned to C¹²), 131.4 (s, ${}^{3}J_{Pt-H} = 15.8$, C^{3a}), 130.9 (s, C¹¹), 130.9 (s, ${}^{3}J_{Pt-H} = 27.2$, C^{2'}), 130.6, 130.7 (s, C^{6,9}), 129.2 (s, ${}^{3}J_{Pt-H} = 48$, C⁸), 128.7 (s, C⁵), 126.3 (s, C⁴), 117.8 (s, C⁷). ¹⁹F{¹H} NMR (376.5 MHz, CD₃COCD₃): δ -72.6 (d, ${}^{1}J_{F-P} = 709$, PF₆). ³¹P{¹H} NMR (161.9 MHz, CD₃COCD₃): δ -145.3 (sept, ${}^{I}J_{P-F}$ =709, PF₆).

Synthesis of $[Pt(pbt)_2(NH_2-phen)](PF_6)_2$ (6-PF₆). This complex was obtained as an orange solid (0.1570 g, 73 %) following the same procedure as 4-PF₆, starting of 2 (0.1327 g, 0.195 mmol), 5-amine-1,10-phenanthroline (0.0757 g, 0.388 mmol), TlPF₆ (0.2701 g, 0.773 mmol) and an excess KClO₄ (0.8105 g, 5.85 mmol). Elem. Anal. Calcd $C_{38}H_{25}F_{12}N_5P_2PtS_2$ (1100.79): C, 41.46; H, 2.29; N, 6.36; S, 5.82. Found: C 41,42; H 2,51; N 6,21; S 5.71. MALDI (+): m/z (%) 955.958 [M-PF₆]⁺ (58), 810.049 [M-2PF₆]⁺

(100), 615.053 [M- NH₂-phen-2PF₆]⁺ (6), 600.123 [M-pbt-2PF₆]⁺ (20). IR (cm⁻¹): v(Pt-N) 469 (m), v(PF₆) 841, 557 (s). ¹H NMR (400 MHz, CD₃COCD₃): δ 9.38 (d, ³J_{H-H} = 8.6, H⁸"), 8.91 (d, ³J_{H-H} = 5.2, ³J_{Pt-H} = 15.1, H¹⁰"), 8.77 (d, ³J_{H-H} = 8.5, H³"), 8.44 (d, ³J_{H-H} = 5.2, ³J_{Pt-H} = 15.7, H¹"), 8.35 (m, 5H, H⁹", H^{8,8}", H^{4,4}"), 8.06 (dd, ³J_{H-H} = 8.3, ⁴J_{H-H} = 3.3, H²"), 7.66 (2t, ³J_{H-H} = 7.6, H^{9,9}"), 7.53 (t, ³J_{H-H} = 8.0, H^{5,5}"), 7.35 (m, H⁶",^{10,10"}), 7.22, 7.19 (2t, ³J_{H-H} = 8.3, H^{6,6}"), 6.76 (s, NH₂), 6.73, 6.68 (2 d, ³J_{H-H} = 8.1, ³J_{Pt-H} = 27.8, H^{11,11"}), 6.09 (d, ³J_{H-H} = 8.6, H⁷), 6.02 (d, ³J_{H-H} = 8.6, H⁷). ¹³C {¹H} NMR (100.6 MHz, δ , CD₃COCD₃): δ 182.6 (s, C^{2,2"}), 151.75 (s, ³J_{Pt-C} = 18.2, C^{1"}), 147.6 (s, C^{5"}), 147.1 (s, C^{11"}), 146.5 (s, ³J_{Pt-C} = 17.6 C^{10"}), 146.1 (2s, ³J_{Pt-C} = 39.4, C^{7a,a'}), 140.5 (s, C^{8"}), 140.2 (s, C^{12"}), 138.9 (s, C^{3"}), 138.0, 137.9 (C^{13,13"}), 137.2, 136.8 (tentatively C^{12,12"}), 136.4, 136.2 (³J_{Pt-C} ~ 35 C^{10,10"}), 135.8 (s, C^{7"}), 132.3, 132.4 (C^{3a,a'}), 130.9-130,3 (8s, C^{6,6;,8,8',9,9;1,11"}), 129.2 (s, ³J_{Pt-C} = 17.6 C^{2"}), 128.7 (2 s, C^{5,5"}), 128.4(s, ³J_{Pt-C} = 17.6 C^{9"}), 126.2 (3 s, C^{4",4,4'}), 117.4, 117.5 (d, C^{7,7"}), 104.5 (s, C^{6"}). ¹⁹F {¹H} NMR (376.5 MHz, CD₃COCD₃): δ -72.5 (d, ¹J_{Pt-F} = 709, PF₆). ³¹P {¹H} NMR (161.9 MHz, CD₃COCD₃): δ -144.3 (sept, ¹J_{Pt-F} =709, PF₆).

X-ray structure determinations. Yellow (2), white (3) and yellow (4-PF₆) crystals were obtained by slow diffusion of ^{*i*}PrOH into a solution of 2 in CHCl₃, of Et₂O into a solution of 3 in CH₂Cl₂ and of *n*-hexane into a solution of (4-PF₆) in acetone at room temperature. X-ray intensity data were collected using Molybdenum graphite monochromatic (Mo-K_{α}) radiation with a Bruker APEX-II diffractometer at 173 K for 2 and at 298 K for 3 and 4-PF₆ using the APEX-II software. Structures were solved by Intrinsic Phasing using SHELXT³ with the WinGX graphical user interface.⁴ Multi-scan absorption corrections were applied to all the data sets and refined by full-matrix least squares on *F*² with SHELXL.⁵ Hydrogen atoms were positioned geometrically, with isotropic parameters $U_{iso} = 1.2 U_{eq}$ (parent atom) for aromatic hydrogens. These complexes crystallized in a centrosymmetric group, so must be aquiral. Thus, both configurations (Λ and Δ) in a 50:50 ratio were found in the unit cell.

Theoretical Calculations. Calculations were carried out with the Gaussian 16 package⁶ for **2**, **3**, $4^{2+}-6^{2+}$ using Becke's three-parameter functional combined with Lee-Yang-Parr's correlation functional (B3LYP).⁷ Optimizations on the singlet state (S₀) were performed using as a starting point the molecular geometry obtained through X-ray diffraction analysis for complex **2** and **3** and simulated structures

for $4^{2+}-6^{2+}$. No negative frequency was found in the vibrational frequency analysis of the final equilibrium geometries. The basis set used was the LanL2DZ effective core potential for Pt and 6-31G(d,p) for the ligand atoms.⁸ DFT and TD-DFT calculations were carried out using the polarized continuum model approach⁹ (PCM) implemented in the Gaussian 16 software, in the presence of CH₂Cl₂. The results were visualized with GaussView 6. Overlap populations between molecular fragments were calculated using the GaussSum 3.0 software.¹⁰

References

(1) Obeid, N.; Skulski, L. One-Pot Procedures for Preparing (Dichloroiodo)arenes from Arenes and Diiodine, with Chromium(VI) Oxide as the Oxidant. *Molecules* **2001**, *6*, 869-874.

(2) Zhou, Y.; Jia, J.; Cai, L.; Huang, Y. Protein staining agents from low toxic platinum(II) complexes with bidentate ligands. *Dalton Trans.* **2018**, *47*, 693-699.

