# **Supplementary Information**

## Mechanistic Insights into CO<sub>2</sub> Conversion to CO

### **Using Cyanide Manganese Complexes**

Kailyn Y. Cohen, Delaan G. Nedd, Rebecca Evans, and Andrew B. Bocarsly\*

Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, United States

\*Email: bocarsly@princeton.edu

#### Contents

| Solid-state ATR-IR spectra of MnBr, MnCN, MnBr(mesbpy), and MnCN(mesbpy)                          | S2     |
|---------------------------------------------------------------------------------------------------|--------|
| <sup>1</sup> H NMR of MnCN(mesbpy) and MnCN                                                       | S2     |
| <sup>13</sup> C NMR spectrum in DMSO-d <sub>6</sub> of MnCN(mesbpy)                               |        |
| Difference liquid phase IR spectrum of MnCN.                                                      | S3     |
| UV-vis of MnCN under irradiation in aerobic conditions                                            | S4     |
| Liquid phase IR of MnCN and PPh <sub>3</sub>                                                      | S5     |
| <sup>31</sup> P NMR of <b>MnCN</b> and PPh <sub>3</sub>                                           | S6     |
| UV-vis spectra of a mixture of s-MnCN and MnCN                                                    | S6     |
| Liquid phase IR spectra of MnCN(mesbpy) after irradiation                                         | S7     |
| Liquid phase IR spectra of MnBr(mesbpy) after irradiation                                         | S7     |
| CV of MnCN(mesbpy) at different scan rates                                                        | S8     |
| Nicholson and Shain Diagnostics for MnCN(mesbpy)                                                  | S9-11  |
| <sup>1</sup> H NMR spectrum in CDCl <sub>3</sub> of 4-hour bulk electrolysis from MnCN(mesbpy)    | S11    |
| Liquid phase IR spectra of a pristine sample of MnBr and [Mn(bpy)(CO) <sub>3</sub> ] <sup>-</sup> | S12    |
| Example Corrected Quantum Yield Calculation                                                       | S12    |
| X-ray diffraction analysis data for MnCN(mesbpy)                                                  | S12-14 |

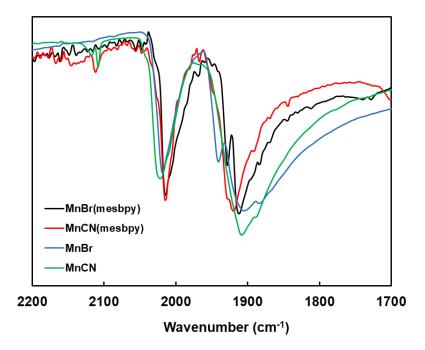
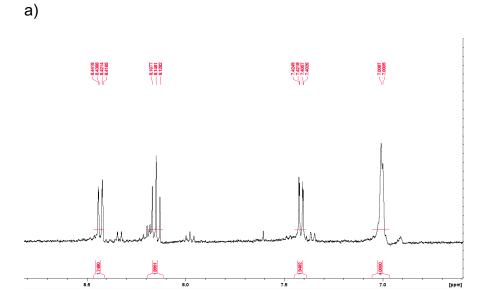
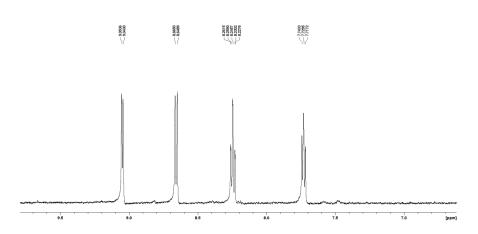





Figure S1. Solid-state ATR-IR spectra of MnBr, MnCN, MnBr(mesbpy), and

MnCN(mesbpy). Both MnCN and MnCN(mesbpy) have terminal CN-peaks at 2115 cm<sup>-1</sup>.





**Figure S2.** Aromatic region of the <sup>1</sup>H NMR of a) **MnCN(mesbpy)** in d-MeCN b) **MnCN** in DMSO-d<sub>6</sub>.

