Supporting Information

Organometallic Ir(III) complexes: post-synthetic modification, photophysical properties and binuclear complex construction

Anastasia Yu. Gitlina,^a Viktoria Khistiaeva,^b Alexey Melnikov,^c Mariia Ivonina,^d Vladimir Sizov,^b Dar'ya Spiridonova,^e Anna Makarova,^f Denis Vyalikh,^{j,h} and Elena Grachova^{b*}

^a Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

^b Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia

^c Centre for Nano- and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia

^d Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

^e Centre for X-ray Diffraction Studies, St Petersburg University, 199034 St. Petersburg, Russia

^f Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany

^j Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain

^h IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain

Correspondence: <u>e.grachova@spbu.ru</u>

Content

Content	
Scheme S1.	Abbreviations of C^N and N^N ligands
Scheme S2.	Synthesis of the boronic ether Bpinpbpy . $i = \text{KOAc}$, DMSO; $ii = \text{Pd}(\text{PPh}_3)_4$,
80°C, overni	ght5
Synthesis of	5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2,2'-bipyridine,
Bpinpbpy	5
Table S1.	Crystal data and structure refinement for 8
Table S2.	Selected structural parameters for 87
Figure S1.	ESI ⁺ MS spectra of Bpinpbpy with simulated isotope pattern of key signal8
Figure S2.	¹ H NMR spectra of Bpinpbpy , aromatic range, acetone-d ₆ , r.t
Figure S3.	ESI ⁺ MS spectra of complexes $4-6$ with simulated isotope pattern of key signal9
Figure S4.	ESI ⁺ MS spectra of complexes $7-9$ with simulated isotope pattern of key signal10
Figure S5.	¹ H and ¹ H ¹ H COSY NMR spectra of 4 , aromatic range, acetone-d ₆ , r.t11
Figure S6.	¹ H and ¹ H ¹ H COSY NMR spectra of 5 , aromatic range, acetone-d ₆ , r.t12
Figure S7.	¹ H and ¹ H ¹ H COSY NMR spectra of 6 , aromatic range, acetone-d ₆ , r.t13
Figure S8.	¹ H and ¹ H ¹ H COSY NMR spectra of 7, aromatic range, acetone-d ₆ , r.t
Figure S9.	¹ H and ¹ H ¹ H COSY NMR spectra of 8 , aromatic range, acetone-d ₆ , r.t15
Figure S10.	¹ H and ¹ H ¹ H COSY NMR spectra of 9 , aromatic range, acetone-d ₆ , r.t16
Figure S11.	DFT-optimized structures of the complexes 4–6 17
Figure S12.	DFT-optimized structures of the complexes 7–9
Figure S13. Yb).	DFT-optimized structures of binuclear complexes 10 and 11 ^{Ln} (Ln = Nd, Gd,
Figure S14. shown. Colo	Visualization of molecular arrangement in 8 crystal. Anions $[PF_6]^-$ are not ur legend: carbon – grey, nitrogen – sky blue, iridium – orange, hydrogen – white.20
Figure S15.	¹ H and ¹ H ¹ H COSY NMR spectra of 10 , aromatic range, acetone-d ₆ , r.t21
Figure S16.	ESI ⁺ MS spectra of 10 with simulated isotope pattern of key signal
Figure S17.	FTIR spectra of 11 ^{Ln} , KBr pellet, r.t