(3) Sheldrick, G. M. SHELXT – Integrated space-group and crystal structure determination. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2015**, *71*, 3-8.

(4) Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. *Appl. Crystallogr.* **1999**, *32*, 837-838.

(5) Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C 2015, 71, 3-8.

(6) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision A.03, Inc., Wallingford CT, 2016.

(7) (a) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, *98*, 5648-5652. (b) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A* **1988**, *38*, 3098-3100.

(8) Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. *J. Chem. Phys.* **1985**, *82*, 284-298.

(9) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A **1998**, 102, 1995-2001.

(10) O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. cclib: A library for packageindependent computational chemistry algorithms. *J. Comput. Chem.* **2008**, *29*, 839-845.

2. NMR spectra

Figure S1. ¹H NMR spectra of 2 in DMSO-d⁶ at 298 K

Figure S2. NMR spectra of 3 in CDCl₃ at 298 K a) ${}^{1}H$, b) ${}^{13}C{}^{1}H$, c) ${}^{19}F{}^{1}H$

Figure S3. NMR spectra of $4-CF_3CO_2$ in CDCl₃ at 298 K a) ¹H, b) ¹³C{¹H}, c) ¹⁹F{¹H}

9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 f1 (ppm)

Figure S4. NMR spectra of $5-CF_3CO_2$ in CDCl₃ at 298 K a) ¹H, b) ¹³C{¹H}, c) ¹⁹F{¹H}

S15

And the second s

C)

Figure S5. NMR spectra of $6-CF_3CO_2$ in CD_3COCD_3 at 298 K a) ¹H, b) ¹³C{¹H}, c) ¹⁹F{¹H}

71.1 -71.2 -71.3 -71.4 -71.5 -71.6 -71.7 -71.8 -71.9 -72.0 -72.1 -72.2 -72.3 -72.4 -72.5 -72.6 -72.7 -72.8 -72.9 -73.0 -73.1 -73.2 -73.3 -73.4 -73.5 -73.6 f1 (ppm)

Figure S6. NMR spectra of 4-PF₆ in CD₃COCD₃ at 298 K a) ¹H, b) $^{13}C\{^{1}H\}$, c) $^{19}F\{^{1}H\}$, d) $^{31}P\{^{1}H\}$

S19

 $^{31}P\{^1H\}$

Figure S8. NMR spectra of 6-PF₆ in CD₃COCD₃ at 298 K a) ¹H, b) ${}^{13}C{}^{1}H$, c) ${}^{19}F{}^{1}H$, d) ${}^{31}P{}^{1}H$

3. X-Ray Diffraction Studies

	2	3	4-PF ₆
Empirical formula	$C_{26}H_{16}Cl_2N_2PtS_2$	$C_{30}H_{16}F_{6}N_{2}O_{4}PtS_{2} \\$	$C_{38}H_{24}F_{12}N_4P_2PtS_2$
Molecular weight	686.52	841.66	1085 76
Т (К)	100(2) K	300(2) K	1005.76 100(2) K
Wavelength (Å)	0.71076	0.71076	0.71073
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	Pbca	$P 2_1/c$	Pbcn
Crystal size (mm)	0.119 x 0.070 x 0.053	0.290 x 0.273 x 0.064	0.450 x 0.115 x 0.075
a (Å)	12.5836(6)	19.070(4)	14.0515(15)
b (Å)	14.5133(7)	17.181(4)	15.0725(15)
c (Å)	24.9740(11)	9.1111(19)	17.2359(19)
a (°)	90	90	90
β (°)	90	91.00	90
γ (°)	90	90	90
V (Å ³)	4561.0(4)	2984.8(11)	3650.4(7)
Z	8	4	4
Density (calculated) (Mg/cm³)	2.000	1.873	1.976
Absorption coefficient (mm ⁻¹)	6.589	4.918	4.146
F(000)	2640	1624	2112
 θ range for data collection (°) 	2.693 to 26.373	3.192 to 28.043	3.085 to 25.677
	-15<=h<=15,	-25<=h<=25,	17<=h<=17,
Index ranges	-18<=k<=18, -31<=l<=31	-22<=k<=22, -11<=l<=11	-18<=k<=18, -20<=l<=20
Reflections collected	257759	139304	119953
Independent reflections	4655 [R(int) = 0.0311]	7077 [R(int) = 0.0393]	2715 [R(int) = 0.0278]
Data / restraints / parameters	4655 / 0 / 298	7077 / 0 / 406	2715 / 0 / 267
Goodness-of-fit on F2	1.099	1.113	1.249
Final R indices [I>2σ(I)] ^[a]	R1 = 0.0150, wR2 = 0.0347	R1 = 0.0246, wR2 = 0.0540	R1 = 0.0278, wR2 = 0.0602
.	D1 = 0.015(- D2)	D1 = 0.0214 = D2	R1 = 0.0295, wR2 =
R indices (all data) ^[a]	R1 = 0.0156, WR2 = 0.0351	R1 = 0.0314, WR2 = 0.0585	0.0605
Largest diff. peak and hole (e Å ⁻³) (dmin/dmax) $a = \Sigma(F = F)$	2.048 and -0.899	0.725 and -0.804	1.342 and -0.667 f fit = $\sum [w(E^2 - E^2)^2]/(N)$.

Table S1. X-ray Crystallographic Data for 2, 3 and $4\text{-}PF_6$

^[a] $R1 = \Sigma(|F_o| - |F_c|)/\Sigma |F_o|$; $wR2 = [\Sigma w(F_o^2 - F_c^2)^2 / \Sigma wF_o^2]^{1/2}$; goodness of fit = $\{\Sigma [w(F_o^2 - F_c^2)^2 / (N_{obs} - N_{param})\}^{1/2}$; $w = [\sigma^2(F_o) + (g_1P)^2 + g_2P]^{-1}$; $P = [max(F_o^2; 0 + 2F_c^2]/3$.

