Supporting Information for

Filtration of the preferred catalyst for reverse water-gas shift among the Rh_n^- (*n*

= 3–11) clusters by mass spectrometry under variable temperatures

Yun-Zhu Liu,^{a,c,d} Xing-Yue He,^b Jiao-Jiao Chen,^{a,d} Zhong-Pu Zhao,^{a,d} Xiao-Na Li,*,^{a,d} and

Sheng-Gui He*,a,c,d

^a State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of

Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China.

^c University of Chinese Academy of Sciences, Beijing 100049, China

^d Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China

*Corresponding authors. E-mail: <u>lxn@iccas.ac.cn</u>; <u>shengguihe@iccas.ac.cn</u>

Phone: +86-10-62536990; Fax: +86-10-62559373

Fig. S1 The time-of-flight (TOF) mass spectra for the reactions of mass-selected Rh_n^- (n = 3-11) clusters (a) with CO₂ (b) at 298 K. The reactant pressures are given in mPa (= 10^{-3} Pa). The reaction times are 1.8 ms for Rh_n^- (n = 3-7, 9-11) + CO₂ and 3.8 ms for Rh_8^- + CO₂. The Rh_nX^- (X = CO₂ and 2CO₂) species are labeled as +X. The signals marked with asterisks are $ORh_nCO_2^-$ (n = 3-5) ($Rh_nCO_2^-$ + CO₂ \rightarrow $ORh_nCO_2^-$ + CO).

Note that in the temperature-variable experiments, molecule density of reactants (CO_2 and H_2) was used, while for the reactions performed under the same temperature, reactant pressure (in Pa or mPa) was used in this paper.

Fig. S2 The TOF mass spectra for the reactions of mass-selected Rh_4^- clusters with He at 298 K (a) and CO₂ at 298 K (b), 343 K (c), 393 K (d), 443 K (e), 493 K (f), 543 K (g), 593 K (h), 643 K (i), 693 K (j), 738 K (k), and 783 K (l). The maximum molecule density of CO₂ is about 1.8×10^{12} (b), 1.4×10^{12} (c), 1.9×10^{12} (d), 2.4×10^{12} (e), 3.5×10^{12} (f), 8.7×10^{12} (g), 16×10^{12} (h), 15×10^{12} (i), 23×10^{12} (j), 22×10^{12} (k), and 50×10^{12} molecules cm⁻³ (l). The Rh₄X⁻ (X = O, CO₂, etc) species are labeled as +X.

Fig. S3 The TOF mass spectra for the reactions of mass-selected Rh_n^- (n = 3, 5-11) clusters with He (a) and CO₂ (b) at 443 K. The reactant pressures are given in mPa (= 10⁻³ Pa) or Pa. The Rh_nX^- (X = O, CO₂, etc) species are labeled as +X. The signals marked with asterisks are $ORh_nCO_2^-$ (n = 3, 5) ($Rh_nCO_2^- + CO_2 \rightarrow ORh_nCO_2^- + CO$).

Fig. S4 The TOF mass spectra for the reactions of mass-selected Rh_n^- (n = 3, 5-11) clusters with He (a) and CO₂ (b) at 593 K. The reactant pressures are given in Pa. The Rh_nX^- (X = O, CO₂, etc) species are labeled as +X. The signals marked with asterisks are $ORh_nCO_2^-$ (n = 3, 5, and 10) ($Rh_nCO_2^- + CO_2 \rightarrow ORh_nCO_2^- + CO$).

Fig. S5 The TOF mass spectra for the reactions of mass-selected Rh_n^- (n = 3, 5-11) clusters with He (a) and CO₂ (b) at 693 K. The reactant pressures are given in Pa. The Rh_nX^- (X = O, CO₂, etc) species are labeled as +X. The signals marked with asterisks are $ORh_nCO_2^-$ (n = 3, 5-8, 10-11) ($Rh_nCO_2^- + CO_2 \rightarrow ORh_nCO_2^- + CO$).

Fig. S6 The TOF mass spectra for the reactions of mass-selected Rh_n^- (n = 3, 5-11) clusters with He (a) and CO₂ (b) at 738 K. The reactant pressures are given in Pa. The Rh_nX^- (X = O, CO₂, etc) species are labeled as +X. The signals marked with asterisks are $ORh_nCO_2^-$ (n = 3, 5, 7-8, 10-11) ($Rh_nCO_2^-$ + CO₂ \rightarrow $ORh_nCO_2^-$ + CO).

Fig. S7 The TOF mass spectra for the reactions of mass-selected Rh_n^- (n = 3, 5-11) clusters with He (a) and CO₂ (b) at 783 K. The reactant pressures are given in Pa. The Rh_nX^- (X = O, CO₂, etc) species are labeled as +X.