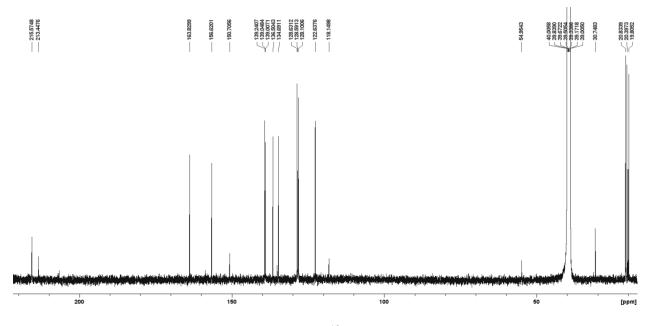
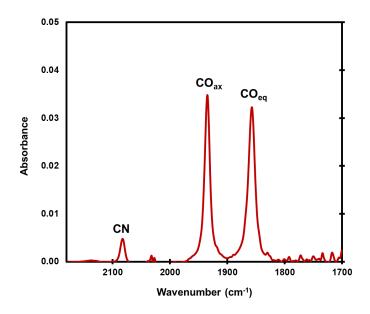
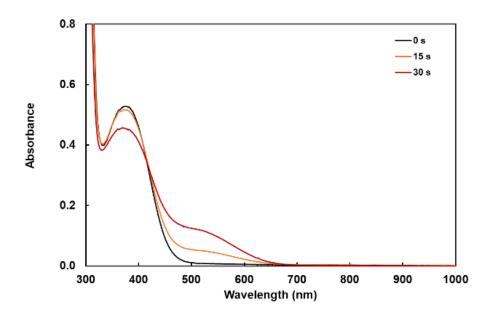
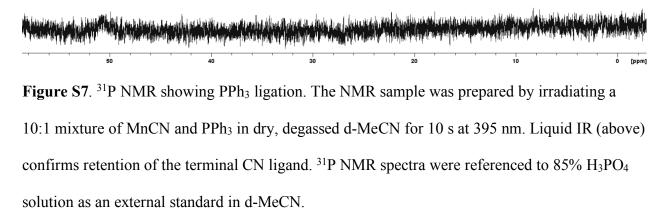
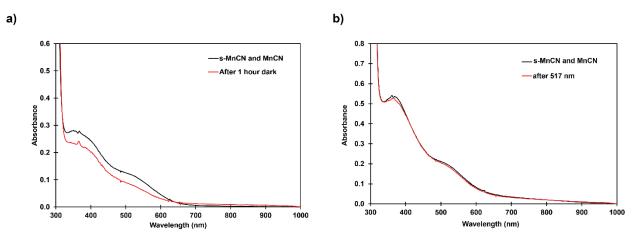





Figure S3. The carbonyl resonance region of the  ${}^{13}$ C NMR spectrum in DMSO-d<sub>6</sub> of

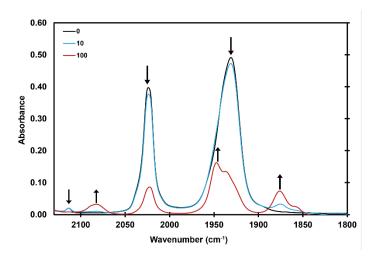
**MnCN(mesbpy)**, showing two carbonyl carbons at 215.5 ppm and one carbonyl carbon at 213.5 ppm. The terminal cyanide carbon is located at 163.8 ppm.



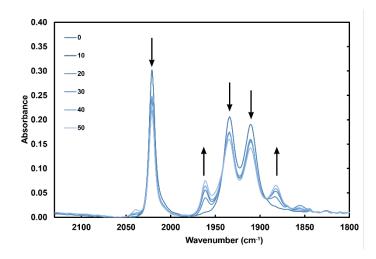

**Figure S4**. A difference liquid phase IR spectrum of **MnCN** after 5 s of irradiation at 395 nm, showing the formation of s-MnCN.