	3
Figure S18.	High-resolution N 1s XPS spectra of 6 and 11 ^{Ln} 23
Figure S19.	Deconvolution of the emission spectrum of 10 into two independent bands; (a)
aerated DCE	solution, (b) deaerated DCE solution, (c) difference between native emission band
of 6 and emis	ssion band used for deconvolution {Ir(pybt) ₂ }24
Figure S20.	CIE 1931 coordinates for 10 (A = aerated, D = de-aerated) in solution, DCE, r.t
Figure S21.	UV-vis spectra of 4, 6 and 10 (left) and normalized excitation spectra of 10
(right), DCE	solution, r.t
Figure S22.	Comparison of solid-state emission of 6 and 11^{Gd} at variable temperature with
emission of (in DCE solution
Table S3.	Optical and photophysical properties of 11^{Ln} (Ln = Nd, Gd, Yb) complexes26
Table S4.	The energy of f \rightarrow f transitions of Nd(III) from the ⁴ I _{9/2} ground state between
⁴ F _{3/2} .(emissiv	ve level) and ${}^{2}G_{7/2}$ level. ²
Figure S23.	Fragment decomposition of complexes used for excited state population analysis.
Figure S24.	TDDFT spectra of 4–6. Singlets with $f > 0.1$ are indicated. Experimental spectra
are given for	comparison
Figure S25.	TDDFT spectra of 7–9. Singlets with $f > 0.1$ are indicated. Experimental spectra
are given for	comparison
Table S5.	Natural Transition Orbital analysis of singlets with oscillator strength $f > 0.1$ in
4 – 9 .	
Figure S26.	Excited state diagrams for 4–9 obtained from TDDFT calculations37
Table S6.	Natural Transition Orbital analysis of first triplets in 4–9
Figure S27.	TDDFT spectra of 10. Singlets with $f > 0.1$ are indicated. Experimental spectra
are given for	comparison
Table S7.	Natural Transition Orbital analysis of singlets with oscillator strength $f > 0.1$ in
complex 10.	
Figure S28.	Excited state diagrams for 10 obtained from TDDFT calculations. Degenerated
T ₂ and T ₃ sta	tes located on pybt ligands and T ₄ state located on N ^N ligand are indicated41
Table S8.	Natural Transition Orbital analysis of low-energy excited states in complex 10 41

Figure S29.	TDDFT spectra of 11^{Ln} (Ln = Nd, Gd, Yb). Singlets with $f > 0.1$ are indicated.	
Experimental	spectra are given for comparison.	43
Table S9.	Natural Transition Orbital analysis of singlets with oscillator strength $f > 0.1$ in	
$11^{\mathrm{Ln}}(\mathrm{Ln}=\mathrm{N}$	d, Gd, Yb)	44
Figure S30.	Excited state diagrams for 11^{Ln} (Ln = Nd, Gd, Yb) obtained from TDDFT	
calculations.	Energy levels of lanthanides are shown in colour	50
Table S10.	Natural Transition Orbital analysis of first triplets in 11^{Ln} (Ln = Nd, Gd, Yb)	51
References		51

Scheme S1. Abbreviations of C^N and N^N ligands.

Scheme S2. Synthesis of the boronic ether **Bpinpbpy**. i = KOAc, DMSO; $ii = \text{Pd}(\text{PPh}_3)_4$, 80°C, overnight.

Synthesis of 5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2,2'-bipyridine, Bpinpbpy

5-(4-bromophenyl)-2,2'-bipyridine (**Bpbpy**) was synthesized according to the published procedure.¹ Bis(pinacolato)diboron was purchased from Aldrich/Merck and used without further purification. **Bpbpy** (500 mg, 1.61 mmol, 1 equiv.), bis(pinacolato)diboron (816 mg, 3.22 mmol, 2 equiv.) and KOAc (473 mg, 4.82 mmol, 3 equiv.) were mixed and dissolved in 30 ml of degassed DMSO. Then Pd(PPh₃)₄ (5 mol. %, 93.1 mg, 0.08 mmol) was added, and the reaction mixture was stirring overnight at 80 °C. After cooling to room temperature the reaction mixture was diluted with water, and the product was extracted by EtOAc three times. EtOAc layer was washed twice with water and brine and dried over anhydrous MgSO4. The filtrate was evaporated, and the crude was washed with Et₂O. The boronic ether **Bpinpbpy** was dried under reduced pressure resulting in a pale yellow crystalline precipitate. Yield: 486 mg (84 %). ¹H NMR (400 MHz, (CD₃)₂CO, 298 K): δ 9.01 (d, *J* = 1.9 Hz, 1H, pyridine ring), 8.75 – 8.66 (m, 1H, pyridine ring), 8.58 (d, *J* =

