Supplementary Information

A new class of third-order nonlinear optical materials: pulse-duration dependent saturable/reverse-saturable absorption and nonlinear refraction in platinum(II) diimine-dithiolate complexes

Dedicated to the memory of Prof. G. C. Papavassiliou

Anna Pintus,^{a*} Cristian Pilloni,^a Gabriele Pippia,^a Enrico Podda,^{a,b} M. Carla Aragoni,^a Vito Lippolis,^a Panagiotis Aloukos,^{c,d} Dionysios Potamianos,^{c,d‡} Nikolaos Chazapis,^{c,d} Stelios Couris,^{c,d*} George C. Anyfantis,^e Alexandra M. Z. Slawin,^f J. Derek Woollins,^{f,g} and Massimiliano Arca^{a*}

- ^a Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy
- ^b Centro Servizi di Ateneo per la Ricerca (CeSAR), Università degli Studi di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, CA, Italy
- ^c Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1414, 26504 Patras, Greece.
- ^d Department of Physics, University of Patras, 26504 Patras, Greece
- NanoPhos S.A., PO Box 519, Science and Technology Park of Lavrio, 1st km of Lavrio –Athens Ave., Lavrio 19500, Attica, Greece
- ^f EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, UK, KY16 9ST
- ^g Department of Chemistry, Khalifa University, Abu Dhabi 127788, United Arab Emirates.
- ‡ Present address: Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany.

Contents

1.	Tables	2
2.	Schemes and Figures	50
3.	References	62

1. Tables

Table S1.	Crystal	data for	· complexes	1 and 5.
-----------	---------	----------	-------------	----------

	1	5
Empirical formula	$C_{14}H_{12}N_2PtS_4$	$C_{16}H_{16}N_2PtS_4$
Calculated density $(g \text{ cm}^{-3})$	2.360	2.136
Formula Weight	531.59	559.64
μ (mm ⁻¹)	9.929	8.540
Crystal size (mm ³)	0.21×0.06×0.02	0.30×0.08×0.02
$T(\mathbf{K})$	125(2)	298(2)
Crystal System	Orthorombic	Monoclinic
Space Group	Pnma	$P2_{1}/c$
<i>a</i> (Å)	7.8675(17)	10.451(5)
<i>b</i> (Å)	14.825(4)	21.309(9)
<i>c</i> (Å)	12.827(3)	8.335(4)
α (°)	90	90
$\beta(^{\circ})$	90	110.331(16)
$\gamma(^{\circ})$	90	90
$V(Å^3)$	1496.1(6)	1740.5(14)
Z	4	4
Ζ'	0.5	1
Wavelength (Å)	0.71075	0.71073
Radiation type	Μο <i>Κ</i> α	Μο <i>Κ</i> α
Total number of data	8678	37262
Unique reflections	1338	3985
R _{int}	0.0409	0.0542
Parameters	107	210
Restraints	0	0
wR_2 (all data)	0.0657	0.0554
R_{I}	0.0251	0.0238
GooF	1.131	1.103

	1		5
Pt1-S1	2.2476(12)	Pt1-S1	2.2573(14)
		Pt1-S2	2.2509(13)
Pt1-N1	2.052(4)	Pt1-N1	2.068(4)
		Pt1-N2	2.052(4)
S1-C6	1.761(5)	S1-C13	1.751(5)
		S2-C14	1.746(5)
C6-S2	1.765(5)	C13-S3	1.755(5)
		C14-S4	1.761(5)
S2-C7	1.816(13)	S3-C15	1.815(6)
S2-C7A	1.805(12)	S4-C16	1.792(5)
C6-C6 ⁱ	1.337(8)	C13-C14	1.345(6)
C7-C7A	1.52(2)	C15-C16	1.506(8)
N1-C5	1.348(6)	N1-C6	1.358(5)
		N3-C7	1.354(6)
C5-C5 ⁱ	1.474(6)	C6-C7	1.471(6)
N1-Pt1-N1 ⁱ	79.0(2)	N1-Pt1-N2	79.11(14)
N1-Pt1-S1	95.98(11)	N1-Pt1-S1	96.68(10)
		N2-Pt1-S2	95.44(11)
S2-Pt1-S2 ⁱ	88.93(6)	S1-Pt1-S2	88.88(5)
N1-Pt1-S1-C6	175.60(3)	N1-Pt1-S1-C13	171.67(4)
		N2-Pt1-S2-C14	175.65(4)
S1-C6-S2-C7	157.9(7)	S1-C13-S3-C15	149.41(5)
S1-C6-S2-C7A	175.2(8)	S2-C14-S4-C16	134.15(4)
C6-S2-S2 ⁱ -C7 ⁱ	155.27(7)	C13-S3-S4-C16	123.74(3)
C6-S2-S2 ⁱ -C7A ⁱ	171.10(8)	C14-S4-S3-C15	142.52(5)

Table S2. Selected bond lengths (Å), angles, and dihedral angles (°) for complexes 1 and 5. Atomlabelling scheme as in Figures 1 and S1.

Symmetry codes: i = x, 3/2 - y, z

_		$E_{1/2}^{(0/-1)}$			$E_{1/2}^{(+1/0)}$	
	$ E_{\rm pc}-E_{\rm pa} $	$i_{ m pc}/i_{ m pa}$	$E_{1/2}$	$ E_{\rm pc}-E_{\rm pa} $	$i_{ m pc}/i_{ m pa}$	$E_{1/2}$
1	0.101	0.82	-1.728	0.081	1.34	-0.177
2	0.120	0.78	-1.678	0.112	0.86	-0.112
3	0.078	0.91	-1.676	0.132	0.79	-0.192
4	0.083	0.85	-1.683	0.128	1.35	-0.072
5	0.126	1.35	-1.778	0.085	0.84	-0.182
6	0.082	1.32	-1.819	0.083	0.79	-0.178

Table S3. Electrochemical data (V vs Fc⁺/Fc) recorded by cyclic voltammetry in DMSO for complexes 1–6; scan rate 100 mV \cdot s⁻¹).