2						
Distanc	es (Å)	Angles	S (°)			
Pt(1)-C(1)	2.025 (2)	C(1)-Pt(1)-N(2)	91.11 (8)			
Pt(1)-N(1)	2.0491 (2)	C(1)-Pt(1)-N(1)	81.14 (9)			
Pt(1)-C(14)	2.022 (2)	C(1)-Pt(1)-C(14)	90.80 (9)			
Pt(1)-N(2)	2.0386 (2)	C(14)-Pt(1)-N(2)	81.00 (9)			
Pt(1)-Cl(1)	2.4439 (6)	C(14)-Pt(1)-N(1)	93.76 (9)			
Pt(1)-Cl(2)	2.4418 (6)	C(1)-Pt(1)-Cl(2)	90.91 (7)			
		N(2)-Pt(1)-Cl(2)	102.52 (6)			
		N(1)-Pt(1)-Cl(2)	82.99 (6)			
		C(14)-Pt(1)-Cl(1)	87.94 (6)			
		N(2)-Pt(1)-Cl(1)	85.53 (6)			
		N(1)-Pt(1)-Cl(1)	102.14 (6)			
		Cl(2)-Pt(1)-Cl(1)	90.55 (2)			
	3	• • • • • • • • • • • • •				
Distanc	es (Å)	Angles	5 (°)			
Pt(1)-C(1)	2.013 (3)	C(1)-Pt(1)-N(2)	92.05 (12)			
Pt(1)-N(1)	2.031 (2)	C(1)-Pt(1)-N(1)	81.83 (12)			
Pt(1)-C(14)	2.031 (4)	C(1)-Pt(1)-C(14)	87.11 (13)			
Pt(1)-N(2)	2.029 (3)	N(2)-Pt(1)-C(14)	80.57 (15)			
Pt(1)-O(1)	2.133 (2)	N(1)-Pt(1)-C(14)	95.25 (13)			
Pt(1)-O(3)	2.158 (3)	N(2)-Pt(1)-O(1)	92.04 (9)			
		N(1)-Pt(1)-O(1)	94.04(10)			
		C(14)-Pt(1)-O(1)	92.92(12)			
		C(1)-Pt(1)-O(3)	98.25(12)			
		N(2)-Pt(1)-O(3)	98.11(11)			
		N(1)-Pt(1)-O(3)	86.60(10)			
		O(1)-Pt(1)-O(3)	81.81(10)			
	4-P]	F ₆				
Distanc	es (Å)	Angles	(°)			
Pt(1)-C(1)	2.021(5)	C(1)-Pt(1)-N(2)	90.94(18)			
Pt(1)-N(1)	2.055(4)	C(1)-Pt(1)-N(1)	81.31(18)			
Pt(1)-C(14)	2.021(5)	C(1)-Pt(1)-C(14)	85.8(3)			
Pt(1)-N(2)	2.055(4)	C(14)-Pt(1)-N(2)	81.31(18)			
Pt(1)-N(3)	2.126(4)	C(14)-Pt(1)-N(1)	90.94(18)			
Pt(1)-N(4)	2.126(4)	C(14)-Pt(1)-N(4)	97.64(17)			
		N(1)-Pt(1)-N(4)	97.66(15)			
		N(2)-Pt(1)-N(4)	90.51(15)			
		C(1)-Pt(1)-N(3)	97.64(17)			
		N(1)-Pt(1)-N(3)	90.51(15)			
		N(2)-Pt(1)-N(3)	97.66(15)			
		N(4)-Pt(1)-N(3)	78.9(2)			

Table S2. Selected distances (Å) and angles (°) for complexes 2, 3 and $4-PF_6$

Figure S9. Crystal Packing of 2 showing some intermolecular contacts

Figure S10. Crystal Packing of 3 showing some intermolecular contacts

Figure S11. Crystal Packing of 4-PF₆ showing some intermolecular contacts

Table S3. UV-Vis absorption data in CH ₂ Cl ₂ solution (5 x 10 ⁻⁵ M)				
Complex	λ /nm (ε x 10 ⁻³ / mol ⁻¹ ·L·cm ⁻¹)			
[Pt(pbt)Cl(Hpbt- <i>ĸN</i>)]	254 (23.74), 270 (21.05), 306 (21.40), 335 (12.69), 367			
1	(4.02), 407 (2.87), 425 (2.62)			
$\frac{[Pt(pbt)_2Cl_2]}{2}$	258 (19.52), 316 (20.57), 347 (18.33), 363 (13.55)			
$[Pt(pbt)_2(OCOCF_3)_2]$ 3	256 (17.95), 322 (20.96), 346 (19.31), 366 (11.52)			
$[Pt(pbt)_2(phen)](CF_3CO_2)_2$	264 (31.45), 266 (31.10), 292 (15.62), 321 (18.29), 349			
4-CF ₃ CO ₂	(17.95), 366 (11.10)			
$[Pt(pbt)_2(phen)](PF_6)_2$ 4-PF ₆	261 (37.45), 304 (17.66), 345 (12.80), 367 (2.35)			
$[Pt(pbt)_2(pyraphen)](CF_3CO_2)_2$ 5-CF_3CO_2	257 (66.03), 307 (27.40), 341 (25.42), 367 (13.22)			
[Pt(pbt) ₂ (pyraphen)](PF ₆) ₂	270 (20.17), 277 (19.50), 304 (7.76), 350 (7.64), 367			
5-PF ₆	(4.80)			
$[Pt(pbt)_2(NH_2-phen)](CF_3CO_2)_2$ 6-CF_3CO_2	252 (33.25), 266 (27.24), 276 (21.58), 310 (30.68), 348 (24.11), 366 (18.02), 400 (4.85), 480 (1.10)			
$[Pt(pbt)_2(NH_2-phen)](PF_6)_2$ 6-PF_6	250 (18.15), 266 (15.64), 306 (21.21), 350 (14.76), 367 (10.59), 389 (2.20), 443 (0.83)			

4. Photophysical Properties and Theoretical Calculations

Figure S12. UV-Vis absorption spectra for complex 1 in CH_2Cl_2 solution (5 x 10⁻⁵ M) at 298 K

2							
S)	T	1				
E C		ť.					
	X-Ray	S_0	T_1				
Pt(1)-C(1)	2.025 (2)	2.0385	2.0385				
Pt(1)-N(1)	2.0491 (2)	2.0882	2.0882				
Pt(1)-C(14)	2.022 (2)	2.0384	2.0384				
Pt(1)-N(2)	2.0386 (2)	2.0883	2.0883				
Pt(1)-Cl(1)	2.4439 (6)	2.5440	2.5440				
Pt(1)-Cl(2)	2.4418 (6)	2.5452	2.5452				
C(1)-Pt(1)-N(2)	91.11 (8)	93.6235	93.5908				
C(1)-Pt(1)-N(1)	81.14 (9)	80.4590	80.4567				
C(1)-Pt(1)-C(14)	90.80 (9)	89.9957	89.9956				
C(14)-Pt(1)-N(2)	81.00 (9)	80.4567	80.4590				
C(14)-Pt(1)-N(1)	93.76 (9)	93.5908	93.6235				
C(1)-Pt(1)-Cl(2)	90.91 (7)	89.2451	89.5442				
N(2)-Pt(1)-Cl(2)	102.52 (6)	102.0679	102.1023				
N(1)-Pt(1)-Cl(2)	82.99 (6)	83.8360	83.7980				
C(14)-Pt(1)-Cl(1)	87.94 (6)	89.5443	89.2451				
N(2)-Pt(1)-Cl(1)	85.53 (6)	83.7980	83.8360				
N(1)-Pt(1)-Cl(1)	102.14 (6)	102.1023	102.0679				
Cl(2)-Pt(1)-Cl(1)	90.55 (2)	91.3237	91.3237				

Table S4. DFT optimized geometries for ground state and triplet state (in CH₂Cl₂)

3						
Se)	T	!			
			3++>			
	X-Ray	S_0	T_1			
Pt(1)-C(1)	2.013 (3)	2.0297	2.0261			
Pt(1)-N(1)	2.031 (2)	2.0780	2.0863			
Pt(1)-C(14)	2.031 (4)	2.0297	2.0346			
Pt(1)-N(2)	2.029 (3)	2.0779	2.0569			
Pt(1)-O(1)	2.133 (2)	2.1956	2.2087			
Pt(1)-O(3)	2.158 (3)	2.1956	2.2188			
C(1)-Pt(1)-N(2)	92.05 (12)	93.6317	93.9035			
C(1)-Pt(1)-N(1)	81.83 (12)	80.7604	80.6942			
C(1)-Pt(1)-C(14)	87.11 (13)	88.0882	87.8366			
N(2)-Pt(1)-C(14)	80.57 (15)	80.7596	81.6712			
N(1)-Pt(1)-C(14)	95.25 (13)	93.6355	93.7166			
N(2)-Pt(1)-O(1)	92.04 (9)	90.3444	90.3743			
N(1)-Pt(1)-O(1)	94.04(10)	95.5724	95.2599			
C(14)-Pt(1)-O(1)	92.92(12)	95.7405	95.7584			
C(1)-Pt(1)-O(3)	98.25(12)	95.7442	96.0490			
N(2)-Pt(1)-O(3)	98.11(11)	95.5733	95.5733			
N(1)-Pt(1)-O(3)	86.60(10)	90.3410	90.4192			
O(1)-Pt(1)-O(3)	81.81(10)	80.6439	80.6080			