8.3 Hz, 1H, pyridine ring), 8.53 (d, J = 8.0 Hz, 1H, pyridine ring), 8.23 (dd, J = 8.3, 2.4 Hz, 1H, pyridine ring), 7.98 – 7.87 (m, 1H, pyridine ring), 7.86 – 7.78 (m, 2H, phenyl ring), 7.82 (d, J = 8.3 Hz, 2H, phenyl ring), 7.43 (ddd, J = 7.5, 4.8, 1.0 Hz, 1H), 1.37 (s, 12H, CH₃). HRMS (ESI/QTOF) m/z: [M+H]⁺ calculated for [C₂₂H₂₄BN₂O₂]⁺ 359.1932, found 359.1939. Elem. anal. calculated for C₂₂H₂₃BN₂O₂: C 73.76; H 6.47; N 7.82. Found: C 73.54; H 6.45; N 7.86.

Identification code	12309_vk281_sq
Empirical formula	$C_{92}H_{68}F_6Ir_2N_{16}P$
Formula weight	1926.99
Temperature/K	99.99(13)
Crystal system	monoclinic
Space group	I2/a
a/Å	42.9654(2)
b/Å	33.9313(2)
c/Å	15.77980(10)
α/°	90
β/°	96.7680(10)
γ/°	90
Volume/Å ³	22844.6(2)
Ζ	8
$ ho_{calc} \mathrm{g/cm^3}$	1.121
μ/mm^{-1}	4.999
F(000)	7640.0
Crystal size/mm ³	0.2 imes 0.16 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	4.142 to 140
Index ranges	$-51 \le h \le 52, -41 \le k \le 38, -19 \le l \le 19$
Reflections collected	119978
Independent reflections	21648 [$R_{int} = 0.0495, R_{sigma} = 0.0292$]
Data/restraints/parameters	21648/3/1097
Goodness-of-fit on F ²	1.046
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0344, wR_2 = 0.0947$
Final R indexes [all data]	$R_1 = 0.0359, wR_2 = 0.0964$
Largest diff. peak/hole / e Å $^{-3}$	1.70/-1.60
CCDC Deposition Number	2224674

Table S1.Crystal data and structure refinement for 8

Bond length, Å				
Ir1-N44	2.058(3)			
Ir1-C43	2.027(3)			
Ir1–N3	2.134(2)			
Ir1-N32	2.044(3)			
Ir1-N2	2.136(2)			
Ir1-C55	2.007(3)			
	Angle, °			
N2-Ir1-N44	91.5(1)			
C55-Ir1-N44	81.0(1)			
C43-Ir1-N44	95.0(1)			
N3-Ir1-N44	97.4(1)			
N2-Ir1-N32	93.2(1)			
C55-Ir1-N32	94.8(1)			
C43-Ir1-N32	80.4(1)			
N3-Ir1-N32	87.6(1)			
N44-Ir1-N32	173.8(1)			
N2-Ir1-C43	173.3(1)			
N3-Ir1-C55	169.4(1)			

Table S2.Selected structural parameters for 8

Figure S1. ESI⁺ MS spectra of **Bpinpbpy** with simulated isotope pattern of key signal.

Figure S2. ¹H NMR spectra of **Bpinpbpy**, aromatic range, acetone-d₆, r.t.

Figure S3. ESI⁺ MS spectra of complexes 4-6 with simulated isotope pattern of key signal.

Figure S4. ESI⁺ MS spectra of complexes 7-9 with simulated isotope pattern of key signal.

Figure S5. ¹H and ¹H¹H COSY NMR spectra of 4, aromatic range, acetone-d₆, r.t.

Figure S6. ¹H and ¹H¹H COSY NMR spectra of 5, aromatic range, acetone-d₆, r.t.

Figure S7. ¹H and ¹H¹H COSY NMR spectra of 6, aromatic range, acetone-d₆, r.t.

