Supporting information

Hydrogen Bonding and Phase Separation Cooperatively
 Guide the Self-assembly of U60 and Polymer to Fabricate

 Multiscale NanostructuresJie Hu*, Yingxuan Mei, Huifen Wu, Yan Zhao, Dongping Wu, Nan Ye, Peng Yi, Yu Yang, Minmeng Liao

School of Mechatronics and New Energy Vehicles, Yichun Vocational Technical College College, Yichun 336000, China.
*Email address: hujie2040@163.com

Materials and Methods

DLS measures the intensity-intensity time correlation function by means of a BI9000AT multichannel digital correlator. The field correlation function $\left|g^{(1)}(\tau)\right|$ was analyzed by the constrained regularized CONTIN method to yield information on the distribution of the characteristic line width Γ from $\left|g^{(1)}(\tau)\right|=\int G(\Gamma) e^{-\Gamma \tau} d(\Gamma)$.The normalized distribution function of the characteristic line width, $\mathrm{G}(\Gamma)$, so obtained, can be used to determine an average apparent translational diffusion coefficient, $\mathrm{D}_{\text {app }}=\Gamma / \mathrm{q}^{2}$. The hydrodynamic radius R_{h} is related to D via the Stokes-Einstein equation: $R_{h}=$ $\mathrm{kT} /(6 \pi \eta \mathrm{D})$ where k is the Boltzmann constant and η the viscosity of the solvent at temperature T. From DLS measurements, we can obtain the particle-size distribution in solution from a plot of $\Gamma \mathrm{G}(\mathrm{\Gamma})$ vs R_{h}. The R_{h} of the particles is obtained by extrapolating Rh,app to zero scattering angle.

Fig. S1 SAXS data of U60.

Fig. S2 (a) and (b) U_{60} and $\mathrm{P}^{2} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{1 \mathrm{k}}$ form a complex aqueous solution DLS analysis diagram (the molar ratio of U_{60} and $\mathrm{P}_{4} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{1 \mathrm{k}}$ are $1: 1,5: 1,10: 1$ and 20: $1)$.

Fig. S3 (a) AFM image of $\mathrm{U}_{60} / \mathrm{P}_{4} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{1 \mathrm{k}}$ wormlike composite. (b) Corresponds to the height of the compound in (a). (c) TEM image of $\mathrm{U}_{60} / \mathrm{P}_{4} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{1 \mathrm{k}}$ composite (the molar ratio of U_{60} and $\mathrm{P}_{4} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{1 \mathrm{k}}$ is 1:1). (d) Corresponds to the distribution of U elements in (c).

Fig. S4 TEM images of $\mathrm{U}_{60} / \mathrm{P}_{4} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{1 \mathrm{k}}$ wormlike composite, the inset is the distribution diagram of U.

Fig. S5 (a) and (b) TEM image of $\mathrm{U}_{60} / \mathrm{P}_{4} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{3.1 \mathrm{k}}$ composite (the molar ratio of U_{60} and $\mathrm{P} 4 \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{3.1 \mathrm{k}}$ is $1: 1$ and $10: 1$ respectively). (e) and (f) TEM image of $\mathrm{U}_{60} / \mathrm{P}_{4} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{5.1 \mathrm{k}}$ composite (the molar ratio of U_{60} and $\mathrm{P}^{2} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{5.1 \mathrm{k}}$ is $1: 1$ and $10: 1$ respectively).

Fig. S6 (a) $\mathrm{U}_{60} / \mathrm{P}^{2} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{1 \mathrm{k}}$ SAXS images with different molar ratios. (b) The UV spectrum of the sample supernatant after $\mathrm{P}_{4} \mathrm{VP}_{3.6 \mathrm{k}}-b-\mathrm{PS}_{1.1 \mathrm{k}}$ and U_{60} were assembled and adsorbed one month later.