4 ²⁺						
Se)	T	1			
	X-Ray	S_0	T_{l}			
Pt(1)-C(1)	2.021(5)	2.0372	2.0374			
Pt(1)-N(1)	2.055(4)	2.0899	2.0882			
Pt(1)-C(14)	2.021(5)	2.0377	2.0381			
Pt(1)-N(2)	2.055(4)	2.0884	2.0871			
Pt(1)-N(3)	2.126(4)	2.2392	2.2384			
Pt(1)-N(4)	2.126(4)	2.2374	2.2373			
C(1)-Pt(1)-N(2)	90.94(18)	93.7396	93.7900			
C(1)-Pt(1)-N(1)	81.31(18)	80.5000	80.5300			
C(1)-Pt(1)-C(14)	85.8(3)	88.9888	88.7632			
C(14)-Pt(1)-N(2)	81.31(18)	80.5224	80.5380			
C(14)-Pt(1)-N(1)	90.94(18)	93.7475	93.8107			
C(14)-Pt(1)-N(4)	97.64(17)	-	-			
N(1)-Pt(1)-N(4)	97.66(15)	85.2987	85.4532			
N(2)-Pt(1)-N(4)	90.51(15)	101.0633	100.8311			
C(1)-Pt(1)-N(3)	97.64(17)	-	-			
N(1)-Pt(1)-N(3)	90.51(15)	100.8999	100.6109			
N(2)-Pt(1)-N(3)	97.66(15)	85.4947	85.7075			
N(4)-Pt(1)-N(3)	78.9(2)	75.6670	75.0290			

5^{2+}						
Se)	T_{I}				
	300		50			
	X-Ray	S_0	T_{I}			
Pt(1)-C(1)		2.0372	2.0377			
Pt(1)-N(1)		2.0895	2.0897			
Pt(1)-C(14)		2.0372	2.0377			
Pt(1)-N(2)		2.0895	2.0897			
Pt(1)-N(3)		2.2392	2.2291			
Pt(1)-N(4)		2.2392	2.2291			
C(1)-Pt(1)-N(2)		93.7024	93.6798			
C(1)-Pt(1)-N(1)		80.5207	80.4967			
C(1)-Pt(1)-C(14)		88.7520	88.8522			
C(14)-Pt(1)-N(2)		80.5208	80.4967			
C(14)-Pt(1)-N(1)		93.7017	93.6790			
C(14)-Pt(1)-N(4)		-	_			
N(1)-Pt(1)-N(4)		85.3883	85.4404			
N(2)-Pt(1)-N(4)		101.0262	101.0133			
C(1)-Pt(1)-N(3)		-	-			
N(1)-Pt(1)-N(3)		101.0264	101.0126			
N(2)-Pt(1)-N(3)		85.3876	85.4404			
N(4)-Pt(1)-N(3)		75.3755	75.7815			

6 ²⁺						
Se)	T_{I}				
	X-Rav	So	T_{I}			
Pt(1)-C(1)		2.0386	2.0370			
Pt(1)-N(1)		2.0905	2.0905			
Pt(1)-C(14)		2.0392	2.0381			
Pt(1)-N(2)		2.0889	2.0756			
Pt(1)-N(3)		2.2364	2.2507			
Pt(1)-N(4)		2.2259	2.2369			
C(1)-Pt(1)-N(2)		93.8141	94.2081			
C(1)-Pt(1)-N(1)		80.4658	80.4526			
C(1)-Pt(1)-C(14)		88.6261	88.7312			
C(14)-Pt(1)-N(2)		80.4936	80.3255			
C(14)-Pt(1)-N(1)		93.8681	93.6146			
C(14)-Pt(1)-N(4)		-	-			
N(1)-Pt(1)-N(4)		85.4853	85.5137			
N(2)-Pt(1)-N(4)		100.7751	100.2110			
C(1)-Pt(1)-N(3)		-	-			
N(1)-Pt(1)-N(3)		100.9519	101.0276			
N(2)-Pt(1)-N(3)		83.3482	84.7959			
N(4)-Pt(1)-N(3)		75.7489	75.3589			

Figure S13. UV-Vis absorption experimental spectra (orange) and calculated transitions (blue) in CH_2Cl_2 for a) 2, b) 3, c) 4-CF₃CO₂, d) 5-CF₃CO₂, e) 6-CF₃CO₂, f) 4-PF₆, g) 5-PF₆ and h) 6-PF₆

Figure S14. Selected frontier Molecular Orbitals for a) 2, b) 3, c) 4^{2+} , d) 5^{2+} and e) 6^{2+} in the ground state.

Complex	State	λ/nm	f	Transition (% Contribution)	Character
	T ₁	468.7	-	H-1→L+1 (38%), HOMO→LUMO (45%)	IL
	T ₂	468.6	-	H-1→LUMO (45%), HOMO→L+1 (39%)	IL
	T ₃	386.3	-	H-7→L+2 (12%), HOMO→L+2 (60%)	LMCT/IL/L'MCT
	S ₁	357.4	0.0039	HOMO→L+1 (28%). HOMO→L+2 (61%)	IL/LMCT
	S ₂	350.2	0.235	HOMO→LUMO (87%)	IL
	S ₃	350.0	0.0282	H-1→L+1 (43%). H-1→L+2 (48%)	IL/LMCT
	S ₄	344.9	0.0612	H-1→LUMO (90%)	IL
	S_5	338.5	0.0479	HOMO→L+1 (65%). HOMO→L+2 (26%)	IL/LMCT
2	S ₆	333.7	0.174	H-1→L+1 (43%). H-1→L+2 (46%)	IL/LMCT
	S_7	328.4	0.014	H-4→L+1 (17%). H-4→L+2 (14%). H-3→L+1 (19%). H-3→L+2 (15%)	IL/L'LCT/L'MCT/ LMCT
	S ₈	326.2	0.012	H-4→LUMO (20%). H-3→LUMO (48%)	IL/L'LCT
	S9	324.7	0.002	H-7 \rightarrow L+1 (11%). H-7 \rightarrow L+2 (14%). H-6 \rightarrow LUMO (15%). H-5 \rightarrow L+1 (27%). H-5 \rightarrow L+2 (25%)	IL/L'LCT/L'MCT
	S ₁₀	322.7	0.049	H-7→LUMO (12%). H-6→L+1 (29%). H-6→L+2 (19%). H- 5→LUMO (15%)	IL/L'LCT/L'MCT/ MLCT
	S ₁₁	320.5	0.001	H-7→L+1 (10%). H-7→L+2 (14%). H-3→LUMO (22%). H-2→L+1 (27%)	IL/L'LCT/L'MCT
	S ₁₂	319.0	0.119	H-3→L+1 (14%). H-2→LUMO (71%)	IL/L'LCT
	T_1	469.7	-	H-1→L+1 (40%). HOMO→LUMO (49%)	IL
	T_2	469.2	-	H-1→LUMO (49%). HOMO→L+1 (41%)	IL
	T ₃	378.3	-	H-3→L+1 (35%). H-2→LUMO (46%)	IL
	S_1	351.8	0.2257	HOMO→LUMO (92%)	IL
	S_2	349.6	0.0141	HOMO→L+1 (38%). HOMO→L+2 (54%)	IL/LMCT
3	S ₃	343.2	0.0904	H-1→LUMO (96%)	IL
	S ₄	341.2	0.0897	H-1→L+1 (53%). H-1→L+2 (43%)	IL/LMCT
	S ₅	335.6	0.0492	HOMO→L+1 (56%). HOMO→L+2 (37%)	IL/LMCT
	S ₆	327.7	0.1939	H-1→L+1 (43%). H-1→L+2 (51%)	IL/LMCT
	S_7	320.7	0.0434	H-4→LUMO (15%). H-3→L+1 (18%). H-2→LUMO (54%)	IL/L'LCT
	S ₈	320.4	0.0286	H-5→LUMO (14%). H-3→LUMO (59%). H-2→L+1 (13%)	IL/L'LCT