**Figure S5. MnCN** in MeCN under aerobic conditions before and after irradiation with a 395 nm LED ( $2.97 \times 10^{-9}$  einstein per s intensity). The increase in the peak at ~530 nm is associated with the formation of s-MnCN, while the MLCT band of MnCN at 380 nm decreases.

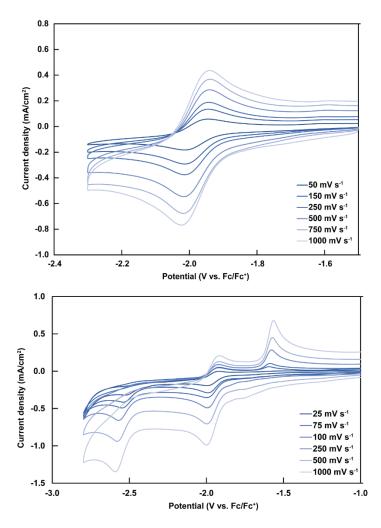



**Figure S6**. Liquid phase IR of a 10:1 mixture of **MnCN** and PPh<sub>3</sub> in dry, degassed MeCN after 10 s of irradiation at 395 nm showing retention of the terminal cyanide ligand. <sup>31</sup>P NMR (below) shows PPh<sub>3</sub> ligation to the Mn center.



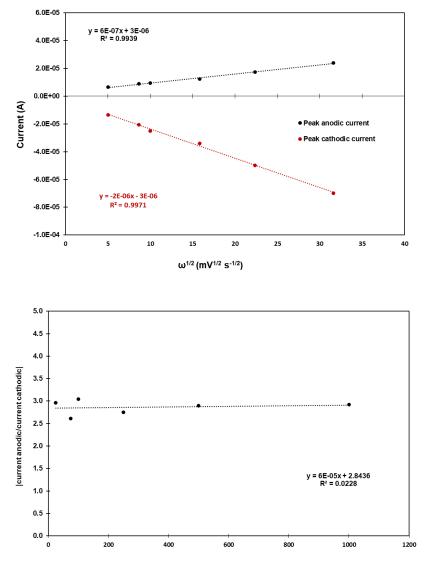



**Figure S8.** UV-vis spectra of a) a mixture of **s-MnCN** and **MnCN** before (black) and after (red) sitting in the dark over the course of 1 hour and b) a mixture of **s-MnCN** and **MnCN** before (black) and after (red) irradiation at 517 nm for 60 s in dry, degassed MeCN.

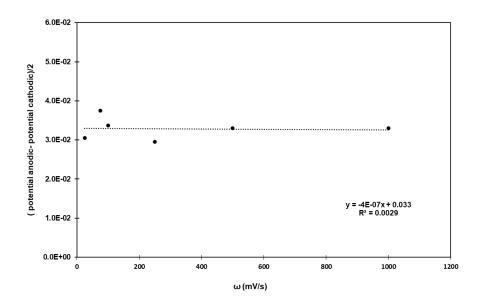



**Figure S9.** Liquid phase IR spectra of **MnCN(mesbpy)** after 100 s of 395 nm irradiation. The terminal cyanide peak at 2081 cm<sup>-1</sup> and the two carbonyl peaks at 1949 and 1873 cm<sup>-1</sup> indicate formation of **s-MnCN(mesbpy)**,<sup>1</sup> where one equatorial CO is replaced by a MeCN solvent ligand.

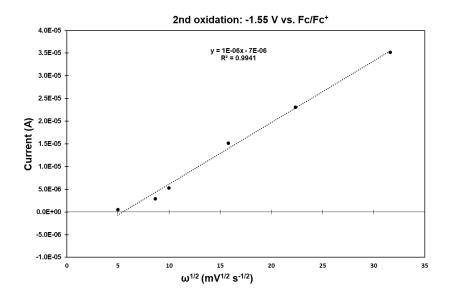



**Figure S10.** Liquid phase IR spectra of MnBr(mesbpy) after 50 s of 395 nm irradiation. The two carbonyl peaks at 1961 and 1882 cm<sup>-1</sup> indicate formation of a bis-acetonitrile species,<sup>1</sup> [Mn(mesbpy)(CO)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> where the Br ligand and an equatorial CO are replaced by MeCN solvent ligands. The small peak at 2038 cm<sup>-1</sup> is assigned to *mer*-MnBr(mesbpy).