	DM	ISO	DMF		
	λ_{max}	3	λ_{max}	3	
1	615	4400	623	4500	
2	2 580	4100	593	4200	
3	611	4500	626	4600	
4	588	5600	598	6700	
5	593	4200	605	4300	
6	595	5200	602	5300	

Table S4. UV-Vis absorption maxima λ_{max} (nm) of the solvatochromic absorption band and corresponding molar extinction coefficients ϵ (M⁻¹·cm⁻¹) recorded in DMSO and DMF for complexes **1–6**.

	1	2	3	4	5	6
CH ₃ CN	604	577	601	581	589	584
DMSO	615	580	611	588	593	595
Acetone	639	603	633	610	614	617
DMF	623	593	626	598	605	602
CH_2Cl_2	645	613	642	614	620	616
CHCl ₃	667	636	656	634	641	641
THF	686	648	682	654	657	664
Toluene ^a	_	672, 714	_	645, 697	_	703, 750

Table S5. UV-Vis absorption maxima λ_{max} (nm) of the solvatochromic absorption band recorded in different solvents for complexes 1–6.

^a Spectra could not be recorded in toluene for some complexes due to solubility reasons.

	Structural		mPW1PW			PBE0			B3LYP	
	data	LANL08(f)	CRENBL	Stuttgart	LANL08(f)	CRENBL	Stuttgart	LANL08(f)	CRENBL	Stuttgart
Pt1-S1	2.248	2.265	2.271	2.278	2.262	2.269	2.275	2.290	2.296	2.302
Pt1-S2	2.248	2.263	2.270	2.276	2.261	2.267	2.274	2.288	2.294	2.300
Pt1-N1	2.051	2.039	2.049	2.061	2.036	2.046	2.058	2.066	2.074	2.087
Pt1-N2	2.051	2.039	2.049	2.061	2.037	2.046	2.058	2.065	2.074	2.087
C13-S1	1.761	1.746	1.749	1.748	1.745	1.747	1.747	1.760	1.762	1.762
C12-S2	1.761	1.744	1.747	1.746	1.743	1.745	1.745	1.757	1.760	1.759
C13-S3	1.765	1.759	1.759	1.759	1.758	1.758	1.758	1.773	1.774	1.773
C14-S4	1.765	1.759	1.760	1.759	1.758	1.758	1.758	1.772	1.773	1.772
C11-C12	1.337	1.361	1.360	1.360	1.362	1.361	1.361	1.364	1.363	1.363
C13-C14	1.516	1.514	1.515	1.515	1.514	1.514	1.514	1.521	1.521	1.521
C5-C6	1.474	1.457	1.459	1.465	1.457	1.458	1.461	1.462	1.463	1.465
C5-N1	1.348	1.361	1.361	1.359	1.361	1.361	1.359	1.368	1.368	1.366
C6-N2	1.348	1.361	1.361	1.359	1.361	1.361	1.359	1.368	1.368	1.366

Table S6. Selected experimental bond lengths (Å) and angles (°), corresponding optimised parameters obtained with different functionals and basis sets,^a for complex 1; numbering scheme as in Figure S5.

^a In all cases, the cc-pVDZ basis set was used for C, H, N, and S.

Table S7. Optimised geometry calculated for complex 1 at DFT level [PBE0//cc-pVDZ/LANL08(f)]in the gas phase (total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z= atomic number).

Atom	7	v	X 7	7
number	L	λ	У	<i>L</i>
1	78	0.006132	-0.017813	0.006005
2	16	-0.004662	-0.025781	2.265468
3	6	1.688402	-0.050368	2.708821
4	16	2.083445	-0.084353	4.426760
5	6	3.243329	1.327851	4.378998
6	6	4.550208	1.002615	3.686146
7	16	4.387480	0.034343	2.124853
8	6	2.661223	0.081650	1.769217
9	16	2.247320	0.270522	0.076819
10	1	2.718311	2.155784	3.880699
11	1	3.436446	1.617418	5.424118
12	1	5.185534	0.380166	4.333297
13	1	5.090853	1.934770	3.453563
14	7	-0.151818	0.000928	-2.028096
15	6	0.874755	0.106629	-2.895678
16	6	0.695144	0.131833	-4.265621
17	6	-0.600349	0.040930	-4.782957
18	6	-1.659390	-0.074869	-3.899884
19	6	-1.418345	-0.095727	-2.521576
20	6	-2.458671	-0.234380	-1.511056
21	7	-2.008005	-0.246986	-0.225191
22	6	-2.901572	-0.397901	0.772906
23	6	-4.258502	-0.529741	0.546728
24	6	-4.733176	-0.510172	-0.767958
25	6	-3.822136	-0.362653	-1.798991
26	1	1.868128	0.169373	-2.448552
27	1	1.565073	0.221160	-4.916320
28	1	-0.776629	0.057846	-5.859280
29	1	-2.679734	-0.151743	-4.273439
30	1	-4.161879	-0.347911	-2.833834
31	1	-5.798182	-0.611444	-0.980929
32	1	-4.932178	-0.646944	1.395596
33	1	-2.486416	-0.412545	1.781884

 Table S8. Optimised geometry calculated for complex 1 at DFT level [PBE0//cc-pVDZ/LANL08(f)]

 in DMSO (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate

 format (Z = atomic number).

Atom	7	v	V	7
number	L	Λ	y	L
1	78 0.006685		-0.018752	-0.003146
2	16	0.008325	-0.098195	2.271002
3	6	1.715287	-0.066681	2.702541
4	16	2.119881	-0.130284	4.421059
5	6	3.256442	1.302929	4.420749
6	6	4.565692	1.023696	3.716899
7	16	4.410026	0.128111	2.108989
8	6	2.676208	0.118314	1.764699
9	16	2.255094	0.328750	0.066035
10	1	2.715902	2.139949	3.956395
11	1	3.448885	1.553983	5.474939
12	1	5.210745	0.382247	4.333718
13	1	5.093544	1.970322	3.522345
14	7	-0.156236	0.012894	-2.047745
15	6	0.865148	0.124280	-2.915195
16	6	0.681450	0.124206	-4.288137
17	6	-0.610029	-0.000681	-4.795199
18	6	-1.668055	-0.119481	-3.905459
19	6	-1.419835	-0.109449	-2.532521
20	6	-2.464713	-0.241407	-1.514252
21	7	-2.018383	-0.256410	-0.230826
22	6	-2.910218	-0.389464	0.766571
23	6	-4.271759	-0.505156	0.539487
24	6	-4.740349	-0.482035	-0.772218
25	6	-3.824814	-0.349695	-1.806342
26	1	1.860548	0.211142	-2.478947
27	1	1.547037	0.218000	-4.943288
28	1	-0.791663	-0.008814	-5.870281
29	1	-2.685572	-0.225105	-4.277346
30	1	-4.167015	-0.327501	-2.839485
31	1	-5.805831	-0.565987	-0.988056
32	1	-4.948269	-0.609223	1.387279
33	1	-2.504017	-0.402017	1.778256