Table S5. Selected vertical excitation energies singlets (S_0) and first triplets computed by TD-DFT/SCRF (CH₂Cl₂) with the orbitals involved.

	S ₉	314.1	0.1114	H-5→L+1 (10%). H-4→LUMO (60%). H-2→LUMO (20%)	IL/L'LCT
	S ₁₀	312.6	0.0229	H-5 \rightarrow LUMO (47%). H-4 \rightarrow L+1 (24%) H-3 \rightarrow LUMO (16%)	IL/L'LCT
	S ₁₁	310.5	0.0042	$\begin{array}{c} (2170).112^{-1}DOINO(1000)\\ \hline H-4 \rightarrow L+1 (12\%). H-4 \rightarrow L+2 (15\%).\\ \hline H-2 \rightarrow L+1 (33\%) H-2 \rightarrow L+2 (18\%) \end{array}$	IL/L'LCT/LMCT/
	S ₁₂	309.5	0.0119	H_{-5} →L+1 (12%). H_{-3} →L+1 (46%). H-3→L+2 (11%). H_{-2} →LUMO (18%)	IL/L'LCT/LMCT
	T ₁	470.9	-	H-1 \rightarrow L+1 (32%). H-1 \rightarrow L+4 (10%). HOMO \rightarrow L+1 (14%). HOMO \rightarrow L+2 (29%)	IL/LL'CT/LLCT
	T ₂	470.6	-	H-1→L+2 (37%). HOMO→L+1 (20%). HOMO→L+2 (15%). HOMO→L+4 (10%)	IL/LL'CT/LLCT
	T ₃	432.3	-	H-1→L+1 (32%). H-1→L+4 (10%). HOMO→L+1 (14%). HOMO→L+2 (29%)	IL/LL'CT/LLCT
	S ₁	365.0	0.0009	HOMO→L+1 (14%). HOMO→L+3 (67%)	IL/LL'CT/LLCT/ LMCT
	S_2	361.5	0.0058	H-1→L+1 (14%). H-1→L+3 (61%). HOMO→LUMO (11%)	IL/LL'CT/LLCT/ LMCT
4 ²⁺	S_3	358.0	0.0234	HOMO→LUMO (82%)	LL'CT
	S ₄	357.1	0.0087	H-1→LUMO (89%)	LL'CT
	S ₅	348.6	0.2467	HOMO→L+1 (25%). HOMO→L+2 (69%)	IL/LLCT/LL'CT
	S	345 5	0.0530	$H_{-1} \rightarrow I + 1$ (25%) $H_{-1} \rightarrow I + 2$ (70%)	IL/LLCT/LL'CT
	26	5 10.0	0.0550	11^{-1} L^{+1} 2370 , 11^{-1} L^{+2} 7070	
	S ₆	343.0	0.0530	$\frac{\text{HOMO} \rightarrow \text{L+1} (25\%), \text{HOMO} \rightarrow \text{L+2} (70\%)}{\text{HOMO} \rightarrow \text{L+1} (56\%), \text{HOMO} \rightarrow \text{L+2}}$ (20%), HOMO \rightarrow \text{L+3} (18\%)	IL/LLCT/LL'CT/ LMCT
	S ₆ S ₇ S ₈	343.0 341.0	0.0530 0.0512 0.2018	$\begin{array}{c} \text{HOMO} \rightarrow \text{L+1} (25\%), \text{HOMO} \rightarrow \text{L+2} (70\%) \\ \text{HOMO} \rightarrow \text{L+1} (56\%), \text{HOMO} \rightarrow \text{L+2} \\ (20\%), \text{HOMO} \rightarrow \text{L+3} (18\%) \\ \text{H-1} \rightarrow \text{L+1} (54\%), \text{H-1} \rightarrow \text{L+2} (20\%), \\ \text{H-1} \rightarrow \text{L+3} (22\%) \end{array}$	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT
	S ₆ S ₇ S ₈ S ₉	343.0 341.0 329.9	0.0512 0.2018 0.0078	$\begin{array}{c} \text{HOMO} \rightarrow \text{L+1} (25\%), \text{HOMO} \rightarrow \text{L+2} (70\%) \\ \text{HOMO} \rightarrow \text{L+1} (56\%), \text{HOMO} \rightarrow \text{L+2} \\ (20\%), \text{HOMO} \rightarrow \text{L+3} (18\%) \\ \text{H-1} \rightarrow \text{L+1} (54\%), \text{H-1} \rightarrow \text{L+2} (20\%), \\ \text{H-1} \rightarrow \text{L+3} (22\%) \\ \text{H-2} \rightarrow \text{LUMO} (92\%) \end{array}$	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT LL'CT
	$\frac{S_6}{S_7}$ $\frac{S_8}{S_9}$ $\frac{S_{10}}{S_{10}}$	343.0 341.0 329.9 329.1	0.0530 0.0512 0.2018 0.0078 0.0027	$\begin{array}{c} \text{HOMO} \rightarrow \text{L+1} (25\%), \text{HOMO} \rightarrow \text{L+2} (70\%) \\ \text{HOMO} \rightarrow \text{L+1} (56\%), \text{HOMO} \rightarrow \text{L+2} \\ (20\%), \text{HOMO} \rightarrow \text{L+3} (18\%) \\ \text{H-1} \rightarrow \text{L+1} (54\%), \text{H-1} \rightarrow \text{L+2} (20\%), \\ \text{H-1} \rightarrow \text{L+3} (22\%) \\ \text{H-2} \rightarrow \text{LUMO} (92\%) \\ \text{H-3} \rightarrow \text{LUMO} (95\%) \end{array}$	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT LL'CT LL'CT
	S6 S7 S8 S9 S10	343.0 341.0 329.9 329.1 325.0	0.0530 0.0512 0.2018 0.0078 0.0027 0.0034	$\begin{array}{c} \text{HOMO} \rightarrow \text{L+1} (25\%), \text{HOMO} \rightarrow \text{L+2} (70\%) \\ \hline \text{HOMO} \rightarrow \text{L+1} (56\%), \text{HOMO} \rightarrow \text{L+2} \\ (20\%), \text{HOMO} \rightarrow \text{L+3} (18\%) \\ \hline \text{H-1} \rightarrow \text{L+1} (54\%), \text{H-1} \rightarrow \text{L+2} (20\%), \\ \hline \text{H-1} \rightarrow \text{L+3} (22\%) \\ \hline \text{H-2} \rightarrow \text{LUMO} (92\%) \\ \hline \text{H-3} \rightarrow \text{LUMO} (95\%) \\ \hline \text{HOMO} \rightarrow \text{L+3} (10\%), \text{HOMO} \rightarrow \text{L+4} \\ (79\%) \end{array}$	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT LL'CT LL'CT IL/LL'CT/LMCT
	$ \frac{S_6}{S_7} \frac{S_8}{S_9} \frac{S_{90}}{S_{10}} \frac{S_{11}}{S_{12}} $	343.0 341.0 329.9 329.1 325.0 323.9	0.0530 0.0512 0.2018 0.0078 0.0027 0.0034 0.0805	$\begin{array}{c} \text{HOMO} \rightarrow \text{L+1} (25\%), \text{HOMO} \rightarrow \text{L+2} (70\%) \\ \text{HOMO} \rightarrow \text{L+1} (56\%), \text{HOMO} \rightarrow \text{L+2} \\ (20\%), \text{HOMO} \rightarrow \text{L+3} (18\%) \\ \text{H-1} \rightarrow \text{L+1} (54\%), \text{H-1} \rightarrow \text{L+2} (20\%), \\ \text{H-1} \rightarrow \text{L+3} (22\%) \\ \text{H-2} \rightarrow \text{LUMO} (92\%) \\ \text{H-3} \rightarrow \text{LUMO} (95\%) \\ \text{HOMO} \rightarrow \text{L+3} (10\%), \text{HOMO} \rightarrow \text{L+4} \\ (79\%) \\ \text{H-1} \rightarrow \text{L+4} (88\%) \end{array}$	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT LL'CT LL'CT IL/LL'CT/LMCT IL/LL'CT
	$ \frac{S_{6}}{S_{7}} \frac{S_{8}}{S_{9}} \frac{S_{9}}{S_{10}} \frac{S_{11}}{S_{12}} T_{1} $	343.0 341.0 329.9 329.1 325.0 323.9 471.1	0.0530 0.0512 0.2018 0.0078 0.0027 0.0034 0.0805 -	$\begin{array}{c} \text{HOMO} \rightarrow \text{L+1} (25\%), \text{HOMO} \rightarrow \text{L+2} (70\%) \\ \text{HOMO} \rightarrow \text{L+1} (56\%), \text{HOMO} \rightarrow \text{L+2} \\ (20\%), \text{HOMO} \rightarrow \text{L+3} (18\%) \\ \text{H-1} \rightarrow \text{L+1} (54\%), \text{H-1} \rightarrow \text{L+2} (20\%), \\ \text{H-1} \rightarrow \text{L+3} (22\%) \\ \text{H-2} \rightarrow \text{LUMO} (92\%) \\ \text{H-3} \rightarrow \text{LUMO} (92\%) \\ \text{HOMO} \rightarrow \text{L+3} (10\%), \text{HOMO} \rightarrow \text{L+4} \\ (79\%) \\ \text{H-1} \rightarrow \text{L+2} (34\%), \text{HOMO} \rightarrow \text{L+1} \\ (45\%) \end{array}$	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT LL'CT LL'CT IL/LL'CT/LMCT IL/LL'CT IL/LL'CT
