Electronic Supplementary Information

An efficient mixed-valence copper pyrazolate catalyst for the conversion of carbon dioxide and epoxides into cyclic carbonates

Jian-Ge Wang,^{‡a} Yang Liu,^{‡b} Chun-Mei Liu,^a Jing-Huo Chen^{*a} and Guang Yang^{*a}

^aGreen Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China.
^bHenan Technician College of Medicine and Health, Kaifeng, Henan, 475000, China.

[‡]These authors contributed equally.

*Corresponding author. E-mail address: jhchen@zzu.edu.cn; yang@zzu.edu.cn

Figure S1. The P-XRD patterns of **1** obtained from the as-synthesized sample (black line) and the simulation based on the crystal data (red line).

Figure S2. The P-XRD patterns of **2** obtained from the as-synthesized sample (black line) and the simulation based on the crystal data (red line).

Figure S3. Thermogravimetric curve of 1.

Figure S4. Thermogravimetric curve of 2.

Figure S5. IR spectrum of 1 as KBr pellet.

Figure S6. IR spectrum of 2 as KBr pellet.

Figure S7. The intramolecular $\pi(Ph)\cdots\pi(Ph)$ interaction in 1, CH₃CN molecule has been omitted for clarity. Colour code: Cu, turquoise; N, blue; C, light grey; H, dark grey; Cl, bright green.

Figure S8. The intermolecular C-H $\cdots \pi$ (Ph) interaction in 1, CH₃CN molecule and some phenyl groups have been omitted for clarity. Colour code: Cu, turquoise; O, red; N, blue; C, light grey; H, dark grey; Cl, bright green.

Figure S9. The intermolecular Cl····H(Ph) interactions in 1, CH₃CN molecule and some phenyl groups have been omitted for clarity. Colour code: Cu, turquoise; N, blue; C, light grey; H, dark grey; Cl, bright green.

Figure S10. The intramolecular $\pi(Ph)\cdots\pi(Ph)$ interaction and C-H $\cdots\pi(Ph)$ interaction in **2**, CH₃CN molecule and some phenyl groups have been omitted for clarity. Colour code: Cu, turquoise; O, red; N, blue; C, light grey; H, dark grey; Cl, bright green.

Figure S11. The intermolecular C-H $\cdots \pi$ (Ph) interaction in **2**, CH₃CN molecule and some phenyl groups have been omitted for clarity. Colour code: Cu, turquoise; O, red; N, blue; C, light grey; H, dark grey; Cl, bright green.

Figure S12. The intermolecular $Cl \cdots H(Ph)$ interactions in 2, CH_3CN molecule and some phenyl groups have been omitted for clarity. Colour code: Cu, turquoise; O, red; N, blue; C, light grey; H, dark grey; Cl, bright green.

Figure S13. The curves of reaction conversion rate for the formation of propylene carbonate versus time. Reaction conditions: CO_2 (1 atm, using a balloon), propylene oxide (25.0 mmol) with **2** and TBAB (Bu₄NBr) as catalysts at 25°C, a: **2** (0.15 mmol), TATB (1.8 mmol); b: **2** (0.1 mmol), TATB (1.8 mmol); c: **2** (0.05 mmol), TATB (1.8 mmol); d: **2** (0.025 mmol), TATB (1.8 mmol); e: **2** (0.15 mmol), TATB (1.2 mmol); f: **2** (0.15 mmol), TATB (0.6 mmol); g: **2** (0 mmol), TATB (1.8 mmol).

Figure S14. Cu 2p XPS spectrum of 1.

Figure S15. The LUMO and HUMO of 2 obtained by DFT calculation.