Nicholson and Shain Diagnostics




**Figure S11.** Cyclic voltammetry of [Mn(mesbpy)(CO)<sub>3</sub>CN] (1 mM) under Ar in dry MeCN with 0.1 M TBAPF<sub>6</sub> supporting electrolyte. The switching potentials were set to -2.3 V vs Fc/Fc<sup>+</sup> (top) and -2.9 V vs Fc/Fc<sup>+</sup> (bottom).


Nicholson and Shain diagnostics were performed for all four peaks, revealing that the first reduction and first oxidation events are reversible, while all four features are diffusion-limited (**Figure S12-14**)







**Figure S12.** Nicholson and Shain Diagnostics for **MnCN(mesbpy)** for the first reduction peak at -1.98 V and the first oxidation peak at -1.91 V vs. Fc/Fc<sup>+</sup>.



**Figure S13.** Current vs. (scan rate)<sup>1/2</sup> for **MnCN(mesbpy)** for the second oxidation peak at -1.55 V vs.  $Fc/Fc^+$ .

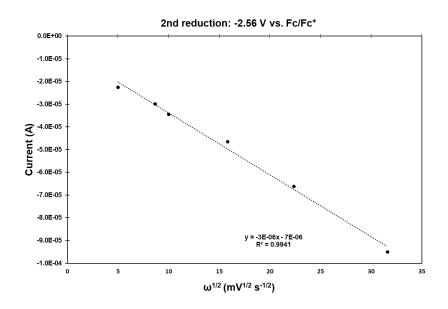
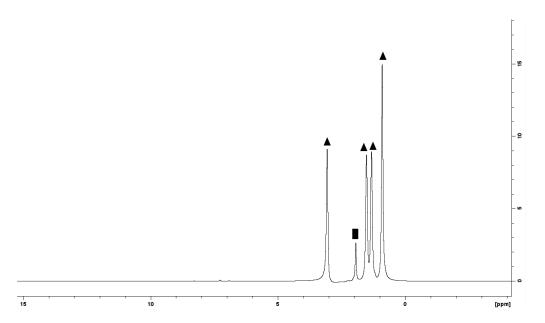
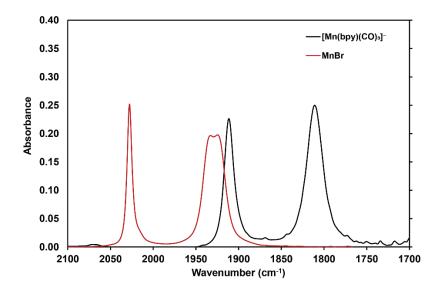





Figure S14. Current vs. (scan rate)<sup>1/2</sup> for MnCN(mesbpy) for the second reduction peak at -2.56

V vs.  $Fc/Fc^+$ .



**Figure S15.** A sample <sup>1</sup>H NMR spectrum in CDCl<sub>3</sub> of 4-hour bulk electrolysis run at the second reduction potential of **MnCN(mesbpy)** using 5% v/v H<sub>2</sub>O as the proton source. The MeCN solvent was mostly removed in vacuo, but is indicated with a , while the TBAPF<sub>6</sub> supporting electrolyte is indicated by  $\blacktriangle$ . No formic acid is observed, which would have signals appearing at 10.99 and 8.06 ppm.



**Figure S16.** Liquid phase IR spectra of a pristine sample of **MnBr** and [Mn(bpy)(CO)<sub>3</sub>]<sup>-</sup> in dry, degassed MeCN. [Mn(bpy)(CO)<sub>3</sub>]<sup>-</sup> was synthesized by added two equivalents of Na(Hg) to a sample of **MnBr** in MeCN.