Table S9. Optimised geometry calculated for complex 1 at DFT level [PBE0//cc-pVDZ/LANL08(f)] in DMF (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom	7	v	¥7	
number	L	Δ	y	L
1	1	78	0.006622	-0.019008
2	2	16	0.007828	-0.096462
3	3	6	1.714648	-0.066348
4	4	16	2.119045	-0.128560
5	5	6	3.256467	1.303965
6	6	6	4.565631	1.023210
7	7	16	4.409577	0.124952
8	8	6	2.675891	0.116953
9	9	16	2.255140	0.326769
10	10	1	2.716431	2.140709
11	11	1	3.448934	1.556215
12	12	1	5.210495	0.382507
13	13	1	5.093776	1.969387
14	14	7	-0.156143	0.012430
15	15	6	0.865345	0.123774
16	16	6	0.681733	0.124535
17	17	6	-0.609792	0.000590
18	18	6	-1.667895	-0.118241
19	19	6	-1.419769	-0.109131
20	20	6	-2.464696	-0.241290
21	21	7	-2.018402	-0.256359
22	22	6	-2.910260	-0.389909
23	23	6	-4.271738	-0.505967
24	24	6	-4.740318	-0.482748
25	25	6	-3.824789	-0.349941
26	26	1	1.860734	0.209940
27	27	1	1.547415	0.218291
28	28	1	-0.791356	-0.006776
29	29	1	-2.685456	-0.223098
30	30	1	-4.166948	-0.327765
31	31	1	-5.805770	-0.567054
32	32	1	-4.948237	-0.610458
33	33	1	-2.504002	-0.402626

)-		
number	Ζ	x	У	Ζ
1	78	-0.019550	-0.000046	0.033888
2	7	-0.031083	0.001823	2.078740
3	6	1.060538	0.007577	2.869110
4	6	0.983460	-0.003243	4.249135
5	6	-0.273990	-0.018336	4.858798
6	6	-1.400361	-0.019132	4.054445
7	6	-1.261657	-0.007200	2.662201
8	6	-2.381525	0.008578	1.728564
9	6	-3.726178	0.013650	2.115393
10	6	-4.719729	0.044321	1.152283
11	6	-4.345868	0.071863	-0.194029
12	6	-3.002196	0.064828	-0.518071
13	7	-2.028701	0.029961	0.413331
14	1	2.020591	0.023177	2.350462
15	1	1.902462	0.000817	4.835344
16	1	-0.370066	-0.027241	5.945332
17	1	-2.393693	-0.027506	4.501368
18	1	-3.987298	-0.005032	3.172741
19	1	-5.771288	0.048886	1.442241
20	1	-5.087585	0.099329	-0.992353
21	1	-2.664293	0.089203	-1.555454
22	16	-0.186956	-0.020728	-2.215842
23	6	1.458954	0.105915	-2.800240
24	16	1.619287	0.273314	-4.551169
25	6	2.490869	-1.265210	-5.011461
26	6	3.999197	-1.264379	-4.807800
27	6	4.470601	-1.293198	-3.360914
28	16	4.200200	0.236830	-2.399417
29	6	2.504065	0.091142	-1.928907
30	16	2.222972	-0.054784	-0.206623
31	1	2.006660	-2.098074	-4.477175
32	1	2.261875	-1.383247	-6.082677
33	1	4.404070	-2.164131	-5.308676
34	1	5.563409	-1.429928	-3.330113
35	1	4.018228	-2.126510	-2.800082
36	1	4.436977	-0.390528	-5.318072

Table S10. Optimised geometry calculated for complex **2** at DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase (total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Table S11. Optimised geometry calculated for complex 2 at DFT level [PBE0//cc-
pVDZ/LANL08(f)] in DMSO (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal
Cartesian coordinate format (Z = atomic number).

Atom	Z	v	V	7
number	2	А	y	2
1	78	-0.023531	0.011099	0.039037
2	7	-0.033174	-0.002794	2.092862
3	6	1.055281	-0.011110	2.882017
4	6	0.974740	-0.017190	4.264871
5	6	-0.281851	-0.013859	4.866247
6	6	-1.409299	-0.004630	4.057548
7	6	-1.263249	0.001088	2.669881
8	6	-2.388589	0.016802	1.731612
9	6	-3.727328	0.027722	2.124857
10	6	-4.725496	0.048240	1.161291
11	6	-4.359844	0.057444	-0.182918
12	6	-3.014061	0.045848	-0.510858
13	7	-2.042139	0.025289	0.417858
14	1	2.019592	-0.010903	2.373066
15	1	1.891300	-0.023655	4.854066
16	1	-0.383538	-0.017597	5.951854
17	1	-2.401843	-0.000658	4.504436
18	1	-3.988465	0.021425	3.181567
19	1	-5.775073	0.057739	1.456581
20	1	-5.104170	0.074250	-0.978513
21	1	-2.686737	0.055031	-1.550907
22	16	-0.191505	0.015210	-2.225685
23	6	1.466932	0.120389	-2.807223
24	16	1.632145	0.270420	-4.563022
25	6	2.505428	-1.268584	-5.028756
26	6	4.011960	-1.268679	-4.823365
27	6	4.484672	-1.297357	-3.378531
28	16	4.209896	0.232945	-2.413785
29	6	2.510048	0.105222	-1.937511
30	16	2.234247	-0.020028	-0.203178
31	1	2.019287	-2.101758	-4.497698
32	1	2.276236	-1.379537	-6.099887
33	1	4.410953	-2.173090	-5.317678
34	1	5.577488	-1.427531	-3.347417
35	1	4.035395	-2.131067	-2.816736
36	1	4.456695	-0.403375	-5.341683

