Electronic Supplementary Material (ESI) for Dalton Transactions. The circuit align and the Reval Section of Chemistry 2023.

This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Ar plasma assisted enhanced oxygen evolution kinetics of MOG-

derived multicomponent transition metal sulfides

Jia-Yang Luo,^{a,b} Ya-Meng Yin,*^{a,b} Gui-Zhi Guo,^a Xi-Wen Chang,^a Xue-Qian Wu,^{a,b} Ya-Pan

Wu,^{a,b} Shuang Li,^{a,b} Ru-An Chi,^b and Dong-Sheng Li*a,^b

^aCollege of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic

Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang,

Hubei 443002, P.R. China.

^bHubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China

*Corresponding Author: Ya-Meng Yin, Email: <u>yameng.yin@ctgu.edu.cn</u>

Dong-Sheng Li, Email: lidongsheng1@126.com

Fig. S1 XRD patterns for synthesized MIL-100(FeCoNi)-MOG and simulated MIL-100(Fe), the inset is a digital image of MIL-100(FeCoNi)-MOG product.

Fig. S2 SEM images of (a) FeCoNi-MOG, (b) Pristine, (c) Ar-300W and (d) Ar-500W.

Fig. S3 (a) TEM, (b) HRTEM and (c) EDS elemental mapping images of Pristine.

Fig. S4 N₂ adsorption-desorption curves and pore size distribution of (a, c) Pristine and (b, d) Ar-400 W.

Fig. S5 XPS survey spectrum of the obtained $FeCoNiS_x$ catalysts.

Fig. S6 CV curves of (a) Pristine, (b) Ar-300W, (c) Ar-400W and (d) Ar-500W with different scan rates from 20 to 100 mV \cdot s⁻¹.

Fig. S7 (a) XRD patterns, (b) TEM image and (c, d) HRTEM images of Ar-400W after OER process.

Fig. S8 This work compares Tafel slopes and overpotentials at 10 mA cm⁻² to other reported transition metal-based OER catalysts in basic media.

Catalysts	Electrolyte	Overpotential (mV)	Tafel slope $(mV dec^{-1})$	References
Ni-Co-S	1.0 M KOH	243	54.9	S1
(Ni _{0.33} Co _{0.67})S ₂	1.0 M KOH	216	78	S2
Co ₃ S ₄ @FNC-Co ₃	1.0 M KOH	250	78	S3
$Co(S_{0.22}Se_{0.78})_2$	1.0 M KOH	283	65.6	S4
CoS_2/CC	1.0 M KOH	291	69	S5
Co_3S_4	1.0 M KOH	218	69	S6
Ni-FeS ₂ -0.5	1.0 M KOH	250	34	S7
Ni-Fe-UMNs	1.0 M KOH	260	30	S8
P-FeNiO/CNS	1.0 M KOH	220	52	S9
$FeCoNiS_x$ (Ar-400W)	1.0 M KOH	235	31	This Work

Table S1. Comparison of the OER performance between Ar-400 W with recently

 reported transition metal-based electrocatalysts.

References

- S1 Z. Liu, B. Tang, X. Gu, H. Liu and L. Feng, Selective structure transformation for NiFe/NiFe₂O₄ embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity, *Chem. Eng. J.*, 2020, **395**, 125170.
- S2 Y. H. Deng, C. Ye, B. X. Tao, G. Chen, Q. Zhang, H. Q. Luo and N. B. Li, Onestep chemical transformation synthesis of CoS₂ nanosheets on carbon cloth as a 3D flexible electrode for water oxidation, *J. Power Sources*, 2018, **397**, 44-51.
- S3 Z. Kang, H. Guo, J. Wu, X. Sun, Z. Zhang, Q. Liao, S. Zhang, H. Si, P. Wu, L. Wang and Y. Zhang, Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting, *Adv. Funct. Mater.*, 2019, **29**, 1807031.
- S4 Q. Zhang, C. Ye, X. L. Li, Y. H. Deng, B. X. Tao, W. Xiao, L. J. Li, N. B. Li and H. Q. Luo, Self-interconnected porous networks of NiCo disulfide as efficient bifunctional electrocatalysts for overall water splitting, ACS Appl. Mater. Interfaces, 2018, 10, 27723-27733.
- S5 X. Zhu, J. Dai, L. Li, D. Zhao, Z. Wu, Z. Tang, L.-J. Ma and S. Chen, Hierarchical carbon microflowers supported defect-rich Co₃S₄ nanoparticles: An efficient electrocatalyst for water splitting, *Carbon*, 2020, **160**, 133-144.

- S6 L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang, S. Wang and Y. Wang, Tuning unique peapod-like $Co(S_xSe_{1-x})_2$ nanoparticles for efficient overall water splitting, *Adv. Funct. Mater.*, 2017, **27**, 1701008.
- S7 S. Tang, X. Wang, Y. Zhang, M. Courté, H. J. Fan and D. Fichou, Combining Co₃S₄ and Ni:Co₃S₄ nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study, *Nanoscale*, 2019, **11**, 2202-2210.
- S8 Z. Tan, L. Sharma, R. Kakkar, T. Meng, Y. Jiang and M. Cao, Arousing the reactive Fe sites in pyrite (FeS₂) via integration of electronic structure reconfiguration and in situ electrochemical topotactic transformation for highly efficient oxygen evolution reaction, *Inorg. Chem.*, 2019, 58, 7615-7627.
- S9 G. Hai, X. Jia, K. Zhang, X. Liu, Z. Wu and G. Wang, High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets, *Nano Energy*, 2018, 44, 345-352.