1							
Cu(1)-N(2)	1.883(2)	Cu(1)-N(3)	1.883(2)				
Cu(2)-N(4)	1.879(2)	Cu(2)-N(6)	1.878(2)				
Cu(3)-N(1)	1.868(2)	Cu(3)-N(6)	1.871(2)				
N(2)-Cu(1)-N(3)	174.49(10)	N(4)-Cu(1)-N(5)	173.48(10)				
N(1)-Cu(1)-N(6)	174.57(10)	$Cu(1) \cdots N \equiv CCH_3$	2.783(3)				
$Cu(2) \cdots N \equiv CCH_3$	2.853(3)	$Cu(3) \cdots N \equiv CCH_3$	2.830(3)				
2							
Cu(1)-O(1)	1.902(4)	Cu(1)-N(1)	1.978(5)				
Cu(1)-N(8)	1.958 (5)	Cu(1)-N(12)	1.985(5)				
Cu(2)-O(1)	1.909(4)	Cu(2)-N(2)	1.968(5)				
Cu(2)-N(3)	1.954(5)	Cu(2)-N(9)	1.983(5)				
Cu(3)-N(4)	1.860(5)	Cu(3)-N(5)	1.867(5)				
Cu(4)-N(6)	1.862(5)	Cu(4)-N(7)	1.865(5)				
Cu(5)-N(10)	1.874(5)	Cu(5)-N(11)	1.855(5)				
O(1)-Cu(1)-N(1)	84.53(19)	O(1)-Cu(1)-N(8)	94.03(19)				
O(1)-Cu(1)-N(12)	146.3(2)	N(1)-Cu(1)-N(8)	161.9(2)				
N(1)-Cu(1)-N(12)	95.3(2)	N(8)-Cu(1)-N(12)	95.9(2)				
O(1)-Cu(2)-N(2)	84.41(19)	O(1)-Cu(2)-N(3)	91.87(19)				
O(1)-Cu(2)-N(9)	151.42(19)	N(2)-Cu(2)-N(3)	164.4(2)				
N(2)-Cu(2)-N(9)	95.2(2)	N(3)-Cu(2)-N(9)	95.3(2)				
N(4)-Cu(3)-N(5)	172.0(2)	N(6)-Cu(4)-N(7)	175.9(2)				
N(10)-Cu(5)-N(11)	176.3(2)	Cu(1)-O(1)-Cu(2)	112.7(2)				

Table S1. Selected bond distances (\AA) and bond angles $(^{\circ})$ for 1 and 2.

Structural motif	Distance (Å)		Bond angles (°)	CCDC	Daf	
	$Cu^{II}{\cdots}Cu^{II}$	Cu ^{II} -O	Cu ^{II} -O-Cu ^{II}	code	Kel.	
H	3.173	1.902; 1.909	112.7	1975110	This paper	
Cu	3.448	1.991; 1.999	119.6	161798	1	
N-N	3.257-3.406	1.886-1.945	116.5-125.3	2117298	2	
	3.282	1.913; 1.918	118.0	666709	3	
HO	3.417; 3.362	1.936-1.950	119.6; 123.5	1020049	4	
Cu	3.357	1.908; 1.913	123.0	2045673	5	
	3.227	1.932; 1.939	112.9	1827952	6	
H	3.199	1.908; 1.910	113.9	1825437	7	
	3.213	1.902; 1.920	114.4	1007288	8	
L R R	3.331	1.913; 1.880	122.9	2064099	9	

Table S2. Comparison of structural parameters of Cu^{II}–O–Cu^{II} motifs.

Table S3. Comparison of the catalytic activity of **2** with previously reported homogeneous catalysts in the cycloaddition of CO_2 with propylene oxide.

Entry	Catalyst	Co-catalyst	Pressure	Temp	Time (h)	Yield (%)	Ref.
1	2	TBAB	1 atm	R.T.	24	99	This paper
2	Mo ₂ (O'Bu) ₆	TBAB	1 atm	R.T.	24	98	10
3	[Cu ₆ (µ ₄ -O) ₂ (SO ₄) ₄ (DMA) ₆]	TBAB	1 atm	R.T.	24	98	11
4	(salen)CoI	2-(Triphenylphosphoranylidene)-	1 atm	R.T.	24	90	12
		acetaldehyde					
5	[urea-Zn]I ₂		1.5 MPa	120 °C	3.0	95	13
6	$[AlMe_2\{\kappa_2\text{-mbpzbdeape}\}]I_2$		1 MPa	70 °C	18	78	14
7	[Fe(BIP ^{PrIm})(dhbpy)I]I	Tetraphenylphosphonium iodide	0.5 MPa	50 °C	20	72	15
8	[Heemim][ZrCl ₅]		1 MPa	120 °C	3	96	16
9	$[La{N(SiHMe_2)_2}_2{k_3-bpzcp}]$	TBAB	1 MPa	70 °C	16	95	17
10	1,8-diazabicyclo[5.4.0]-undec-7-ene	Cellulose	20 atm	120 °C	2	90	18