**Example Quantum Yield Calculation:** 

$$Quantum Yield = \left(\frac{mol CO}{\frac{(light absorbed, W)(irradiation time, s)}{(energy per Einstein)}}\right)$$
$$0.51 = \left(\frac{30.45 \times 10^{-6} \ mol CO}{\frac{(0.00504 J/s)(3600 \ s)}{(\frac{hc}{395 \times 10^{-9} \ m})N_A}}\right)$$

Corrected Quantum Yield = Quantum Yield  $\times$  6.1%

$$0.031 = 0.51 \times 6.1\%$$

Intensity absorbed = 5.04 mW @ 395 nm

Energy per Einstein =  $(hc/395 \text{ E} - 9 \text{ m})*N_A$  where  $N_A$  = Avogadro's number

Irradiation time = 3600 s

#### X-ray Crystallography

A single crystal suitable for X-ray diffraction analysis of **MnCN(mesbpy)** was isolated by layering diethyl ether over a dichloromethane solution at 298 K, resulting in a translucent pale orange crystal. Single X-ray diffraction data were collected using a Bruker Apex Duo CCD detector using MoK $\alpha$  radiation. SADABS V2014/2 (Bruker AXS Inc.) was used to perform absorption corrections. The frames were integrated with the Bruker SAINT V8.34A software package.

Collection Data for **MnCN(mesbpy)** Formula: C<sub>32</sub>H<sub>28</sub>MnN<sub>3</sub>O<sub>3</sub> Formula Weight: 557.51 Crystal System: monoclinic Space Group: C 2/c

Unit Cell Dimensions:

a = 35.058(4) Å b = 8.1500(9) Å c = 23.637(3) Å alpha = 90 degrees beta = 115.810(4) degreesgamma = 90 degrees

Cell Volume: 6079.9 Å<sup>3</sup> Temperature: 100 K Radiation Type: MoK $\alpha$ Radiation Wavelength: 0.71073 Å Theta range for data collection: 1.290 degrees to 29.566 degrees Reflections Collected: 71338 Goodness-of-fit on F<sup>2</sup>: 1.033

Bond Lengths (Å): Mn1-N2, 2.099(2) Mn1-C37, 1.804(3) Mn1-C35, 1.803(3) Mn1-C35, 1.803(3) Mn1-C31, 2.003(2) Mn1-N7, 2.087(2) N2-C3, 1.347(4) N2-C16, 1.358(3) C3-C4, 1.486(3) C3-C13, 1.397(4) C4-C5, 1.396(3) C4-C11, 1.400(3) C5-C6, 1.512(3) C5-C7, 1.392(4) C6-H6A, 0.982 C6-H6B, 0.979 C6-H6C, 0.981 O38-C37, 1.150(4) O36-C35, 1.143(3) O34-C33, 1.143(3) N32-C31, 1.150(3) C7-H7, 0.95 C7-C8, 1.393(3) N7-C17, 1.371(4) N7-C21, 1.342(4) C8-C9, 1.503(4) C8-C10, 1.379(4) C9-H9A, 0.98 C9-H9B, 0.98 C9-H9C, 0.98 C10-H10, 0.95 C10-C11, 1.386(4) C11-C12, 1.511(4) C12-H12A, 0.98 C12-H12B, 0.981 C12-H12C, 0.979 C13-H13, 0.95 C13-C14, 1.367(4) C14-H14, 0.951 C14-C15, 1.367(5) C15-H15, 0.95 C15-C16, 1.405(4) C16-C17, 1.451(5) C17-C18, 1.392(3) C18-H18, 0.95 C18-C19, 1.367(5) C19-H19, 0.95 C19-C20, 1.374(5) C20-H20, 0.95 C20-C21, 1.401(4) C21-C22, 1.497(4) C22-C23, 1.401(4) C22-C29, 1.391(3) C23-C24, 1.507(3) C23-C25, 1.379(4) C24-H24A, 0.981 C24-H24B, 0.979 C24-H24C, 0.98 C25-H25, 0.95