Table S12. Optimised geometry calculated for complex **2** at DFT level [PBE0//ccpVDZ/LANL08(f)] in DMF (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom	7	v	V	7
number	L	Λ	y	L
1	78	-0.023493	0.010921	0.038973
2	7	-0.033193	-0.002774	2.092763
3	6	1.055299	-0.010904	2.881896
4	6	0.974823	-0.017011	4.264736
5	6	-0.281751	-0.013901	4.866203
6	6	-1.409212	-0.004813	4.057559
7	6	-1.263246	0.000966	2.669851
8	6	-2.388568	0.016701	1.731603
9	6	-3.727361	0.027545	2.124779
10	6	-4.725481	0.048222	1.161199
11	6	-4.359740	0.057674	-0.183008
12	6	-3.013961	0.046119	-0.510889
13	7	-2.042051	0.025372	0.417858
14	1	2.019552	-0.010510	2.372824
15	1	1.891423	-0.023319	4.853879
16	1	-0.383365	-0.017674	5.951824
17	1	-2.401742	-0.000993	4.504497
18	1	-3.988545	0.021058	3.181484
19	1	-5.775082	0.057666	1.456427
20	1	-5.104025	0.074640	-0.978644
21	1	-2.686512	0.055493	-1.550903
22	16	-0.191428	0.014650	-2.225581
23	6	1.466875	0.120190	-2.807189
24	16	1.631958	0.270395	-4.562952
25	6	2.505312	-1.268548	-5.028626
26	6	4.011874	-1.268613	-4.823243
27	6	4.484582	-1.297265	-3.378377
28	16	4.209830	0.232995	-2.413617
29	6	2.509996	0.105064	-1.937473
30	16	2.234105	-0.020487	-0.203261
31	1	2.019227	-2.101732	-4.497523
32	1	2.276146	-1.379608	-6.099762
33	1	4.410919	-2.173009	-5.317586
34	1	5.577402	-1.427508	-3.347287
35	1	4.035279	-2.130981	-2.816605
36	1	4.456559	-0.403259	-5.341530

Atom		*		
number	Ζ	X	У	Z
1	78	0.032207	-0.002622	-0.024622
2	7	0.053757	-0.006433	2.023530
3	6	1.109233	-0.013379	2.844616
4	6	0.978395	-0.029977	4.234639
5	6	-0.280315	-0.035397	4.813942
6	6	-1.410531	-0.021093	3.979648
7	6	-2.764319	-0.016420	4.454377
8	6	-3.816817	0.010242	3.590253
9	6	-3.614230	0.034655	2.170277
10	6	-4.652015	0.075653	1.224306
11	6	-4.328297	0.105014	-0.122618
12	6	-2.990158	0.090769	-0.521344
13	7	-1.980196	0.045159	0.353723
14	6	-2.288755	0.021520	1.684564
15	6	-1.191929	-0.006203	2.585065
16	1	2.089786	-0.003598	2.365224
17	1	1.881030	-0.037560	4.845999
18	1	-0.401682	-0.047599	5.898688
19	1	-2.935251	-0.031815	5.532610
20	1	-4.841205	0.016781	3.967881
21	1	-5.692443	0.086881	1.554364
22	1	-5.103179	0.140348	-0.888691
23	16	-0.167158	-0.024969	-2.272765
24	6	1.478765	0.144684	-2.848024
25	16	1.732625	0.186295	-4.592402
26	6	3.012427	-1.118854	-4.625082
27	6	4.336227	-0.669761	-4.042206
28	16	4.211631	0.311741	-2.485564
29	6	2.531049	0.115564	-1.989126
30	16	2.276197	-0.082403	-0.265144
31	1	2.603192	-1.980729	-4.078180
32	1	3.146923	-1.407938	-5.679497
33	1	4.862635	-0.007556	-4.745273
34	1	4.972450	-1.547457	-3.841725
35	1	-2.710016	0.118213	-1.575925

Table S13. Optimised geometry calculated for complex **3** at DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase (total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Table S14. Optimised geometry calculated for complex **3** at DFT level [PBE0//cc-
pVDZ/LANL08(f)] in DMSO (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal
Cartesian coordinate format (Z = atomic number).

Atom	7	v	V	7
number	L	Δ	y	L
1	78	0.031526	-0.004143	-0.017166
2	7	0.051591	-0.012102	2.042177
3	6	1.102800	-0.021149	2.862199
4	6	0.968493	-0.025674	4.255534
5	6	-0.289515	-0.019538	4.825451
6	6	-1.420233	-0.005693	3.985690
7	6	-2.772307	0.005139	4.462599
8	6	-3.824284	0.024466	3.596875
9	6	-3.616328	0.038041	2.178381
10	6	-4.657743	0.065263	1.230508
11	6	-4.340485	0.083036	-0.113519
12	6	-2.999065	0.073489	-0.513434
13	7	-1.992415	0.043939	0.360190
14	6	-2.294155	0.026131	1.690129
15	6	-1.195524	-0.000052	2.594240
16	1	2.087629	-0.022493	2.393334
17	1	1.868325	-0.033731	4.870038
18	1	-0.415691	-0.023396	5.909222
19	1	-2.942256	-0.001746	5.540433
20	1	-4.849317	0.032597	3.970915
21	1	-5.696961	0.073018	1.562892
22	1	-5.116514	0.105229	-0.878157
23	16	-0.165566	0.018769	-2.281154
24	6	1.497095	0.149140	-2.848536
25	16	1.754833	0.208821	-4.595302
26	6	3.028004	-1.102811	-4.663364
27	6	4.354075	-0.676295	-4.073904
28	16	4.235682	0.248054	-2.479163
29	6	2.544419	0.087378	-1.990181
30	16	2.289083	-0.121041	-0.257861
31	1	2.614205	-1.977435	-4.141638
32	1	3.160178	-1.360481	-5.725209
33	1	4.881749	0.006745	-4.754406
34	1	4.987319	-1.560666	-3.902321
35	1	-2.728616	0.090943	-1.569971