Fig. S8 The TOF mass spectra for the reactions of mass-selected Rh_nO^- (n = 3-11) clusters with He (a) and H₂ (b) at 298 K. The reactant pressures are given in mPa (= 10^{-3} Pa). The Rh_nOX^- (X = O and H₂O) species are labeled as +X.

Fig. S9 The TOF mass spectra for the reactions of mass-selected Rh₄O⁻ with He at 298 K (a), H₂ at 298 K (b), 343 K (c), 393 K (d), 443 K (e), 493 K (f), 543 K (g), 593 K (h), 643 K (i), 693 K (j), 738 K (k), and 783 K (l). The maximum molecule density of H₂ is about 3.5×10^{12} (b), 3.8×10^{12} (c), 8.5×10^{12} (d), 10×10^{12} (e), 11×10^{12} (f), 18×10^{12} (g), 19×10^{12} (h), 17×10^{12} (i), 23×10^{12} (j), 19×10^{12} (k), and 30×10^{12} molecules cm⁻³ (l). Peaks marked with asterisk is Rh₄OH⁻. The Rh₄OX⁻ (X = O and H₂O) species are labeled as +X.

Fig. S10 The TOF mass spectra for the reactions of mass-selected Rh_nO^- (n = 3, 5-11) clusters with He (a) and H₂ (b) at 443 K. The reactant pressures are given in mPa (= 10⁻³ Pa).

Fig. S11 The TOF mass spectra for the reactions of mass-selected Rh_nO^- (n = 3, 5-11) clusters with He (a) and H₂ (b) at 543 K. The reactant pressures are given in mPa (= 10⁻³ Pa) or Pa. Peaks marked with asterisks are Rh_nOH^- .

Fig. S12 The TOF mass spectra for the reactions of mass-selected Rh_nO^- (n = 5-11) clusters with He (a) and H₂ (b) at 643 K. The reactant pressures are given in Pa. Peaks marked with asterisks are Rh_nOH^- .

Fig. S13 The TOF mass spectra for the reactions of mass-selected Rh_nO^- (n = 5-11) clusters with He (a) and H₂ (b) at 693 K. The reactant pressures are given in mPa (= 10^{-3} Pa) or Pa. Peaks marked with asterisks are Rh_nOH^- .

Fig. S14 The TOF mass spectra for the reactions of mass-selected Rh_nO^- (n = 3, 5-11) clusters with He (a) and H₂ (b) at 783 K. The reactant pressures are given in mPa (= 10⁻³ Pa). Peaks marked with asterisks are Rh_nOH^- .

Fig. S15 The TOF mass spectra for the reactions of mass-selected Rh₃⁻ clusters with CO₂ at 298 K (a), 373 K (c), 473 K (e) and 783 K (g), with CO₂ + H₂ at 298 K (b), 373 K (d), 473 K (f) and 783 K (h) in the single ion trap experiment in which CO₂ and H₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 3.0×10^{12} (a), 1.9×10^{12} (c), 3.1×10^{12} (e), 13 $\times 10^{12}$ (g) for CO₂ and 104×10^{12} (b), 70×10^{12} (d), 78×10^{12} (f), 6.7×10^{12} molecules cm⁻³ (h) for H₂. The Rh₃X⁻ (X = O, CO₂, etc) species are labeled as +X.

Fig. S16 The TOF mass spectra for the reactions of mass-selected Rh₄⁻ clusters with CO₂ at 298 K (a), 473 K (c), 783 K (e) and with C¹⁸O₂ at 773 K (g), with CO₂ + H₂ at 298 K (b), 473 K (d), 783 K (f), and with C¹⁸O₂ + H₂ at 773 K (h) in the single ion trap experiment in which CO₂ and H₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 1.4×10^{12} (a), 1.5×10^{12} (c), 1.7×10^{12} (e) for CO₂, 19×10^{12} (g) for C¹⁸O₂, and 45×10^{12} (b), 14×10^{12} (d), 17×10^{12} (f), 36×10^{12} molecules cm⁻³ (h) for H₂. The Rh₄X⁻ (X = O, CO₂, etc) species are labeled as +X.

Fig. S17 The TOF mass spectra for the reactions of mass-selected Rh₅⁻ clusters with CO₂ at 298 K (a), 373 K (c), 473 K (e) and 783 K (g), with CO₂ + H₂ at 298 K (b), 373 K (d), 473 K (f) and 783 K (h) in the single ion trap experiment in which CO₂ and H₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 2.0×10^{12} (a), 2.4×10^{12} (c), 2.4×10^{12} (e), 12 $\times 10^{12}$ (g) for CO₂ and 21 $\times 10^{12}$ (b), 9.5×10^{12} (d), 12×10^{12} (f), 55×10^{12} molecules cm⁻³ (h) for H₂. The Rh₅X⁻ (X = O, CO₂, etc) species are labeled as +X.