Abbreviations used:

salen: (1E, 1'E) - N, N' - ((1R, 2R) - cyclohexane - 1, 2 - diyl) bis (1 - (3, 5 - di - tert - butyl - 2 - (1' - oxidaneyl) phenyl) methanimine (1E, 1'E) - N, N' - ((1R, 2R) - cyclohexane - 1, 2 - diyl) bis (1 - (3, 5 - di - tert - butyl - 2 - (1' - oxidaneyl) phenyl) methanimine (1E, 1'E) - N, N' - ((1R, 2R) - cyclohexane - 1, 2 - diyl) bis (1 - (3, 5 - di - tert - butyl - 2 - (1' - oxidaneyl) phenyl) methanimine (1E, 1'E) - N, N' - ((1R, 2R) - cyclohexane - 1, 2 - diyl) bis (1 - (3, 5 - di - tert - butyl - 2 - (1' - oxidaneyl) phenyl) methanimine (1E, 1'E) - N, N' - ((1R, 2R) - cyclohexane - 1, 2 - diyl) bis (1 - (3, 5 - di - tert - butyl - 2 - (1' - oxidaneyl) phenyl) methanimine (1E, 1'E) - N, N' - ((1E, 2R) - cyclohexane - 1, 2 - diyl) bis (1 - (3, 5 - di - tert - butyl - 2 - (1' - oxidaneyl) phenyl) methanimine (1E, 1'E) - N, N' - ((1E, 2R) - cyclohexane - 1, 2 - diyl) bis (1 - (3, 5 - di - tert - butyl - 2 - (1' - oxidaneyl) phenyl) methanimine (1E, 1'E) - N, N' - ((1E, 2R) - cyclohexane - 1, 2 - diyl) bis (1 - (3, 5 - di - tert - butyl - 2 - (1' - oxidaneyl) phenyl) methanimine (1E, 1'E) - N, N' - ((1E, 2R) - cyclohexane - 1, 2 - diyl) bis (1 - (3, 5 - di - tert - butyl - 2 - (1' - oxidaneyl) phenyl) methanimine (1E, 1'E) - N, N' - (1E,

 $BIP^{Prim}: (1E, 1'E) - 1, 1' - (4 - (benzyloxy) pyridine - 2, 6 - diyl) bis (N - (3 - (1H - imidazole - 1 - yl) propyl) methanimine)$

dhbpy: [2,2'-bipyridine]-6,6'-diol

Heemim: 1-[2-(2-hydroxyethoxy)ethyl]-3-methylimidazolium

 $Bpzcp:\ 2,2-bis (3,5-dimethyl pyrazol-1-yl)-1,1-diphe-nylethyl cyclopenta dienyl$

NMR data for products:

О

4-methyl-1,3-dioxolan-2-one ¹**H NMR (400 MHz, CDCl₃)**: δ 4.86-4.80 (m, 1H), 4.54-4.51 (m, 1H,), 4.01-3.98 (m, 1H), 1.45-1.44 (d, 3H) ppm; ¹³**C NMR (101 MHz, CDCl₃)**: δ 155.11, 73.64, 70.72, 19.40 ppm.

CI

4-(chloromethyl)-1,3-dioxolan-2-one ¹**H NMR (300 MHz, CDCl₃)**: δ 4.97 (s, 1H), 4.60-4.56 (t, 1H), 4.41-4.37 (t, 1H), 3.81-3.77 (dd, 1H), 3.73-3.70 (dd, 1H) ppm; ¹³**C NMR (75 MHz, CDCl₃)**: δ 154.36, 74.41, 67.04, 43.88 ppm.