Table S15. Optimised geometry calculated for complex **3** at DFT level [PBE0//ccpVDZ/LANL08(f)] in DMF (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom	7	v	V	7
number	L	Δ	У	L
1	78	0.031543	-0.003836	-0.017397
2	7	0.051639	-0.011815	2.041895
3	6	1.102903	-0.020849	2.861876
4	6	0.968670	-0.025751	4.255199
5	6	-0.289313	-0.019962	4.825227
6	6	-1.420060	-0.006076	3.985544
7	6	-2.772136	0.004531	4.462480
8	6	-3.824142	0.024011	3.596804
9	6	-3.616266	0.037906	2.178292
10	6	-4.657682	0.065384	1.230460
11	6	-4.340410	0.083490	-0.113582
12	6	-2.999015	0.073964	-0.513521
13	7	-1.992332	0.044122	0.360079
14	6	-2.294091	0.026098	1.690007
15	6	-1.195425	-0.000115	2.594070
16	1	2.087671	-0.021867	2.392878
17	1	1.868548	-0.033802	4.869645
18	1	-0.415413	-0.024100	5.909012
19	1	-2.942057	-0.002607	5.540324
20	1	-4.849163	0.032029	3.970902
21	1	-5.696905	0.073093	1.562849
22	1	-5.116447	0.105934	-0.878212
23	16	-0.165670	0.018185	-2.281230
24	6	1.496786	0.149392	-2.848732
25	16	1.754616	0.208405	-4.595477
26	6	3.027801	-1.103265	-4.662669
27	6	4.353852	-0.676477	-4.073251
28	16	4.235180	0.250045	-2.479826
29	6	2.544189	0.088406	-1.990392
30	16	2.288980	-0.119951	-0.258133
31	1	2.613904	-1.977508	-4.140384
32	1	3.160048	-1.361675	-5.724336
33	1	4.881971	0.005598	-4.754396
34	1	4.986748	-1.560876	-3.900447
35	1	-2.728492	0.091696	-1.570037

Atom number	Ζ	X	y	Z
1	78	0.191712	-0.432150	-0.004737
2	16	0.278436	-0.670458	2.234698
3	6	1.980424	-0.871976	2.600366
4	16	2.340825	-1.237379	4.290485
5	6	3.286317	0.235898	4.814146
6	6	4.760623	0.251162	4.436436
7	6	5.061705	0.438908	2.956233
8	16	4.653507	-0.972668	1.870479
9	6	2.917441	-0.764799	1.619785
10	16	2.445274	-0.422637	-0.032770
11	1	2.758133	1.125513	4.435764
12	1	3.185089	0.233929	5.911253
13	1	4.562467	1.331945	2.547774
14	1	6.145897	0.572815	2.813074
15	7	-0.043127	-0.198471	-2.030774
16	6	0.902564	-0.111113	-2.971480
17	6	0.601553	0.056283	-4.324946
18	6	-0.718456	0.135051	-4.737688
19	6	-1.737121	0.041363	-3.774439
20	6	-3.138729	0.101539	-4.073922
21	6	-4.076803	-0.005631	-3.092248
22	6	-3.701043	-0.183018	-1.719238
23	6	-4.615229	-0.310164	-0.659802
24	6	-4.129200	-0.484266	0.625674
25	6	-2.751913	-0.528742	0.852835
26	7	-1.857049	-0.405778	-0.132555
27	6	-2.326089	-0.237934	-1.404221
28	6	-1.347874	-0.126154	-2.427896
29	1	1.934385	-0.179459	-2.621689
30	1	1.421459	0.121968	-5.040531
31	1	-0.972815	0.265302	-5.791229
32	1	-3.441174	0.233791	-5.114636
33	1	-5.139858	0.039734	-3.336998
34	1	-5.688336	-0.273418	-0.856540
35	1	-4.804670	-0.589438	1.474969
36	1	-2.344297	-0.668488	1.855830
37	1	5.236735	1.087462	4.982610
38	1	5.239167	-0.676205	4.792326

Table S16. Optimised geometry calculated for complex **4** at DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase (total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Table S17. Optimised geometry calculated for complex 4 at DFT level [PBE0//cc-
pVDZ/LANL08(f)] in DMSO (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal
Cartesian coordinate format (Z = atomic number).

Atom	Z	v	V	7
number	L	Λ	y	L
1	78	0.184797	-0.422496	-0.010141
2	16	0.272467	-0.680846	2.241407
3	6	1.985738	-0.869405	2.604437
4	16	2.349699	-1.229301	4.298696
5	6	3.310620	0.232084	4.836062
6	6	4.782757	0.238515	4.455939
7	6	5.085348	0.434779	2.978900
8	16	4.660954	-0.965331	1.880104
9	6	2.921251	-0.762613	1.625471
10	16	2.452587	-0.431982	-0.039958
11	1	2.788280	1.128770	4.467767
12	1	3.209682	0.216440	5.932296
13	1	4.595763	1.335204	2.576325
14	1	6.170196	0.554567	2.834273
15	7	-0.049419	-0.181561	-2.045024
16	6	0.893508	-0.082900	-2.982253
17	6	0.590064	0.074912	-4.339612
18	6	-0.728297	0.131533	-4.747379
19	6	-1.747761	0.028839	-3.781020
20	6	-3.148001	0.071358	-4.086453
21	6	-4.086415	-0.035904	-3.104498
22	6	-3.706831	-0.195137	-1.731061
23	6	-4.625115	-0.313935	-0.669768
24	6	-4.146601	-0.466598	0.616807
25	6	-2.766380	-0.501444	0.847417
26	7	-1.873529	-0.390327	-0.136308
27	6	-2.334885	-0.238803	-1.410460
28	6	-1.354444	-0.126645	-2.436381
29	1	1.928313	-0.132744	-2.640742
30	1	1.407793	0.150040	-5.055909
31	1	-0.986105	0.253276	-5.800587
32	1	-3.448102	0.191148	-5.128695
33	1	-5.149500	-0.003313	-3.348357
34	1	-5.697132	-0.285179	-0.870980
35	1	-4.823976	-0.562311	1.464986
36	1	-2.368912	-0.624145	1.855832
37	1	5.259900	1.071993	5.002868
38	1	5.261618	-0.688222	4.812400

Table S18. Optimised geometry calculated for complex 4 at DFT level [PBE0//cc-
pVDZ/LANL08(f)] in DMF (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal
Cartesian coordinate format (Z = atomic number).