| C25-C26, 1.398(3)                   |
|-------------------------------------|
| C26-C27, 1.498(5)                   |
| C26-C28, 1.384(5)                   |
| C27-H27A, 0.979                     |
| С27-Н27В, 0.98                      |
| С27-Н27С, 0.98                      |
| C28-H28, 0.95                       |
| C28-C29, 1.393(4)                   |
|                                     |
| C29-C30, 1.508(5)                   |
| C29-C30, 1.508(5)<br>C30-H30A, 0.98 |
|                                     |

Bond Angles (degrees):

| N2                                                 | Mn1                                                      | C37                                                     | 174.3(1)                                                                                              |
|----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| N2                                                 | Mn1                                                      | C35                                                     | 98.6(1)                                                                                               |
| N2                                                 | Mn1                                                      | C33                                                     | 97.8(1)                                                                                               |
| N2<br>N2                                           | Mn1                                                      | C33                                                     | 84.60(9)                                                                                              |
| N2<br>N2                                           | Mn1                                                      | N7                                                      | 78.49(8)                                                                                              |
| C37                                                | Mn1                                                      | C35                                                     |                                                                                                       |
|                                                    |                                                          |                                                         | 81.2(1)                                                                                               |
| C37                                                | Mn1                                                      | C33                                                     | 87.9(1)                                                                                               |
| C37                                                | Mn1                                                      | C31                                                     | 89.8(1)                                                                                               |
| C37                                                | Mn1                                                      | N7                                                      | 101.0(1)                                                                                              |
| C35                                                | Mn1                                                      | C33                                                     | 91.3(1)                                                                                               |
| C35                                                | Mn1                                                      | C31                                                     | 87.8(1)                                                                                               |
| C35                                                | Mn1                                                      | N7                                                      | 172.4(1)                                                                                              |
| C33                                                | Mn1                                                      | C31                                                     | 177.5(1)                                                                                              |
| C33                                                | Mn1                                                      | N7                                                      | 96.1(1)                                                                                               |
| C31                                                | Mn1                                                      | N7                                                      | 84.9(1)                                                                                               |
| Mn1                                                | N2                                                       | C3                                                      | 129.0(2)                                                                                              |
| Mn1                                                | N2                                                       | C16                                                     | 112.2(2)                                                                                              |
| C3                                                 | N2                                                       | C16                                                     | 117.4(2)                                                                                              |
| N2                                                 | ~                                                        |                                                         |                                                                                                       |
|                                                    | C3                                                       | C4                                                      | 121.0(2)                                                                                              |
| N2                                                 | C3<br>C3                                                 | C4<br>C13                                               | 121.0(2)<br>122.2(2)                                                                                  |
|                                                    |                                                          |                                                         |                                                                                                       |
| N2                                                 | C3                                                       | C13                                                     | 122.2(2)                                                                                              |
| N2<br>C4                                           | C3<br>C3                                                 | C13<br>C13                                              | 122.2(2)<br>116.8(2)                                                                                  |
| N2<br>C4<br>C3                                     | C3<br>C3<br>C4                                           | C13<br>C13<br>C5                                        | 122.2(2)<br>116.8(2)<br>119.0(2)                                                                      |
| N2<br>C4<br>C3<br>C3                               | C3<br>C3<br>C4<br>C4                                     | C13<br>C13<br>C5<br>C11                                 | 122.2(2)<br>116.8(2)<br>119.0(2)<br>119.6(2)<br>120.8(2)                                              |
| N2<br>C4<br>C3<br>C3<br>C5                         | C3<br>C3<br>C4<br>C4<br>C4                               | C13<br>C13<br>C5<br>C11<br>C11                          | 122.2(2)<br>116.8(2)<br>119.0(2)<br>119.6(2)<br>120.8(2)<br>121.4(2)                                  |
| N2<br>C4<br>C3<br>C3<br>C5<br>C4                   | C3<br>C3<br>C4<br>C4<br>C4<br>C4<br>C5                   | C13<br>C13<br>C5<br>C11<br>C11<br>C6                    | 122.2(2)<br>116.8(2)<br>119.0(2)<br>119.6(2)<br>120.8(2)                                              |
| N2<br>C4<br>C3<br>C3<br>C5<br>C4<br>C4             | C3<br>C3<br>C4<br>C4<br>C4<br>C4<br>C5<br>C5             | C13<br>C13<br>C5<br>C11<br>C11<br>C6<br>C7              | 122.2(2)<br>116.8(2)<br>119.0(2)<br>119.6(2)<br>120.8(2)<br>121.4(2)<br>118.7(2)<br>119.8(2)          |
| N2<br>C4<br>C3<br>C3<br>C5<br>C4<br>C4<br>C6       | C3<br>C3<br>C4<br>C4<br>C4<br>C4<br>C5<br>C5<br>C5       | C13<br>C13<br>C5<br>C11<br>C11<br>C6<br>C7<br>C7        | 122.2(2)<br>116.8(2)<br>119.0(2)<br>119.6(2)<br>120.8(2)<br>121.4(2)<br>118.7(2)                      |
| N2<br>C4<br>C3<br>C3<br>C5<br>C4<br>C4<br>C6<br>C5 | C3<br>C3<br>C4<br>C4<br>C4<br>C5<br>C5<br>C5<br>C5<br>C6 | C13<br>C13<br>C5<br>C11<br>C11<br>C6<br>C7<br>C7<br>H6A | 122.2(2)<br>116.8(2)<br>119.0(2)<br>119.6(2)<br>120.8(2)<br>121.4(2)<br>118.7(2)<br>119.8(2)<br>109.4 |