4-phenyl-1,3-dioxolan-2-one ¹**H NMR (300 MHz, CDCl₃)**: δ 7.48-7.34 (m, 5H), 5.71-5.66 (t, 1H), 4.84-4.78 (t, 1H), 4.38-4.32 (t, 1H) ppm; ¹³**C NMR (75 MHz, CDCl₃)**: δ 154.20, 135.37, 129.35, 128.86, 125.52, 78.09, 71.33 ppm.

0.

4-(phenoxymethyl)-1,3-dioxolan-2-one

¹**H NMR (300 MHz, CDCl₃)**: δ 7.33-7.29 (t, 2H), 7.04-7.00 (t, 1H), 6.92-6.90 (d, 2H), 5.06-5.00 (m, 1H), 4.64-4.59 (t, 1H), 4.56-4.52 (t, 1H), 4.26-4.22 (dd, 1H), 4.16-4.13 (dd, 1H) ppm;

¹³C NMR (75 MHz, CDCl₃): δ 157.85, 154.80, 129.82, 121.11, 114.71, 74.23, 66.96, 66.36 ppm.

4-((benzyloxy)methyl)-1,3-dioxolan-2-one

¹H NMR (**300** MHz, CDCl₃): δ 7.39-7.29 (m, 5H), 4.84-4.78 (m, 1H), 4.63-4.55 (m, 2H), 4.49-4.45 (t, 1H), 4.40-4.36 (m, 1H), 3.73-3.69 (dd, 1H), 3.63-3.59 (dd, 1H) ppm; ¹³C NMR (**75** MHz, CDCl₃): δ 155.06, 137.16, 128.67, 128.17, 127.84, 75.11, 73.77, 68.91, 66.38 ppm.

4-((naphthalen-1-yloxy)methyl)-1,3-dioxolan-2-one

¹**H NMR (400 MHz, CDCl₃)**: δ 8.17-8.15 (t, 1H), 7.82-7.80 (t, 1H), 7.52-7.49 (m, 3H), 7.38-7.35 (t, 1H) 6.79-6.77 (d, 1H), 5.14 (s, 1H), 4.68-4.66 (m, 2H), 4.44-4.41 (dd, 1H), 4.29-4.26 (dd, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 154.88, 153.53, 134.64, 127.68, 126.02, 126.02, 125.60, 125.37, 121.82, 121.66, 104.98, 74.30, 67.38, 66.45 ppm.

=0

Hexahydrobenzo[*d*][1,3]dioxol-2-one ¹**H NMR (400 MHz, CDCl₃)**: δ 4.66 (s, 2H), 1.86 (s, 4H), 1.59-1.54(m, 2H), 1.43-1.38 (m, 2H); ¹³**C NMR (101 MHz, CDCl₃)**: δ 155.45, 75.82, 26.76, 19.16 ppm. ¹H NMR (CDCl₃, 400 MHz)

7.81 7.45 7.45 7.45 7.44 7.41 7.40 7.40 7.26

¹H NMR and ¹³C NMR Spectra of Products

4-methyl-1,3-dioxolan-2-one ¹H NMR (CDCl₃, 400 MHz)

4-(chloromethyl)-1,3-dioxolan-2-one ¹H NMR (CDCl₃, 300 MHz)

165 155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30

4-phenyl-1,3-dioxolan-2-one ¹H NMR (CDCl₃, 300 MHz)

¹³C NMR (CDCl₃, 75 MHz)

4-(phenoxymethyl)-1,3-dioxolan-2-one ¹H NMR (CDCl₃, 300 MHz)

4-((benzyloxy)methyl)-1,3-dioxolan-2-one ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

77.48 77.16 75.11 73.77 -68.91

 $160 \quad 155 \quad 150 \quad 145 \quad 140 \quad 135 \quad 130 \quad 125 \quad 120 \quad 115 \quad 110 \quad 105 \quad 100 \quad 95 \quad 90 \quad 85 \quad 80 \quad 75 \quad 70 \quad 65 \quad 60$