Atom	7	v	V	7
number	L	Δ	y	L
1	78	0.184928	-0.422583	-0.010110
2	16	0.272665	-0.680972	2.241271
3	6	1.985847	-0.869575	2.604316
4	16	2.349764	-1.229735	4.298498
5	6	3.310351	0.231806	4.835935
6	6	4.782519	0.238633	4.455824
7	6	5.085063	0.435071	2.978768
8	16	4.661061	-0.965015	1.879845
9	6	2.921344	-0.762508	1.625358
10	16	2.452558	-0.431519	-0.039880
11	1	2.787825	1.128398	4.467667
12	1	3.209441	0.216146	5.932182
13	1	4.595226	1.335406	2.576288
14	1	6.169890	0.555219	2.834195
15	7	-0.049374	-0.181746	-2.044955
16	6	0.893557	-0.083306	-2.982223
17	6	0.590121	0.074524	-4.339566
18	6	-0.728245	0.131402	-4.747352
19	6	-1.747696	0.028901	-3.780989
20	6	-3.147953	0.071633	-4.086347
21	6	-4.086350	-0.035540	-3.104369
22	6	-3.706774	-0.194918	-1.730938
23	6	-4.625007	-0.313730	-0.669631
24	6	-4.146406	-0.466604	0.616910
25	6	-2.766193	-0.501617	0.847450
26	7	-1.873358	-0.390445	-0.136303
27	6	-2.334804	-0.238748	-1.410405
28	6	-1.354386	-0.126645	-2.436343
29	1	1.928332	-0.133373	-2.640641
30	1	1.407871	0.149458	-5.055869
31	1	-0.986036	0.253169	-5.800569
32	1	-3.448092	0.191500	-5.128578
33	1	-5.149442	-0.002795	-3.348215
34	1	-5.697040	-0.284847	-0.870777
35	1	-4.823738	-0.562362	1.465126
36	1	-2.368602	-0.624490	1.855799
37	1	5.259491	1.072174	5.002846
38	1	5.261570	-0.688052	4.812183

Atom number	Z	X	У	Z
1	6	-0.019368	0.010726	-0.000044
2	6	-0.015427	0.011403	1.399265
3	7	1.150534	-0.001837	2.099590
4	6	2.309117	-0.004818	1.409959
5	6	2.358498	-0.004851	0.031694
6	6	1.169342	0.001288	-0.716854
7	6	-1.219224	0.040790	2.221767
8	7	-0.990616	0.050179	3.562660
9	6	-2.053670	0.100835	4.390586
10	6	-3.354971	0.133348	3.935065
11	6	-3.620196	0.117553	2.555239
12	6	-2.520781	0.071878	1.708979
13	78	0.967813	-0.026331	4.132138
14	16	0.573323	-0.074617	6.358383
15	6	2.162108	0.062567	7.086496
16	6	3.281634	0.037875	6.316828
17	16	4.885645	0.017162	7.049418
18	6	4.503510	-1.262126	8.298182
19	6	3.593396	-0.764393	9.401824
20	16	2.176727	0.273046	8.837445
21	16	3.180595	-0.142551	4.578130
22	6	-5.023732	0.151468	2.035812
23	6	1.196309	0.000508	-2.213572
24	1	4.056262	-2.110161	7.759427
25	1	5.464812	-1.589290	8.725265
26	1	4.148946	-0.119240	10.098355
27	1	3.186334	-1.620895	9.964090
28	1	-1.823223	0.117550	5.457021
29	1	-4.167912	0.172025	4.661924
30	1	-2.673274	0.061801	0.629600
31	1	-0.969423	0.019538	-0.534573
32	1	3.331706	-0.009063	-0.461791
33	1	3.218899	-0.004660	2.012385
34	1	1.734359	0.882362	-2.595381
35	1	1.723608	-0.888170	-2.594581
36	1	0.184060	0.006477	-2.639344
37	1	-5.052474	0.134816	0.938149
38	1	-5.598972	-0.711161	2.407233
39	1	-5.545930	1.058360	2.379032

Table S19. Optimised geometry calculated for complex **5** at DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase (total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Table S20. Optimised geometry calculated for complex 5 at DFT level [PBE0//cc-
pVDZ/LANL08(f)] in DMSO (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal
Cartesian coordinate format (Z = atomic number).

Atom	Z	x	V	7
number		А	J	L
1	6	-0.027427	0.005876	0.000219
2	6	-0.017343	0.020327	1.394584
3	7	1.147430	0.013800	2.090864
4	6	2.303746	0.003574	1.403154
5	6	2.352320	-0.007703	0.022369
6	6	1.164393	-0.010260	-0.720871
7	6	-1.229642	0.046043	2.219217
8	7	-1.010762	0.024179	3.558311
9	6	-2.075018	0.057627	4.380852
10	6	-3.375984	0.110251	3.918522
11	6	-3.629927	0.135766	2.540698
12	6	-2.521543	0.102226	1.697483
13	78	0.957474	-0.027822	4.132857
14	16	0.556029	-0.146230	6.371103
15	6	2.149718	0.019532	7.106726
16	6	3.269232	0.060529	6.343657
17	16	4.874329	0.080973	7.082225
18	6	4.553001	-1.229310	8.317288
19	6	3.625024	-0.786283	9.426407
20	16	2.144148	0.166401	8.868691
21	16	3.187776	-0.058314	4.588200
22	6	-5.025558	0.200658	2.009157
23	6	1.183439	-0.032477	-2.215390
24	1	4.148794	-2.092752	7.769998
25	1	5.528959	-1.510835	8.741171
26	1	4.144582	-0.114308	10.123947
27	1	3.266375	-1.664605	9.985480
28	1	-1.858606	0.045936	5.449413
29	1	-4.192723	0.135171	4.640999
30	1	-2.668325	0.125839	0.618361
31	1	-0.976888	0.003480	-0.533907
32	1	3.324534	-0.016845	-0.471946
33	1	3.218045	0.004733	1.997165
34	1	1.754690	0.823113	-2.606375
35	1	1.682049	-0.944392	-2.578514
36	1	0.170361	0.001089	-2.635181
37	1	-5.042520	0.208648	0.912180
38	1	-5.612325	-0.660846	2.362823
39	1	-5.533514	1.106601	2.373862