| H6A        | C6         | H6B          | 109.5    |
|------------|------------|--------------|----------|
| H6A        | C6         | H6C          | 109.5    |
| H6B        | C6         | H6C          | 109.5    |
| Mn1        | C37        | O38          | 170.4(2) |
| Mn1        | C35        | O36          | 171.7(2) |
| Mn1        | C33        | O34          | 173.2(2) |
|            | C33<br>C31 |              |          |
| Mn1        |            | N32          | 178.7(2) |
| C5         | C7         | H7           | 119.3    |
| C5         | C7         | C8           | 121.5(2) |
| H7         | C7         | C8           | 119.3    |
| Mn1        | N7         | C17          | 112.8(2) |
| Mn1        | N7         | C21          | 129.0(2) |
| C17        | N7         | C21          | 117.8(2) |
| C7         | C8         | C9           | 120.7(3) |
| C7         | C8         | C10          | 118.3(3) |
| C9         | C8         | C10          | 121.0(3) |
| C8         | C9         | H9A          | 109.5    |
| C8         | C9         | H9B          | 109.5    |
| C8         | C9         | H9C          | 109.5    |
| H9A        | C9         | H9B          | 109.4    |
| H9A        | C9         | H9C          | 109.5    |
| H9B        | C9         | H9C          | 109.4    |
| C8         | C10        | H10          | 118.8    |
| C8         | C10        | C11          | 122.4(3) |
| H10        | C10        | C11          | 118.8    |
| C4         | C11        | C10          | 118.3(2) |
| C4         | C11        | C10<br>C12   | 120.7(2) |
| C10        | C11        | C12<br>C12   | 120.7(2) |
| C10<br>C11 | C11<br>C12 | H12A         | 121.0(3) |
| C11<br>C11 |            | H12A<br>H12B |          |
|            | C12        |              | 109.5    |
| C11        | C12        | H12C         | 109.4    |
| H12A       | C12        | H12B         | 109.5    |
| H12A       | C12        | H12C         | 109.4    |
| H12B       | C12        | H12C         | 109.5    |
| C3         | C13        | H13          | 120.1    |
| C3         | C13        | C14          | 119.9(3) |
| H13        | C13        | C14          | 120      |
| C13        | C14        | H14          | 120.6    |
| C13        | C14        | C15          | 118.7(3) |
| H14        | C14        | C15          | 120.7    |
| C14        | C15        | H15          | 120.2    |
| C14        | C15        | C16          | 119.6(3) |
| H15        | C15        | C16          | 120.2    |
| N2         | C16        | C15          | 121.8(2) |
| N2         | C16        | C17          | 115.9(2) |
|            |            |              |          |