Figure S8. ¹H and ¹H¹H COSY NMR spectra of 7, aromatic range, acetone-d₆, r.t.

Figure S9. ¹H and ¹H¹H COSY NMR spectra of 8, aromatic range, acetone-d₆, r.t.

Figure S10. ¹H and ¹H¹H COSY NMR spectra of 9, aromatic range, acetone-d₆, r.t.

Figure S11. DFT-optimized structures of the complexes 4–6.

Figure S12. DFT-optimized structures of the complexes 7–9.

Figure S13. DFT-optimized structures of binuclear complexes 10 and 11^{Ln} (Ln = Nd, Gd, Yb).

Figure S14. Visualization of molecular arrangement in **8** crystal. Anions $[PF_6]^-$ are not shown. Colour legend: carbon – grey, nitrogen – sky blue, iridium – orange, hydrogen – white.

Figure S15. ¹H and ¹H¹H COSY NMR spectra of 10, aromatic range, acetone-d₆, r.t.

Figure S16. ESI⁺ MS spectra of **10** with simulated isotope pattern of key signal corresponding to binuclear composition.

Figure S17. FTIR spectra of 11^{Ln}, KBr pellet, r.t.

Figure S18. High-resolution N 1s XPS spectra of 6 and 11^{Ln}.

Figure S19. Deconvolution of the emission spectrum of **10** into two independent bands; (a) aerated DCE solution, (b) deaerated DCE solution, (c) difference between native emission band of **6** and emission band used for deconvolution $\{Ir(pybt)_2\}$.

Figure S20. CIE 1931 coordinates for 10 (A = aerated, D = de-aerated) in solution, DCE, r.t.

Figure S21. UV-vis spectra of **4**, **6** and **10** (left) and normalized excitation spectra of **10** (right), DCE solution, r.t.

Figure S22. Comparison of solid-state emission of 6 and 11^{Gd} at variable temperature with emission of 6 in DCE solution.

Table S3.	Optical and	photophysica	l properties of 11 ^{Ln}	(Ln = Nd, Gd, Yb)) complexes
-----------	-------------	--------------	----------------------------------	-------------------	-------------

	λ_{abs} , nm (ϵ , 10 ³ M ⁻¹ cm ⁻¹)	λ _{em} , [*] nm [media]	$ au_{obs}, \mu s \ [\lambda_{em}, nm]^{\#}$
11 Nd	289(81), 305(76) ^{sh} , 325(85), 337(83) ^{sh} ,	689 [DCE]	_
	345(84), 422(10) ^{sh} , 440(9)		
11 ^{Gd}	289(77), 305(71) ^{sh} , 325(81), 337(78) ^{sh} ,	r.t. 645 [solid]	_
	345(79), 422(10) ^{sh} , 440(9)	77K 603** [solid]	
11 ^{Yb}	289(71), 305(66) ^{sh} , 325(74), 337(72) ^{sh} ,	689; 975 [DCE]	0.3 [689];
	345(73), 422(10) ^{sh} , 440(9)		9.8 [975]

* λ_{exct} 351 nm

** vibronic spacing is *ca*. 1250 cm^{-1}

deaerated DCE solution

Table S4. The energy of $f \rightarrow f$ transitions of Nd(III) from the ${}^{4}I_{9/2}$ ground state between ${}^{4}F_{3/2}$.(emissive level) and ${}^{2}G_{7/2}$ level.²

Level	E, cm^{-1}	_
² G _{7/2}	17460	
${}^{4}G_{5/2}$	17300	
$^{2}H_{11/2}$	15870	
${}^{4}F_{9/2}$	14700	
⁴ F _{7/2} , ⁴ S _{3/2}	13500	
$^{2}H_{9/2}$	12590	
${}^{4}F_{5/2}$	12480	
⁴ F _{3/2}	11460	

Figure S23. Fragment decomposition of complexes used for excited state population analysis.

Figure S24. TDDFT spectra of 4-6. Singlets with f > 0.1 are indicated. Experimental spectra are given for comparison.