Table S21. Optimised geometry calculated for complex **5** at DFT level [PBE0//ccpVDZ/LANL08(f)] in acetonitrile (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom	Z	X	V	7
number	2	A	J	L
1	6	-0.027338	0.006065	0.000123
2	6	-0.017202	0.020175	1.394543
3	7	1.147602	0.013448	2.090758
4	6	2.303890	0.003382	1.402979
5	6	2.352384	-0.007555	0.022204
6	6	1.164417	-0.009867	-0.721000
7	6	-1.229380	0.046016	2.219298
8	7	-1.010255	0.025124	3.558363
9	6	-2.074375	0.058967	4.381078
10	6	-3.375427	0.110862	3.918951
11	6	-3.629653	0.135160	2.541144
12	6	-2.521450	0.101394	1.697770
13	78	0.957966	-0.027529	4.132760
14	16	0.556708	-0.143426	6.370983
15	6	2.150553	0.021355	7.106228
16	6	3.270042	0.059835	6.342961
17	16	4.875145	0.078146	7.081478
18	6	4.551374	-1.230805	8.317315
19	6	3.624127	-0.785486	9.426189
20	16	2.145807	0.170785	8.867926
21	16	3.188113	-0.060847	4.587775
22	6	-5.025463	0.198926	2.009851
23	6	1.183482	-0.031446	-2.215561
24	1	4.145466	-2.093718	7.770445
25	1	5.526801	-1.514041	8.741317
26	1	4.145080	-0.114591	10.123753
27	1	3.263366	-1.662936	9.985308
28	1	-1.857657	0.048193	5.449592
29	1	-4.192048	0.136123	4.641559
30	1	-2.668493	0.124104	0.618655
31	1	-0.976815	0.003905	-0.534001
32	1	3.324573	-0.016544	-0.472178
33	1	3.218160	0.004473	1.997041
34	1	1.753647	0.825032	-2.606226
35	1	1.683133	-0.942588	-2.579191
36	1	0.170365	0.001156	-2.635359
37	1	-5.042623	0.207345	0.912868
38	1	-5.611320	-0.663372	2.363129
39	1	-5.534362	1.104168	2.374973

Table S22. Optimised geometry calculated for complex 5 at DFT level [PBE0//cc-
pVDZ/LANL08(f)] in acetone (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal
Cartesian coordinate format (Z = atomic number).

Atom	Z	x	V	7
number	-	-	J	
1	6	-0.027028	0.005949	-0.000003
2	6	-0.016722	0.019347	1.394592
3	7	1.148191	0.011771	2.090618
4	6	2.304368	0.001574	1.402549
5	6	2.352581	-0.008707	0.021831
6	6	1.164469	-0.009858	-0.721270
7	6	-1.228509	0.046053	2.219692
8	7	-1.008644	0.028381	3.558686
9	6	-2.072412	0.063786	4.381873
10	6	-3.373679	0.113667	3.920322
11	6	-3.628750	0.133974	2.542544
12	6	-2.521080	0.099147	1.698760
13	78	0.959506	-0.026498	4.132610
14	16	0.558876	-0.133218	6.370817
15	6	2.153289	0.028235	7.104703
16	6	3.272680	0.058350	6.340741
17	16	4.877697	0.070069	7.079317
18	6	4.546301	-1.235301	8.316978
19	6	3.620916	-0.783548	9.425057
20	16	2.151946	0.186043	8.865482
21	16	3.189154	-0.068951	4.586493
22	6	-5.025086	0.194016	2.011990
23	6	1.183605	-0.028610	-2.215950
24	1	4.135426	-2.096367	7.770907
25	1	5.519961	-1.523924	8.741511
26	1	4.146181	-0.117349	10.123969
27	1	3.252543	-1.658696	9.982921
28	1	-1.854812	0.055809	5.450250
29	1	-4.189949	0.140309	4.643303
30	1	-2.668772	0.118871	0.619647
31	1	-0.976620	0.004626	-0.533999
32	1	3.324668	-0.017846	-0.472781
33	1	3.218568	0.002251	1.996746
34	1	1.739781	0.837929	-2.604894
35	1	1.697540	-0.930690	-2.582027
36	1	0.170041	-0.010530	-2.635625
37	1	-5.042706	0.207342	0.915027
38	1	-5.606726	-0.672945	2.360980
39	1	-5.538455	1.094931	2.381432

Table S23. Optimised geometry calculated for complex 5 at DFT level [PBE0//cc-
pVDZ/LANL08(f)] in DMF (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal
Cartesian coordinate format (Z = atomic number).

Atom	Z	v	V	7
number	Ľ	А	y	L
1	6	-0.027355	0.006034	0.000138
2	6	-0.017223	0.020207	1.394550
3	7	1.147572	0.013525	2.090772
4	6	2.303869	0.003427	1.403010
5	6	2.352375	-0.007579	0.022234
6	6	1.164413	-0.009937	-0.720976
7	6	-1.229424	0.046018	2.219287
8	7	-1.010342	0.024963	3.558351
9	6	-2.074480	0.058749	4.381044
10	6	-3.375518	0.110765	3.918882
11	6	-3.629696	0.135259	2.541071
12	6	-2.521466	0.101526	1.697719
13	78	0.957886	-0.027566	4.132780
14	16	0.556593	-0.143910	6.371002
15	6	2.150408	0.021052	7.106319
16	6	3.269902	0.059977	6.343089
17	16	4.875003	0.078648	7.081612
18	6	4.551647	-1.230552	8.317299
19	6	3.624270	-0.785645	9.426218
20	16	2.145514	0.170027	8.868060
21	16	3.188056	-0.060363	4.587853
22	6	-5.025479	0.199218	2.009741
23	6	1.183481	-0.031636	-2.215531
24	1	4.146034	-2.093547	7.770340
25	1	5.527167	-1.513496	8.741275
26	1	4.144982	-0.114579	10.123794
27	1	3.263865	-1.663255	9.985309
28	1	-1.857807	0.047837	5.449564
29	1	-4.192161	0.135978	4.641464
30	1	-2.668471	0.124383	0.618605
31	1	-0.976826	0.003830	-0.533991
32	1	3.324565	-0.016600	-0.472142
33	1	3.218141	0.004533	1.997066
34	1	1.753816	0.824697	-2.606256
35	1	1.682974	-0.942903	-2.579065
36	1	0.170371	0.001107	-2.635331
37	1	-5.042611	0.207548 0.91275	
38	1	-5.611496	-0.662935	2.363102
39	1	-5.534209	1.104588	2.374783