	$ \frac{S_{6}}{S_{7}} \frac{S_{8}}{S_{9}} \frac{S_{9}}{S_{10}} \frac{S_{11}}{S_{12}} \frac{S_{12}}{T_{1}} T_{2} $	343.0 343.0 329.9 329.1 325.0 323.9 471.1 470.8	0.0530 0.0512 0.2018 0.0078 0.0027 0.0034 0.0805 - -	$\begin{array}{c} \text{HOMO} \rightarrow \text{L+1} (25\%), \text{HOMO} \rightarrow \text{L+2} (70\%) \\ \hline \text{HOMO} \rightarrow \text{L+1} (56\%), \text{HOMO} \rightarrow \text{L+2} \\ (20\%), \text{HOMO} \rightarrow \text{L+3} (18\%) \\ \hline \text{H-1} \rightarrow \text{L+1} (54\%), \text{H-1} \rightarrow \text{L+2} (20\%), \\ \hline \text{H-1} \rightarrow \text{L+3} (22\%) \\ \hline \text{H-2} \rightarrow \text{LUMO} (92\%) \\ \hline \text{H-3} \rightarrow \text{LUMO} (92\%) \\ \hline \text{H-3} \rightarrow \text{LUMO} (95\%) \\ \hline \text{HOMO} \rightarrow \text{L+3} (10\%), \text{HOMO} \rightarrow \text{L+4} \\ (79\%) \\ \hline \text{H-1} \rightarrow \text{L+4} (88\%) \\ \hline \text{H-1} \rightarrow \text{L+2} (34\%), \text{HOMO} \rightarrow \text{L+1} \\ (45\%) \\ \hline \text{H-1} \rightarrow \text{L+1} (46\%), \text{HOMO} \rightarrow \text{L+2} \\ (34\%) \end{array}$	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT IL/LL'CT IL/LL'CT IL/LL'CT IL/LL'CT IL IL
	$ \begin{array}{r} S_{6} \\ S_{7} \\ S_{8} \\ S_{9} \\ S_{10} \\ S_{11} \\ S_{12} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{3} $	343.0 343.0 329.9 329.1 325.0 323.9 471.1 470.8 410.6	0.0530 0.0512 0.2018 0.0078 0.0027 0.0034 0.0805 - - -	$\begin{array}{c} \text{HOMO} \rightarrow \text{L+1} (25\%), \text{HOMO} \rightarrow \text{L+2} (70\%) \\ \text{HOMO} \rightarrow \text{L+1} (56\%), \text{HOMO} \rightarrow \text{L+2} \\ (20\%), \text{HOMO} \rightarrow \text{L+3} (18\%) \\ \text{H-1} \rightarrow \text{L+1} (54\%), \text{H-1} \rightarrow \text{L+2} (20\%), \\ \text{H-1} \rightarrow \text{L+3} (22\%) \\ \text{H-2} \rightarrow \text{LUMO} (92\%) \\ \text{H-3} \rightarrow \text{LUMO} (92\%) \\ \text{HOMO} \rightarrow \text{L+3} (10\%), \text{HOMO} \rightarrow \text{L+4} \\ (79\%) \\ \text{HOMO} \rightarrow \text{L+3} (10\%), \text{HOMO} \rightarrow \text{L+4} \\ (79\%) \\ \text{H-1} \rightarrow \text{L+2} (34\%), \text{HOMO} \rightarrow \text{L+1} \\ (45\%) \\ \text{H-1} \rightarrow \text{L+1} (46\%), \text{HOMO} \rightarrow \text{L+2} \\ (34\%) \\ \text{H-8} \rightarrow \text{LUMO} (36\%), \text{H-7} \rightarrow \text{L+5} (19\%) \end{array}$	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT IL/LL'CT IL/CT IL/LL'CT/LMCT IL/LL'CT IL IL IL
5 ²⁺	$ \begin{array}{r} & S_{6} \\ \hline S_{7} \\ \hline S_{8} \\ \hline S_{9} \\ \hline S_{10} \\ \hline S_{11} \\ \hline S_{12} \\ \hline T_{1} \\ \hline T_{2} \\ \hline T_{3} \\ \hline S_{1} \\ \end{array} $	343.0 343.0 329.9 329.1 325.0 323.9 471.1 470.8 410.6 366.5	0.0530 0.0512 0.2018 0.0078 0.0027 0.0034 0.0805 - - - - 0.0000	H-1→L+1 (25%), H-1→L+2 (76%) HOMO→L+1 (56%), HOMO→L+2 (20%), HOMO→L+3 (18%) H-1→L+1 (54%), H-1→L+2 (20%), H-1→L+3 (22%) H-2→LUMO (92%) H-3→LUMO (95%) HOMO→L+3 (10%), HOMO→L+4 (79%) H-1→L+2 (34%), HOMO→L+1 (45%) H-1→L+1 (46%), HOMO→L+2 (34%) H-8→LUMO (36%), H-7→L+5 (19%) H-1→LUMO (20%), HOMO→L+2 (18%), HOMO→L+3 (55%)	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT IL/LL'CT IL/CT IL/LL'CT/LMCT IL/LL'CT IL IL IL IL/LL'CT/LMCT
5 ²⁺	$ \begin{array}{r} & S_{6} \\ \hline S_{7} \\ \hline S_{8} \\ \hline S_{9} \\ \hline S_{10} \\ \hline S_{11} \\ \hline S_{12} \\ \hline T_{1} \\ \hline T_{2} \\ \hline T_{3} \\ \hline S_{1} \\ \hline S_{2} \\ \end{array} $	343.0 343.0 329.9 329.1 325.0 323.9 471.1 470.8 410.6 366.5 366.0	0.00330 0.00512 0.2018 0.00078 0.00027 0.0034 0.0805 - - - - 0.0000 0.0000 0.0009	H-1→L+1 (25%), H-1→L+2 (76%) HOMO→L+1 (56%), HOMO→L+2 (20%), HOMO→L+3 (18%) H-1→L+1 (54%), H-1→L+2 (20%), H-1→L+3 (22%) H-2→LUMO (92%) H-3→LUMO (95%) HOMO→L+3 (10%), HOMO→L+4 (79%) H-1→L+4 (88%) H-1→L+2 (34%), HOMO→L+1 (45%) H-1→L+1 (46%), HOMO→L+2 (34%) H-3→LUMO (36%), H-7→L+5 (19%) H-1→LUMO (20%), HOMO→L+2 (18%), HOMO→L+3 (55%) HOMO→LUMO (89%)	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT IL/LL'CT IL/CT IL/LL'CT/LMCT IL IL IL IL IL/LL'CT/LMCT IL/LL'CT/LMCT LL'CT
5 ²⁺	$\begin{tabular}{ c c c c c c }\hline & S_6 \\ \hline S_7 \\ \hline S_8 \\ \hline S_9 \\ \hline S_9 \\ \hline S_{10} \\ \hline S_{11} \\ \hline S_{12} \\ \hline T_1 \\ \hline T_2 \\ \hline T_1 \\ \hline T_2 \\ \hline T_3 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline S_3 \\ \hline \end{tabular}$	343.0 343.0 329.9 329.1 325.0 323.9 471.1 470.8 410.6 366.5 366.0 364.2	0.00330 0.00512 0.2018 0.0078 0.0027 0.0034 0.0805 - - 0.00805 - 0.0000 0.0000 0.0009 0.0047	H-1→L+1 (25%), H-1→L+2 (76%) HOMO→L+1 (56%), HOMO→L+2 (20%), HOMO→L+3 (18%) H-1→L+1 (54%), H-1→L+2 (20%), H-1→L+3 (22%) H-2→LUMO (92%) H-3→LUMO (95%) HOMO→L+3 (10%), HOMO→L+4 (79%) H-1→L+2 (34%), HOMO→L+1 (45%) H-1→L+1 (46%), HOMO→L+2 (34%) H-1→L+1 (46%), HOMO→L+2 (34%) H-1→LUMO (36%), H-7→L+5 (19%) H-1→LUMO (20%), HOMO→L+2 (18%), HOMO→L+3 (55%) HOMO→LUMO (89%) H-1→LUMO (79%), HOMO→L+3 (11%)	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT IL/LL'CT IL/CT IL/LL'CT/LMCT IL/LL'CT IL/LL'CT/LMCT IL/LL'CT/LMCT LL'CT IL/LL'CT/LMCT
5 ²⁺	$\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ S_7 \\ \hline & & \\ S_8 \\ \hline & & \\ S_9 \\ \hline & \\ S_{10} \\ \hline & \\ S_{11} \\ \hline & \\ S_{12} \\ \hline & \\ T_1 \\ \hline & \\ T_2 \\ \hline & \\ T_3 \\ \hline & \\ S_1 \\ \hline & \\ S_2 \\ \hline & \\ S_3 \\ \hline & \\ S_4 \end{array}$	343.0 343.0 329.9 329.1 325.0 323.9 471.1 470.8 410.6 366.5 366.2 364.2 362.1	0.0530 0.0512 0.2018 0.0078 0.0027 0.0034 0.0805 - - - 0.0000 0.0000 0.0009 0.0047 0.0168	H-1→L+1 (25%), H-1→L+2 (76%) HOMO→L+1 (56%), HOMO→L+2 (20%), HOMO→L+3 (18%) H-1→L+1 (54%), H-1→L+2 (20%), H-1→L+3 (22%) H-2→LUMO (92%) H-3→LUMO (95%) HOMO→L+3 (10%), HOMO→L+4 (79%) H-1→L+2 (34%), HOMO→L+1 (45%) H-1→L+2 (34%), HOMO→L+2 (34%) H-1→L+1 (46%), HOMO→L+2 (34%) H-1→L+1 (46%), HOMO→L+2 (18%), HOMO→L+3 (55%) HOMO→LUMO (89%) H-1→LUMO (79%), HOMO→L+3 (11%) H-1→L+2 (26%), H-1→L+3 (58%), HOMO→LUMO (10%)	IL/LLCT/LL'CT/ LMCT IL/LLCT/LL'CT/ LMCT IL/LL'CT IL/CT IL/LL'CT/LMCT IL/LL'CT/LMCT IL/LL'CT/LMCT IL/LL'CT/LMCT IL/LL'CT/LMCT