4-((naphthalen-1-yloxy)methyl)-1,3-dioxolan-2-one ¹H NMR (CDCl₃, 400 MHz)

¹³C NMR (CDCl₃, 101 MHz)

Hexahydrobenzo[*d*][1,3]dioxol-2-one ¹H NMR (CDCl₃, 400 MHz)

¹³C NMR (CDCl₃, 101 MHz)

Reference

- 1 J. Ackermann, F. Meyer, E. Kaifer and H. Pritzkow, *Chem. Eur. J.*, 2002, **8**, 247–258.
- 2 W. A. A. Isawi, M. Zeller and G. Mezei, Cryst. Growth Des., 2022, 22, 1398– 1411.
- 3 S. K. Dey, T. S. M. Abedin, L. N. Dawe, S. S. Tandon, J. L. Collins, L. K.

Thompson, A. V. Postnikov, M. S. Alam and Paul Müller, *Inorg. Chem.*, 2007, **46**, 7767–7781.

- 4 C. R. Murdock and D. M. Jenkins, J. Am. Chem. Soc., 2014, 136, 10983–10988.
- 5 J. Ying, C. Sun, L. Jin, A. Tian and X. Wang, *CrystEngComm*, 2021, 23, 5385–5396.
- 6 A. B. Lysenko, O. A. Bondar, G. A. Senchyk, E. B. Rusanov, M. Srebro-Hooper, J. Hooper, K. Prsa, K. W. Krämer, S. Decurtins, O. Waldmann and S.-X. Liu, *Inorg. Chem.*, 2018, 57, 6076–6083
- 7 M. K. Melvin, B. W. Skelton, P. K. Eggers and C. L. Raston, *CrystEngComm*, 2022, **24**, 57–69.
- 8 E.-C. Yang, Z.-Y. Liu, S.-H. Chen, Y.-H. Su, Y.-Y. Zhang and X.-J. Zhao, *Dalton Trans.*, 2015, **44**, 3190–3199.
- 9 Y. Zhou, H. Chen, X. Gu and X. Bian, J. Mol. Struct., 2022, 1254, 132324.
- 10 J.-H. Chen, C.-H. Deng, S. Fang, J.-G. Ma and P. Cheng, *Green. Chem.*, 2018, **20**, 989–996.
- 11 S.-S. Yu, X.-H. Liu, J.-G. Ma, Z. Niu and P. Cheng, J. CO₂ Util., 2016, 14, 122–125.
- 12 F. Zhou, S.-L. Xie, X.-T. Gao, R. Zhang, C.-H. Wang, G.-Q. Yin and J. Zhou, *Green. Chem.*, 2017, **19**, 3908–3915.
- 13 M. Liu, X. Li, X. Lin, L. Liang, X. Gao and J. Sun, J. Mol. Catal. A: Chem., 2016, 412, 20–26.
- 14F. Cruz-Martinez, J. Martinez, M. A. Gaona, J. Fernandez-Baeza, L. F. Sanchez-Barba, A. M. Rodriguez, J. A. Castro-Osma, A. Otero and A. Lara-Sanchez, ACS Sustainable Chem. Eng., 2018, 6, 5322–5332.
- 15 N. H. Kim, E. Y. Seong, J. H. Kim, S. H. Lee, K. H. Ahn and E. J. Kang, J. CO₂ Util., 2019, **34**, 516–521.
- 16 Y.-L. Hu, M. Lu and X.-L. Yang, RSC Adv., 2015, 5, 67886–67891.
- 17 J. Martínez, J. Fernandez-Baeza, L. F. Sánchez-Barba, J.-A. Castro-Osma, A. Lar a-Sánchez and A. Otero, *ChemSusChem*, 2017, **10**, 2886–2890.
- 18 J. Sun, W. Cheng, Z. Yang, J. Wang, T. Xu, J. Xin and S. Zhang, *Green Chem*, 2014, 16, 3071–3078.