Supporting information

Hydrogen Bonding and Phase Separation Cooperatively

Guide the Self-assembly of U60 and Polymer to Fabricate

Multiscale Nanostructures

Jie Hu*, Yingxuan Mei, Huifen Wu, Yan Zhao, Dongping Wu, Nan Ye,

Peng Yi, Yu Yang, Minmeng Liao

School of Mechatronics and New Energy Vehicles , Yichun Vocational

Technical College College, Yichun 336000, China.

*Email address: hujie2040@163.com

Materials and Methods

DLS measures the intensity-intensity time correlation function by means of a BI-9000AT multichannel digital correlator. The field correlation function $|g^{(1)}(\tau)|$ was analyzed by the constrained regularized CONTIN method to yield information on the distribution of the characteristic line width Γ from $|g^{(1)}(\tau)| = \int G(\Gamma) e^{-\Gamma \tau} d(\Gamma)$. The normalized distribution function of the characteristic line width, $G(\Gamma)$, so obtained, can be used to determine an average apparent translational diffusion coefficient, $D_{app} = \Gamma/q^2$. The hydrodynamic radius R_h is related to D via the Stokes–Einstein equation: $R_h =$ $kT/(6\pi\eta D)$ where k is the Boltzmann constant and η the viscosity of the solvent at temperature T. From DLS measurements, we can obtain the particle-size distribution in solution from a plot of $\Gamma G(\Gamma)$ vs R_h . The R_h of the particles is obtained by extrapolating Rh,app to zero scattering angle.

Fig. S1 SAXS data of U60.

Fig. S2 (a) and (b) U_{60} and $P4VP_{3.6k}$ -b- PS_{1k} form a complex aqueous solution DLS analysis diagram (the molar ratio of U_{60} and $P4VP_{3.6k}$ -b- PS_{1k} are 1:1, 5:1, 10:1 and 20:

1).

Fig. S3 (a) AFM image of U₆₀/P4VP_{3.6k}-*b*-PS_{1k} wormlike composite. (b) Corresponds to the height of the compound in (a). (c) TEM image of U₆₀/P4VP_{3.6k}-*b*-PS_{1k} composite (the molar ratio of U₆₀ and P4VP_{3.6k}-*b*-PS_{1k} is 1:1). (d) Corresponds to the distribution of U elements in (c).

Fig. S4 TEM images of $U_{60}/P4VP_{3.6k}$ -*b*-PS_{1k} wormlike composite, the inset is the distribution diagram of U.

Fig. S5 (a) and (b) TEM image of U₆₀/P4VP_{3.6k}-*b*-PS_{3.1k} composite (the molar ratio of U₆₀ and P4VP_{3.6k}-*b*-PS_{3.1k} is 1:1 and 10:1 respectively). (e) and (f) TEM image of U₆₀/P4VP_{3.6k}-*b*-PS_{5.1k} composite (the molar ratio of U₆₀ and P4VP_{3.6k}-*b*-PS_{5.1k} is 1:1 and 10:1 respectively).

Fig. S6 (a) $U_{60}/P4VP_{3.6k}$ -*b*-PS_{1k} SAXS images with different molar ratios. (b) The UV spectrum of the sample supernatant after P4VP_{3.6 k}-*b*-PS_{1.1 k} and U₆₀ were assembled and adsorbed one month later.