	S ₆	346.5	0.0556	H-1→L+1 (96%)	IL
	S ₇	342.1	0.0445	HOMO→L+2 (73%), HOMO→L+3 (21%)	IL/LL'CT/LMCT
	S ₈	340.1	0.2082	H-1→L+2 (69%), H-1→L+3 (25%)	IL/LL'CT
	S9	338.6	0.0116	H-5→LUMO (26%), H-5→L+4 (65%)	IL'
	S ₁₀	335.7	0.0045	H-2→LUMO (98%)	LL'CT
	S ₁₁	335.3	0.0004	H-3→LUMO (98%)	LL'CT
	S ₁₂	324.5	0.0001	H-3→L+1 (10%), H-2→L+2 (33%), H-2→L+3 (20%), HOMO→L+5 (22%)	IL/LL'CT/LMCT
	T ₁	530.5	-	HOMO→LUMO (59%). HOMO→L+1 (13%). HOMO→L+4 (21%)	IL'CT/L'LCT/ L'MCT
	T ₂	513.7	-	HOMO→LUMO (22%). HOMO→L+4 (56%)	IL'CT/L'LCT
	T ₃	470.8	-	H-2→L+1 (33%). H-2→L+2 (28%). H-1→L+1 (12%)	IL/LLCT/LMCT
	S ₁	444.4	0.0377	HOMO→LUMO (87%). HOMO→L+1 (11%)	IL'CT/L'LCT
	S ₂	406.3	0.0004	HOMO→LUMO (12%). HOMO→L+1 (81%)	IL'CT/L'LCT
	S ₃	405.4	0.0045	HOMO→L+2 (71%). HOMO→L+3 (22%)	IL'CT/L'LCT/ L'MCT
6 ²⁺	S ₄	392.9	0.0063	HOMO→L+2 (21%). HOMO→L+3 (77%)	IL'CT/L'LCT/ L'MCT
	S_5	363.8	0.0012	H-1→L+2 (17%). H-1→L+3 (64%)	IL/LLCT/LL'CT/ LMCT
	S ₆	363.3	0.0901	HOMO→L+4 (93%)	IL'CT
	S ₇	359.9	0.0082	H-2→L+2 (20%). H-2→L+3 (62%)	IL/LLCT/LL'CT/ LMCT
	S ₈	352.7	0.0678	H-2→LUMO (27%). H-1→LUMO (69%)	IL/LL'CT
	S9	351.4	0.0134	H-2→LUMO (71%). H-1→LUMO (26%)	IL/LL'CT
	S ₁₀	347.0	0.2016	H-2→L+1 (11%). H-1→L+1 (81%)	IL/LL'CT
	S ₁₁	344.1	0.0534	H-2→L+1 (81%). H-1→L+1 (12%)	IL/LL'CT
	S ₁₂	340.0	0.0725	H-1→L+2 (67%). H-1→L+3 (19%)	IL/LLCT/LL'CT/ LMCT

