
Supplementary materials

1. Calculation of efficient first-order rate constants of catalytic reactions and turn-
over frequency TOF).

Efficient first-order rate constant was calculated using the integral  equation  
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where X is degree of reagent (methane, ethanol ) conversion   at contact time τ  (s)

Turnover frequency (TOF) is defined as the maximum number of chemical conversions of 
substrate molecules  per unit time over a single catalytic site.

TOF was calculated as ratio of the initial reaction rate W0 (mole s-1)  (being equal to    keff. *Co )  
to the content of metal sites Z estimated  by CO chemisorption (mol/gcat) and catalyst bulk 
density 𝜌 (g/l) 
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2. Texture 
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Figure S1. Adsorption-desorption isotherms for doped MgAl2O4 mesoporous support and series 2 Ti2 
and Cr2 catalysts

3. XPS spectra 

In Figures    S2-S5   1, 2, and 3 spectra correspond to  5%Ni+1%Ru/10%Pr0.3Ce0.35Zr0.35/ 
MgAl1.9Fe0.1O4 (Fe1), 5%Ni+1%Ru/10%Pr0.3Ce0.35Zr0.35/MgAl1.9Ti0.1O4 (Ti1) , and 
5%Ni+1%Ru/10%Pr0.3Ce0.35Zr0.35/MgAl1.9Cr0.1O4  (Cr1) catalysts, respectively.
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Figure S2. Al2p, Mg2s and Zr3d core-level spectra of the catalysts. The spectra are normalized 
on the total concentration of Al and Mg.
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Figure S3. Ce3d and Pr3d core-level spectra of the catalysts. The spectra are normalized to the 
total concentration of Al and Mg.
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Figure S4. Ni2p3/2 core-level spectra of the catalysts. The spectra are normalized to the total 
concentration of Al and Mg.
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Figure S5. Fe2p, Ti2p, and Cr2p core-level spectra of the catalysts. The spectra are normalized 
to the total concentration of Al and Mg.
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Figure  S6. Zr 3d, Ce 3d and Pr3d core-level spectra of the Cr2  catalyst in fresh and treated 
states. The spectra are normalized to the total concentration of Al and Mg.
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Figure S7. Ru 3d and Ni2p3/2 core-level spectra of the Cr2  catalyst in fresh and treated states.  
The spectra are normalized to the total concentration of Al and Mg.

Pr3d spectra have a complex shape, since, first,   due to spin-orbital interaction  3d-level 

is splitted on two sublevels  Pr3d5/2 и Pr3d3/2, which results in appearance of a doublet with the 

ratio of intensity lines as  3:2; second, each component of the doublet is splitted into three lines  

– a/b, a’b’, a’’/b’’ and  t (additional peak in spectrum of  Pr3d3/2) [Borchert, H., Frolova, Y.V., 

Kaichev, V.V., Prosvirin, I.P., Alikina, G.M., Lukashevich, A.I., Zaikovskii, V.I., Moroz, E.M., Trukhan, S.N., 

Ivanov, V.P., Paukshtis, E.A., Bukhtiyarov, V.I., Sadykov, V.A., J. Phys. Chem. B 2005, 109, 5728-5738]. In 



spectrum of pure  Pr2O3 where Pr is in 3+ state a’’/b’’  doublet is not observed.  In Pr3d spectra 

(Figs. S3 and S7) doublet  a’’/b’’ is absent, hence, Pr is mainly in  Pr3+ state.

Table S1. Binding energies and states of metals in fresh and treated R2 catalysts

Zr3d5/2 Ni2p3/2 Ru3d5/2 Pr3d5/2 Al2p Mg2s

Sa
m

pl
e

Zr4+

Ce3d5/2 
(u’’’)

Ni0 Ni2+ Ru0 Ru4+ Pr3+ Al3+ Mg2+

Fresh 181.8 916.6 – 856.1 – 280.3
929.3
933.7

74.5 88.8

Treated 181.9 916.7
852.6
(28%)

855.8
(72%)

279.5 –
929.6
933.9

74.5 88.8

Table S2. Surface concentration of elements normalized on the total concentration of Al+Mg  and 
Mg/Al ratio determined by XPS in fresh and treated R2 catalysts

Sa
m

pl
e

[C] [O]

[M
g]

/[A
l]

Fresh 1.40 2.55 0.47

Treated 0.90 2.30 0.41

4. Methane dry reforming 
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Fig. S8.. Arrhenius plots of efficient first-order rate constants of methane dry reforming for series 
one catalysts: 1-Fe1, 2-Ti1, 3-Cr1. Feed 15%CH4 + 15% CO2 in He, contact time 15 ms.
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Fig. S9. Cr2 catalyst performance stability in the temperature range 750-600 oC. Feed 15 vol. % 
CH4 +15 vol. % CO2+ He balance,  contact time 0.015 s

5. Steam reforming of ethanol
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Fig. S10. Temperature dependence of CH4 content (1, %) and EtOH  conversion (2, degree) in the low-
temperature range  450-550 oC for   Cr2 catalyst. Feed 2% EtOH +8% H2O in He, contact time 8 ms.
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Fig. S11.  Arrhenius plots of the efficient first-order rate constants of ethanol steam reforming on Cr2 
catalyst. Feed 2% EtOH +8% H2O in He, contact time 8 ms.

5. Stability of structured catalyst performance
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Fig. S12. Stability of structured catalyst performance in  natural gas (NG) dry reforming.  Feed 42% 
NG+51% CO2+N2, 700 oC, contact time 1.22 s.
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Fig. S13. Stability of structured catalyst performance in  ethanol dry reforming. Feed 22% EtOH 
+21% CO2 +N2, 780 oC, contact time 0.33 s. 
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Fig. S14 . Stability of structured catalyst performance in   ethanol steam reforming.  Feed 10.3% 
EtOH+40.7%H2O+N2, 710 oC, contact time 0.23 s
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Fig. S15. Stability of structured catalyst performance in  ethanol oxysteam reforming. Feed 
12.4%EtOH+ 49%H2O+ 8.1%O2+N2, 760 oC, contact time 0.25 s 
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Fig. S16. . Stability of structured catalyst performance in   ethanol mixed  steam-dry reforming.  Feed   
20 % EtOH +11.5% CO2+7.4%H2O +N2 ,  750 oC, contact time 0.35 s