Figure S25. TDDFT spectra of 7–9. Singlets with f > 0.1 are indicated. Experimental spectra are given for comparison.

Excited	λ,	r	NTO and its	NTO [*] and its	Transition
state	nm	J	population over fragments [#]	population over fragments [#]	character
			4		
S_7	352	0.4268	Fr4 = 0.41 Fr2 = 0.36 Fr3 =		LC, LLCT
			0.14, Fr1 = 0.08, Fr5 = 0.01	Fr4 = 0.98, Fr1 = 0.01	
S ₁₀	342	0.6221	Fr4 = 0.52, Fr2 = 0.22, Fr1 = 0.14, Fr3 = 0.10, Fr5 = 0.01	Fr4 = 0.98, Fr1 = 0.03	LC, LLCT, MLCT
S ₁₄	315	1.0882	Fr5 = 0.99 Fr4 = 0.01	Fr5 = 0.99	LC
S ₃₂	293	0.1980	Fr3 = 0.35, Fr1 = 0.33, Fr2 = 0.27, Fr4 = 0.05	Fr2 = 0.52, Fr3 = 0.43, Fr1 = 0.05	LC, MLCT
S46	272	0.1494	Fr2 = 0.47, Fr3 = 0.41, Fr1 = 0.10, Fr4 = 0.02	Fr4 = 1.00, Fr1 = 0.02	LLCT, MLCT
S ₇₀	258	0.3741	Fr1 = 0.51, Fr2 = 0.24, Fr3 = 0.23, Fr4 = 0.02	Fr1 = 0.38, Fr3 = 0.32, Fr2 = 0.28, Fr4 = 0.02	LC, MC

Table S5.Natural Transition Orbital analysis of singlets with oscillator strength f > 0.1 in

4–9.

Fr2 = 0.49, Fr3 = 0.47, Fr1 = 0.03

S ₁₈	337	0.7174	Fr5 = 0.83, Fr4 = 0.13, Fr1 = 0.02, Fr3 = 0.02	Fr4 = 0.40, Fr3 = 0.37, Fr5 = 0.20, Fr1 = 0.04	LC, LLCT
S ₂₁	332	0.6597	Fr5 = 0.61, Fr4 = 0.35, Fr2 =	Fr4 = 0.33, Fr5 = 0.32, Fr3 =	LC, LLCT
S ₂₃	329	0.1506	0.02, Fr3 = 0.01 Fr5 = 0.45, Fr4 = 0.29, Fr2 = 0.24, Fr1 = 0.02	0.19, $Fr2 = 0.15$, $Fr1 = 0.01$ Fr2 = 0.83, $Fr5 = 0.07$, $Fr1 = 0.05$, $Fr4 = 0.05$	LC, LLCT
S ₃₀	316	0.1508	Fr5 = 0.61, Fr4 = 0.38	Fr4 = 0.62, Fr5 = 0.34, Fr3 = 0.04, Fr2 = 0.02	LC
S ₃₉	302	0.1655	Fr1 = 0.59, Fr3 = 0.23, Fr2 = 0.10, Fr4 = 0.07	Fr3 = 0.93, Fr1 = 0.08	LC, MLCT
S ₄₀	302	0.1739	Fr1 = 0.60, Fr2 = 0.22, Fr3 = 0.11, Fr4 = 0.07	Fr2 = 0.93, Fr1 = 0.08	LC, MLCT
			9		
S ₃	448	0.1075	Fr2 = 0.37, Fr3 = 0.33, Fr1 = 0.29, Fr4 = 0.01	Fr3 = 0.61, Fr2 = 0.33, Fr1 = 0.09	LC, MLCT

Figure S26. Excited state diagrams for 4–9 obtained from TDDFT calculations.