Fig. S18 The TOF mass spectra for the reactions of mass-selected Rh₆⁻ clusters with CO₂ at 298 K (a), 373 K (c), 473 K (e) and 783 K (g), with CO₂ + H₂ at 298 K (b), 373 K (d), 473 K (f) and 783 K (h) in the single ion trap experiment in which CO₂ and H₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 2.0×10^{12} (a), 2.3×10^{12} (c), 3.3×10^{12} (e), 35 $\times 10^{12}$ (g) for CO₂ and 28 $\times 10^{12}$ (b), 27 $\times 10^{12}$ (d), 12×10^{12} (f), 77 $\times 10^{12}$ molecules cm⁻³ (h) for H₂. The Rh₆X⁻ (X = O, CO₂, etc) species are labeled as +X.

Fig. S19 The TOF mass spectra for the reactions of mass-selected Rh_7^- clusters with CO₂ at 298 K (a), 373 K (c), 473 K (e) and 783 K (g), with CO₂ + H₂ at 298 K (b), 373 K (d), 473 K (f) and 783 K (h) in the single ion trap experiment in which CO₂ and H₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 3.7×10^{12} (a), 5.3×10^{12} (c), 5.5×10^{12} (e), 49 $\times 10^{12}$ (g) for CO₂ and 14 $\times 10^{12}$ (b), 127 $\times 10^{12}$ (d), 9.4 $\times 10^{12}$ (f), 66 $\times 10^{12}$ molecules cm⁻³ (h) for H₂. The Rh₇X⁻ (X = O, CO₂, etc) species are labeled as +X.

Fig. S20 The TOF mass spectra for the reactions of mass-selected Rh₈⁻ clusters with CO₂ at 783 K (a), with CO₂ + H₂ at 783 K (b), Rh₉⁻ clusters with CO₂ at 783 K (c), with CO₂ + H₂ at 783 K (d), and Rh₁₀⁻ clusters with CO₂ at 783 K (e), with CO₂ + H₂ at 783 K (f) in the single ion trap experiment in which CO₂ and H₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 50×10^{12} (a), 9.7×10^{12} (c), 49×10^{12} (e) for CO₂ and 71×10^{12} (b), 49×10^{12} (d), 82×10^{12} molecules cm⁻³ (f) for H₂. The Rh_nX⁻ (X = O, CO₂, etc) species are labeled as +X.

Fig. S21 The TOF mass spectra for the reactions of mass-selected Rh_3^- clusters with H₂ at 298 K (a), 373 K (c), 473 K (e) and 773 K (g), with H₂ + CO₂ at 298 K (b), 373 K (d), 473 K (f) and 773 K (h) in the single ion trap experiment in which H₂ and CO₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 16×10^{12} (a), 74×10^{12} (c), 65×10^{12} (e), 26×10^{12} (g) for H₂ and 2.5 × 10¹² (b), 0.7×10^{12} (d), 0.9×10^{12} (f), 29×10^{12} molecules cm⁻³ (h) for CO₂. The Rh₃X⁻ (X = H₂, CO₂, etc) species are labeled as +X.

Fig. S22 The TOF mass spectra for the reactions of mass-selected Rh_4^- clusters with H₂ at 298 K (a), 373 K (c), 473 K (e) and 773 K (g), with H₂ + CO₂ at 298 K (b), 373 K (d), 473 K (f) and 773 K (h) in the single ion trap experiment in which H₂ and CO₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 28×10^{12} (a), 33×10^{12} (c), 39×10^{12} (e), 10×10^{12} (g) for H₂ and 1.2×10^{12} (b), 1.1×10^{12} (d), 0.7×10^{12} (f), 20×10^{12} molecules cm⁻³ (h) for CO₂. The Rh₄X⁻ (X = H₂, CO₂, etc) species are labeled as +X.

Fig. S23 The TOF mass spectra for the reactions of mass-selected Rh_5^- clusters with H₂ at 298 K (a), 373 K (c), 473 K (e) and 773 K (g), with H₂ + CO₂ at 298 K (b), 373 K (d), 473 K (f) and 773 K (h) in the single ion trap experiment in which H₂ and CO₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 24×10^{12} (a), 33×10^{12} (c), 68×10^{12} (e), 19×10^{12} (g) for H₂ and 0.2 × 10¹² (b), 0.4 × 10¹² (d), 0.7 × 10¹² (f), 19×10^{12} molecules cm⁻³ (h) for CO₂. The Rh₅X⁻ (X = H₂, CO₂, etc) species are labeled as +X.

