Supplementary materials

1. Calculation of efficient first-order rate constants of catalytic reactions and turnover frequency TOF).

Efficient first-order rate constant was calculated using the integral equation

$$k_{eff} = -\frac{\ln(1 - X_{CH_4})}{\tau}$$

where X is degree of reagent (methane, ethanol) conversion at contact time τ (s)

Turnover frequency (TOF) is defined as the maximum number of chemical conversions of substrate molecules per unit time over a single catalytic site.

TOF was calculated as ratio of the initial reaction rate W_0 (mole s⁻¹) (being equal to $k_{eff.} *C^o$) to the content of metal sites Z estimated by CO chemisorption (mol/g_{cat}) and catalyst bulk density ρ (g/l)

$$TOF = \frac{k_{eff} \cdot C_{CH4}^{0}}{Z \cdot \rho}$$

2. Texture

Figure S1. Adsorption-desorption isotherms for doped $MgAl_2O_4$ mesoporous support and series 2 Ti2 and Cr2 catalysts

3. XPS spectra

In Figures S2-S5 1, 2, and 3 spectra correspond to 5%Ni+1%Ru/10%Pr_{0.3}Ce_{0.35}Zr_{0.35}/MgAl_{1.9}Fe_{0.1}O₄ (Fe1), 5%Ni+1%Ru/10%Pr_{0.3}Ce_{0.35}Zr_{0.35}/MgAl_{1.9}Ti_{0.1}O₄ (Ti1), and 5%Ni+1%Ru/10%Pr_{0.3}Ce_{0.35}Zr_{0.35}/MgAl_{1.9}Cr_{0.1}O₄ (Cr1) catalysts, respectively.

Figure S2. Al2p, Mg2s and Zr3d core-level spectra of the catalysts. The spectra are normalized on the total concentration of Al and Mg.

Figure S3. Ce3d and Pr3d core-level spectra of the catalysts. The spectra are normalized to the total concentration of Al and Mg.

Figure S4. Ni2p_{3/2} core-level spectra of the catalysts. The spectra are normalized to the total concentration of Al and Mg.

Figure S5. Fe2p, Ti2p, and Cr2p core-level spectra of the catalysts. The spectra are normalized to the total concentration of Al and Mg.

Figure S6. Zr 3d, Ce 3d and Pr3d core-level spectra of the Cr2 catalyst in fresh and treated states. The spectra are normalized to the total concentration of Al and Mg.

Figure S7. Ru 3d and $Ni2p_{3/2}$ core-level spectra of the Cr2 catalyst in fresh and treated states. The spectra are normalized to the total concentration of Al and Mg.

Pr3*d* spectra have a complex shape, since, first, due to spin-orbital interaction 3d-level is splitted on two sublevels $Pr3d_{5/2}$ μ $Pr3d_{3/2}$, which results in appearance of a doublet with the ratio of intensity lines as 3:2; second, each component of the doublet is splitted into three lines – a/b, a'b', a''/b'' and t (additional peak in spectrum of $Pr3d_{3/2}$) [Borchert, H., Frolova, Y.V., Kaichev, V.V., Prosvirin, I.P., Alikina, G.M., Lukashevich, A.I., Zaikovskii, V.I., Moroz, E.M., Trukhan, S.N., Ivanov, V.P., Paukshtis, E.A., Bukhtiyarov, V.I., Sadykov, V.A., J. Phys. Chem. B **2005**, 109, 5728-5738]. In spectrum of pure Pr_2O_3 where Pr is in 3+ state a''/b'' doublet is not observed. In Pr3d spectra (Figs. S3 and S7) doublet a''/b'' is absent, hence, Pr is mainly in Pr^{3+} state.

Sample	Zr3d _{5/2}	Ce <i>3d</i> _{5/2} (u''')	Ni2p _{3/2}		Ru3d _{5/2}		Pr3d _{5/2}	Al2p	Mg2s
	Zr ⁴⁺		Ni ⁰	Ni ²⁺	Ru ⁰	Ru ⁴⁺	Pr ³⁺	Al ³⁺	Mg ²⁺
Fresh	181.8	916.6	_	856.1	_	280.3	929.3 933.7	74.5	88.8
Treated	181.9	916.7	852.6 (28%)	855.8 (72%)	279.5	_	929.6 933.9	74.5	88.8

Table S1. Binding energies and states of metals in fresh and treated R2 catalysts

Table S2. Surface concentration of elements normalized on the total concentration of Al+Mg and Mg/Al ratio determined by XPS in fresh and treated R2 catalysts

Sample	[C]	[0]	[Mg]/[Al]
Fresh	1.40	2.55	0.47
Treated	0.90	2.30	0.41

4. Methane dry reforming

Fig. S8. Arrhenius plots of efficient first-order rate constants of methane dry reforming for series one catalysts: 1-Fe1, 2-Ti1, 3-Cr1. Feed 15%CH₄ + 15% CO₂ in He, contact time 15 ms.

Fig. S9. Cr2 catalyst performance stability in the temperature range 750-600 °C. Feed 15 vol. % CH_4 +15 vol. % CO_2 + He balance, contact time 0.015 s

Fig. S10. Temperature dependence of CH_4 content (1, %) and EtOH conversion (2, degree) in the low-temperature range 450-550 °C for Cr2 catalyst. Feed 2% EtOH +8% H₂O in He, contact time 8 ms.

Fig. S11. Arrhenius plots of the efficient first-order rate constants of ethanol steam reforming on Cr2 catalyst. Feed 2% EtOH +8% H_2O in He, contact time 8 ms.

5. Stability of structured catalyst performance

Fig. S12. Stability of structured catalyst performance in natural gas (NG) dry reforming. Feed 42% NG+51% CO_2+N_2 , 700 °C, contact time 1.22 s.

Fig. S13. Stability of structured catalyst performance in ethanol dry reforming. Feed 22% EtOH +21% CO_2 +N₂, 780 °C, contact time 0.33 s.

Fig. S14 . Stability of structured catalyst performance in $\,$ ethanol steam reforming. Feed 10.3% EtOH+40.7%H_2O+N_2, 710 °C, contact time 0.23 s

Fig. S15. Stability of structured catalyst performance in ethanol oxysteam reforming. Feed 12.4% EtOH+ 49%H₂O+ 8.1%O₂+N₂, 760 °C, contact time 0.25 s

С

Fig. S16. . Stability of structured catalyst performance in ethanol mixed steam-dry reforming. Feed 20 % EtOH +11.5% CO₂+7.4%H₂O +N₂, 750 °C, contact time 0.35 s

d