	$\Delta E(S_0-T_1),$	NTO and its	NTO [*] and its	Transition
Complex	eV	population over fragments [#]	population over fragments [#]	character
4	2.6594	Fr4 = 0.60, Fr1 = 0.21, Fr3 = 0.11, Fr2 = 0.08	Fr4 = 0.98, Fr1 = 0.03	LC, MLCT
7	2.5122	Fr4 = 0.81, Fr5 = 0.14, Fr1 = 0.04, Fr3 = 0.01	Fr4 = 0.95, Fr5 = 0.04, Fr1 = 0.02	LC
5	2.4094	Fr1 = 0.43, Fr3 = 0.25, Fr2 = 0.24, Fr4 = 0.07	Fr4 = 0.96, Fr1 = 0.04, Fr5 = 0.02	LLCT, MLCT
8	2.4168	Fr1 = 0.43, Fr3 = 0.25, Fr2 = 0.24, Fr4 = 0.08	Fr4 = 0.97, Fr1 = 0.04, Fr5 = 0.01	LLCT, MLCT
6	2.1991	Fr3 = 0.38, Fr2 = 0.34, Fr1 = 0.27, Fr4 = 0.01	Fr4 = 0.88, Fr3 = 0.04, Fr2 = 0.03, Fr1 = 0.03, Fr5 = 0.01	LLCT, MLCT
9	2.1240	Fr3 = 0.39, Fr2 = 0.34, Fr1 = 0.26, Fr4 = 0.01	Fr4 = 0.85, Fr3 = 0.06, Fr2 = 0.04, Fr1 = 0.03, Fr5 = 0.01	LLCT, MLCT

Table S6.Natural Transition Orbital analysis of first triplets in 4–9.

Figure S27. TDDFT spectra of **10**. Singlets with f > 0.1 are indicated. Experimental spectra are given for comparison.

Table S7.Natural Transition Orbital analysis of singlets with oscillator strength f > 0.1 incomplex 10.

Excited	λ,	ſ	NTO and its	NTO* and its	Transition				
state	nm	J	population over fragments [#]	population over fragments [#]	character				
S ₅	448	448	448	448	448 0.	0.1015			LC, MLCT
			Fr2 = 0.39, Fr3 = 0.31, Fr1 =	Fr3 = 0.69 Fr2 = 0.24, Fr1 =					
			0.29, Fr4 = 0.01	0.09					
S9	403	1.4490			LC				
			Fr4 = 0.49, Fr5 = 0.46, Fr1 =	Fr4 = 0.53, Fr5 = 0.45, Fr1 =					
			0.03, Fr6 = 0.01	0.01, Fr6 = 0.01					

Figure S28. Excited state diagrams for **10** obtained from TDDFT calculations. Degenerated T_2 and T_3 states located on pybt ligands and T_4 state located on N^N ligand are indicated.

Table S8.Natural Transition Orbital analysis of low-energy excited states in complex 10.

Excited	ΔE, eV	NTO and its	NTO [*] and its	Transition
state		population over fragments [#]	population over fragments [#]	character
Tı	2.0960			LLCT, MLCT
		Fr3 = 0.36, Fr2 = 0.36, Fr1 = 0.27,	Fr4 = 0.90, Fr5 = 0.04, Fr1 = 0.03,	
		Fr4 = 0.01	Fr2 = 0.02, Fr3 = 0.02	
Sı	2.1120			LLCT, MLCT
		Fr2 = 0.37, Fr3 = 0.35, Fr1 = 0.27, Fr4 = 0.01	Fr4 = 0.94, Fr5 = 0.04, Fr1 = 0.03	
T ₂	2.1778			LC, MLCT
		Fr2 = 0.53, Fr3 = 0.29, Fr1 = 0.17	Fr2 = 0.61, Fr3 = 0.35, Fr1 = 0.05	

[#] for fragmentation scheme see Figure S23

Figure S29. TDDFT spectra of 11^{Ln} (Ln = Nd, Gd, Yb). Singlets with f > 0.1 are indicated. Experimental spectra are given for comparison.