2								
Orbital	Energy (eV)	Pt	pbt(1)	pbt(2)	Cl(1)	Cl(2)		
LUMO+3	-1.44	31	27	27	7	7		
LUMO+2	-2.11	41	28	28	2	2		
LUMO+1	-2.35	6	46	46	1	1		
LUMO	-2.41	3	47	47	1	1		
НОМО	-6.54	6	48	44	1	2		
HOMO-1	-6.56	1	45	49	3	3		
HOMO-2	-6.85	1	42	46	6	5		
HOMO-3	-6.86	1	27	23	24	25		
3								
Orbital	Energy (eV)	Pt	pbt(1)	pbt(2)	$CF_3CO_2(1)$	$CF_3CO_2(2)$		
LUMO+3	-1.26	33	28	28	6	6		
LUMO+2	-2.02	44	27	27	1	1		
LUMO+1	-2.33	4	47	47	0	0		
LUMO	-2.43	4	47	47	1	1		
НОМО	-6.54	5	46	46	1	1		
HOMO-1	-6.57	1	49	49	0	0		
HOMO-2	-6.88	2	46	46	3	3		
НОМО-3	-6.89	1	43	43	6	6		
	4 ²⁺							
Orbital	Energy (eV)	Pt	pbt(1)	pbt(2)	pł	ien		
LUMO+3	-3.05	36	21	21	22			
LUMO+2	-3.20	5	10	75	10			
LUMO+1	-3.20	5	69	5	21			
LUMO	-3.31	2	3	2	94			
НОМО	-7.31	3	45	52	0			
HOMO-1	-7.31	1	53	46	1			
HOMO-2	-7.62	1	76	19	4			
HOMO-3	-7.62	1	21	78	1			
5 ²⁺								
Orbital	Energy (eV)	Pt	pbt(1)	pbt(2)	pyraphen			
LUMO+3	-3.07	36	22	22	20			
LUMO+2	-3.21	6	36	36	22			
LUMO+1	-3.23	5	45	45	5			
LUMO	-3.40	1	1	1	97			
НОМО	-7.33	2	49	49	0			
HOMO-1	-7.33	1	49	50	0			
НОМО-2	-7.63	1	49	49	0			
		-	-	12		<u> </u>		

Table S6. Composition (%) of Frontier MOs in terms of ligands and metals in the ground state in CH_2Cl_2 .

6 ²⁺						
Orbital	Energy (eV)	Pt	pbt(1)	pbt(2)	NH ₂ -phen	
LUMO+5	-2.22	32	28	27	13	
LUMO+4	-2.80	0	4	4	91	
LUMO+3	-3.01	40	28	27	5	
LUMO+2	-3.15	6	30	56	8	
LUMO+1	-3.17	5	47	28	20	
LUMO	-3.24	2	11	7	80	
НОМО	-6.69	0	0	0	99	
HOMO-1	-7.29	2	13	85	0	
HOMO-2	-7.30	1	86	13	0	
HOMO-3	-7.60	1	29	70	0	
HOMO-4	-7.61	1	70	29	1	
HOMO-5	-7.87	10	39	48	3	

Figure S15. Emission spectra of the precursor 1 in several media.

Figure S16. Emission spectra in CH₂Cl₂ glasses (77 K) and PS film 10% wt of a) 4-PF₆, b) 5-PF₆

Figure S17. Emission and excitation spectra in solid state at 298 K, 77 K of a) 2, b) 3, c) 4-CF₃CO₂, d) 5-CF₃CO₂, e) 6-CF₃CO₂, f) 4-PF₆, g) 5-PF₆ and h) 6-PF₆.

Table S7. Plots and composition (%) of the frontier MOs and spin density of the first triplet state in CH_2Cl_2 .

Table S8. Theoretical calculated energies

	2	3	4 ²⁺	5 ²⁺	62+
$\lambda_{ex} (S_0 \rightarrow T_1)^a$	469	470	471	471	531
$\lambda_{ex} (S_0 \rightarrow T_2)^a$	469	469	471	471	514
$\lambda_{ex} (S_0 \rightarrow T_3)^a$	386	378	432	411	471
$\lambda_{em} (T_1)^b$	679	685	670	670	739
$\lambda_{em} (T_2)^b$	679	685	670	653	738
$\lambda_{em} (T_3)^b$	с	439	600	516	669

^a Vertical excitation energy by TD-DFT calculations. ^bEmission wavelength calculated by the difference between the energies of the optimized triplet states and the singlet state at the triplet geometry. ^cOverestimated value surely by the great metallic contribution on this excited state.

Table S9. Electronic energies (Hartrees) of the optimized structures in CH₂Cl₂ solution

Complex	S ₀	T_1	T_2	T ₃
2	-2946.017677	-2945.935085	-2945.935085	-2945.931475
3	-3077.970025	-3077.887823	-3077.887823	-3077.857419
4 ²⁺	-2596.895257	-2596.812512	-2596.812512	-2596.803149
5 ²⁺	-2782.615907	-2782.533229	-2782.533228	-2782.512883
62+	-2652.259441	-2652.187012	-2652.187011	-2652.176758

5. Electrochemical Properties

Figure S18. a) Cyclic voltammograms of the Pt^{IV} complexes in CH_2Cl_2 solution at 100 mVs⁻¹. b) expanded CV of **6-CF₃CO₂**.