| C15        | C16 | C17        | 122.3(2) |
|------------|-----|------------|----------|
| N7         | C17 | C16        | 116.1(2) |
|            |     |            |          |
| N7         | C17 | C18        | 122.6(2) |
| C16        | C17 | C18        | 121.4(2) |
| C17        | C18 | H18        | 120.5    |
| C17        | C18 | C19        | 118.9(3) |
| H18        | C18 | C19        | 120.6    |
| C18        | C19 | H19        | 120.5    |
| C18        | C19 | C20        | 119.1(3) |
| H19        | C19 | C20        | 120.4    |
| C19        | C20 | H20        | 119.8    |
| C19        |     |            |          |
|            | C20 | C21        | 120.3(3) |
| H20        | C20 | C21        | 119.9    |
| N7         | C21 | C20        | 121.3(3) |
| N7         | C21 | C22        | 121.0(2) |
| C20        | C21 | C22        | 117.7(2) |
| C21        | C22 | C23        | 117.8(2) |
| C21        | C22 | C29        | 121.1(2) |
| C23        | C22 | C29        | 120.8(2) |
| C22        | C23 | C24        | 121.3(2) |
| C22        | C23 | C25        | 118.8(2) |
| C24        | C23 | C25        | 119.9(3) |
| C23        | C24 | H24A       | 109.5    |
|            |     |            |          |
| C23        | C24 | H24B       | 109.5    |
| C23        | C24 | H24C       | 109.4    |
| H24A       | C24 | H24B       | 109.4    |
| H24A       | C24 | H24C       | 109.4    |
| H24B       | C24 | H24C       | 109.5    |
| C23        | C25 | H25        | 119      |
| C23        | C25 | C26        | 121.9(3) |
| H25        | C25 | C26        | 119      |
| C25        | C26 | C27        | 120.4(3) |
| C25        | C26 | C28        | 117.8(3) |
|            |     |            | 121.9(3) |
| C27        | C26 | C28        | ~ /      |
| C26        | C27 | H27A       | 109.4    |
| C26        | C27 | H27B       | 109.4    |
| C26        | C27 | H27C       | 109.5    |
| H27A       | C27 | H27B       | 109.5    |
| H27A       | C27 | H27C       | 109.5    |
| H27B       | C27 | H27C       | 109.5    |
| C26        | C28 | H28        | 119      |
| C26        | C28 | C29        | 122.1(3) |
| H28        | C28 | C29        | 118.9    |
| C22        | C29 | C28        | 118.5(3) |
| C22<br>C22 | C29 | C20<br>C30 | 121.6(3) |
| 044        | 027 | 050        | 121.0(3) |

| C28  | C29 | C30  | 119.7(3) |
|------|-----|------|----------|
| C29  | C30 | H30A | 109.5    |
| C29  | C30 | H30B | 109.5    |
| C29  | C30 | H30C | 109.5    |
| H30A | C30 | H30B | 109.4    |
| H30A | C30 | H30C | 109.5    |
| H30B | C30 | H30C | 109.4    |

1. Yempally, V.; Moncho, S.; Hasanayn, F.; Fan, W. Y.; Brothers, E. N.; Bengali, A. A., Ancillary Ligand Effects upon the Photochemistry of  $Mn(bpy)(CO)_3X$  Complexes (X = Br<sup>-</sup>, PhCC<sup>-</sup>). *Inorganic Chemistry* **2017**, *56* (18), 11244-11253.