Fig. S24 The TOF mass spectra for the reactions of mass-selected Rh_6^- clusters with H₂ at 298 K (a), 373 K (c), 473 K (e) and 773 K (g), with H₂ + CO₂ at 298 K (b), 373 K (d), 473 K (f) and 773 K (h) in the single ion trap experiment in which H₂ and CO₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 16×10^{12} (a), 24×10^{12} (c), 44×10^{12} (e), 20×10^{12} (g) for H₂ and 0.8×10^{12} (b), 0.9×10^{12} (d), 2.2×10^{12} (f), 33×10^{12} molecules cm⁻³ (h) for CO₂. The Rh₆X⁻ (X = H₂, CO₂, etc) species are labeled as +X.

Fig. S25 The TOF mass spectra for the reactions of mass-selected Rh_7^- clusters with H₂ at 298 K (a), 373 K (c), 473 K (e) and 773 K (g), with H₂ + CO₂ at 298 K (b), 373 K (d), 473 K (f) and 773 K (h) in the single ion trap experiment in which H₂ and CO₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 16×10^{12} (a), 24×10^{12} (c), 36×10^{12} (e), 33×10^{12} (g) for H₂ and 1.3×10^{12} (b), 1.2×10^{12} (d), 5.6×10^{12} (f), 34×10^{12} molecules cm⁻³ (h) for CO₂. The Rh₇X⁻ (X = H₂, CO₂, etc) species are labeled as +X.

Fig. S26 The TOF mass spectra for the reactions of mass-selected Rh_8^- clusters with H₂ at 298 K (a), with H₂ + CO₂ at 298 K (b), Rh_9^- clusters with H₂ at 298 K (c), with H₂ + CO₂ at 298 K (d), Rh_{10}^- clusters with H₂ at 298 K (e), with H₂ + CO₂ at 298 K (f) in the single ion trap experiment in which H₂ and CO₂ are delivered into the same ion trap. The maximum molecule density of reactant gases is about 37 × 10¹² (a), 26 × 10¹² (c), 24 × 10¹² (e) for H₂ and 19 × 10¹² (b), 9.9 × 10¹² (d), 4.3 × 10¹² molecules cm⁻³ (f) for CO₂. The Rh_nX⁻ (X = H₂, CO₂, etc) species are labeled as +X.

Fig. S27 The DFT-calculated lowest-lying isomers of Rh_n^- (n = 3-9) at the PBE level. The higher energy isomers of Rh_7^- and Rh_8^- could have also been produced in the experiment¹ and calculated, and their relative energies (in eV, zero-point vibrational corrected) are listed below each isomer.

Fig. S28 The DFT calculated potential energy profiles for reactions $Rh_3^- + CO_2$ (a), $Rh_4^- + CO_2$ (b), $Rh_5^- + CO_2$ (c), and $Rh_6^- + CO_2$ (d). The zero-point vibration corrected energies (ΔH_0 , eV) are given. The superscripts represent the spin multiplicities.

Fig. S29 The DFT calculated potential energy profiles for reactions Rh_7^- (IS1) + CO_2 (a), Rh_7^- (IS2) + CO_2 (b), and Rh_8^- (IS3) + CO_2 (c). The zero-point vibration corrected energies (ΔH_0 , eV) are given. The superscripts represent the spin multiplicities.

Fig. S30 The DFT calculated potential energy profiles for reactions Rh_8^- (IS4) + CO₂ (a) and Rh_9^- + CO₂ (b). The zero-point vibration corrected energies (ΔH_0 , eV) are given. The superscripts represent the spin multiplicities.

Fig. S31 The DFT calculated potential energy profiles for reactions $Rh_3O^- + H_2$ (a), $Rh_4O^- + H_2$ (b) and $Rh_5O^- + H_2$ (c). The zero-point vibration corrected energies (ΔH_0 , eV) are given. The superscripts represent the spin multiplicities.

Fig. S32 The DFT calculated potential energy profiles for reactions $Rh_6O^- + H_2$ (a) and $Rh_7O^- + H_2$ (b). The zero-point vibration corrected energies (ΔH_0 , eV) are given. The superscripts represent the spin multiplicities.

Fig. S33 The DFT calculated thermodynamics for reactions $Rh_nH_2^-$ (n = 3-9) + $CO_2 \rightarrow Rh_nCO^-$ + H_2O and $Rh_nH_2^-$ + $CO_2 \rightarrow Rh_n^-$ + $CO + H_2O$ at 0 K.

References

1 M. R. Beltrán, F. Buendía Zamudio, V. Chauhan, P. Sen, H. Wang, Y. J. Ko and K. Bowen, *Eur. Phys. J. D*, 2013, **67**, 63.