Excited state	λ, nm	f	NTO and its	NTO* and its	Transition		
			population over fragments [#]	population over fragments [#]	character		
	11 Nd						
S_3	448	0.1045			LC, MLCT		
			Fr2 = 0.37, Fr3 = 0.33, Fr1 =	Fr3 = 0.61, Fr2 = 0.32, Fr1 =			
			0.29, Fr4 = 0.01	0.09			
S 7	408	1.0084			LC		
			Fr5 = 0.51, Fr4 = 0.46, Fr1 =	Fr4 = 0.88, Fr5 = 0.10, Fr1 =			
			0.02	0.03			
\mathbf{S}_{16}	377	0.1377			LC		
			Fr2 = 0.48, Fr3 = 0.48, Fr1 =	Fr2 = 0.64, Fr3 = 0.29, Fr1 =			
			0.03	0.05, Fr4 = 0.01			
S ₂₇	356	0.1554			LC, LLCT		
			Fr5 = 0.46, Fr9 = 0.32, Fr4 =	Fr7 = 0.48, Fr5 = 0.26, Fr8 =			
			0.19, Fr7 = 0.02	0.20, Fr4 = 0.04			
S ₃₇	343	0.1318		HHHH AND	LC		
			Fr9 = 0.82, Fr7 = 0.13, Fr6 =	Fr9 = 0.69, Fr8 = 0.19, Fr7 =			
			0.03, Fr8 = 0.01	0.11, Fr5 = 0.02			
S ₄₁	333	0.1991			LLCT, MLCT		
			Fr3 = 0.43, Fr2 = 0.34, Fr1 =	Fr5 = 0.57, Fr4 = 0.39, Fr6 =			
			0.22, Fr4 = 0.01	0.01			

Table S9.Natural Transition Orbital analysis of singlets with oscillator strength f > 0.1 in 11^{Ln} (Ln = Nd, Gd, Yb).

0.03, Fr4 = 0.01

0.05, Fr4 = 0.01

Figure S30. Excited state diagrams for 11^{Ln} (Ln = Nd, Gd, Yb) obtained from TDDFT calculations. Energy levels of lanthanides are shown in colour.

Complex	$\Delta E(S_0-T_1),$	NTO and its	NTO [*] and its	Transition
	eV	population over fragments [#]	population over fragments [#]	character
Ir(pybt)1 Nd	2.1153			LLCT, MLCT
		Fr3 = 0.37, Fr2 = 0.35, Fr1 =	Fr4 = 0.89, Fr1 = 0.03, Fr3 =	
		0.27, Fr4 = 0.01	0.03, Fr2 = 0.03, Fr5 = 0.02	
Ir(pybt)1 ^{Gd}	2.1167			LLCT, MLCT
		Fr3 = 0.37, Fr2 = 0.34, Fr1 =	Fr4 = 0.89, Fr3 = 0.03, Fr1 =	
		0.27, Fr4 = 0.01	0.03, Fr2 = 0.03, Fr5 = 0.02	
Ir(pybt)1 ^{Yb}	2.1150			LLCT, MLCT
		Fr3 = 0.37, Fr2 = 0.34, Fr1 = Fr3 = 0.34, Fr1 = Fr3 = 0.37, Fr2 = 0.34, Fr1 = Fr3 = 0.34, Fr3 = 0.34, Fr3 = 0.34, Fr3 = 0.34, Fr3 = Fr3 = 0.34, Fr3	Fr4 = 0.90, Fr1 = 0.03, Fr3 =	
		0.27, Fr4 = 0.01	0.03, Fr2 = 0.03, Fr5 = 0.02	

Table S10. Natural Transition Orbital analysis of first triplets in 11^{Ln} (Ln = Nd, Gd, Yb).

References

- V. N. Kozhevnikov, O. V. Shabunina, D. S. Kopchuk, M. M. Ustinova, B. König and D. N. Kozhevnikov, *Tetrahedron*, 2008, 64, 8963–8973.
- 2 V. S. Sastri, J.-C. Bünzli, V. R. Rao, G. V. S. Rayudu and J. R. Perumareddi, in *Modern Aspects of Rare Earths and Their Complexes*, Elsevier, 2003, pp. 569–731.