Table S24. Optimised geometry calculated for complex 5 at DFT level [PBE0//cc-
pVDZ/LANL08(f)] in dichloromethane (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in
orthogonal Cartesian coordinate format (Z = atomic number).Atom
numberZxyz

number	L	X	У	Z
1	6	-0.025997	0.006765	-0.000130
2	6	-0.015997	0.018312	1.394882
3	7	1.149151	0.010124	2.090948
4	6	2.305252	0.001026	1.402574
5	6	2.353356	-0.007854	0.021949
6	6	1.165208	-0.007934	-0.721285
7	6	-1.226866	0.045642	2.220459
8	7	-1.005317	0.034832	3.559492
9	6	-2.068331	0.073079	4.383664
10	6	-3.370159	0.118135	3.923479
11	6	-3.627140	0.129884	2.545860
12	6	-2.520692	0.092917	1.701116
13	78	0.962201	-0.023604	4.132389
14	16	0.563066	-0.115319	6.369969
15	6	2.157962	0.040716	7.101459
16	6	3.277037	0.056348	6.336244
17	16	4.881690	0.056211	7.074876
18	6	4.536554	-1.243587	8.314573
19	6	3.614297	-0.781538	9.421586
20	16	2.163323	0.213381	8.860431
21	16	3.190346	-0.082759	4.584198
22	6	-5.024578	0.183347	2.016821
23	6	1.184708	-0.023270	-2.216260
24	1	4.116655	-2.100691	7.769099
25	1	5.506970	-1.542442	8.739782
26	1	4.147328	-0.125082	10.124035
27	1	3.231823	-1.653131	9.975799
28	1	-1.848665	0.071173	5.451707
29	1	-4.185530	0.147317	4.647446
30	1	-2.670234	0.105607	0.622081
31	1	-0.975476	0.006935	-0.534528
32	1	3.325505	-0.016157	-0.472660
33	1	3.219094	0.001980	1.997416
34	1	1.732776	0.849192	-2.603739
35	1	1.706006	-0.919934	-2.585219
36	1	0.171041	-0.012691	-2.636206
37	1	-5.043796	0.190279	0.919713
38	1	-5.604081	-0.683051	2.370849
39	1	-5.540152	1.085234	2.380930

Table S25. Optimised geometry calculated for complex **5** at DFT level [PBE0//cc-pVDZ/LANL08(f)] in chloroform (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom	Z	v	V	7
number	L	Λ	y	L
1	6	-0.024469	0.006830	0.000167
2	6	-0.015262	0.018093	1.395849
3	7	1.149699	0.011857	2.092427
4	6	2.306229	0.005712	1.404085
5	6	2.354568	-0.003144	0.023783
6	6	1.166457	-0.005745	-0.720279
7	6	-1.225396	0.045621	2.221388
8	7	-1.002417	0.042438	3.560321
9	6	-2.065049	0.084628	4.385356
10	6	-3.367045	0.124571	3.926111
11	6	-3.625772	0.126363	2.548339
12	6	-2.520579	0.086599	1.703135
13	78	0.964089	-0.019552	4.133127
14	16	0.565680	-0.103987	6.368667
15	6	2.159868	0.049170	7.099271
16	6	3.278798	0.056545	6.333239
17	16	4.882903	0.049999	7.071856
18	6	4.528976	-1.249425	8.309424
19	6	3.608210	-0.783283	9.416550
20	16	2.169271	0.228970	8.856807
21	16	3.189517	-0.091655	4.583392
22	6	-5.024519	0.172128	2.021077
23	6	1.187453	-0.022084	-2.215568
24	1	4.103158	-2.102327	7.761868
25	1	5.497067	-1.556306	8.734632
26	1	4.146238	-0.134505	10.122567
27	1	3.216838	-1.653745	9.966727
28	1	-1.843025	0.090144	5.453005
29	1	-4.181902	0.157272	4.650629
30	1	-2.671230	0.091628	0.624074
31	1	-0.973906	0.006434	-0.534549
32	1	3.326892	-0.008828	-0.470703
33	1	3.219221	0.009605	2.000397
34	1	1.746985	0.842532	-2.604229
35	1	1.696347	-0.926276	-2.583912
36	1	0.174434	0.001173	-2.636918
37	1	-5.045443	0.179011	0.923855
38	1	-5.598975	-0.697959	2.374623
39	1	-5.545570	1.070888	2.385206

Table S26. Optimised geometry calculated for complex 5 at DFT level [PBE0//cc-
pVDZ/LANL08(f)] in THF (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal
Cartesian coordinate format (Z = atomic number).

Atom	Ζ	Х	V	Z
number			J	
1	6	-0.025702	0.006986	-0.000114
2	6	-0.015805	0.018747	1.395085
3	7	1.149208	0.011789	2.091204
4	6	2.305481	0.004377	1.402874
5	6	2.353600	-0.004575	0.022361
6	6	1.165420	-0.006545	-0.721082
7	6	-1.226593	0.046025	2.220699
8	7	-1.004726	0.037895	3.559600
9	6	-2.067645	0.077468	4.384027
10	6	-3.369484	0.120493	3.924011
11	6	-3.626892	0.128721	2.546297
12	6	-2.520757	0.091018	1.701484
13	78	0.962676	-0.022069	4.132637
14	16	0.563688	-0.113218	6.369631
15	6	2.158468	0.041915	7.101012
16	6	3.277457	0.055536	6.335578
17	16	4.882076	0.053713	7.073972
18	6	4.534761	-1.245710	8.313476
19	6	3.613312	-0.781983	9.420566
20	16	2.164375	0.215818	8.859655
21	16	3.189989	-0.085766	4.583992
22	6	-5.024728	0.179129	2.017778
23	6	1.185434	-0.023681	-2.216111
24	1	4.113019	-2.101763	7.767755
25	1	5.504604	-1.546695	8.738581
26	1	4.147773	-0.126511	10.122909
27	1	3.229319	-1.652907	9.974890
28	1	-1.847320	0.078412	5.451958
29	1	-4.184822	0.150809	4.648004
30	1	-2.670475	0.101244	0.622417
31	1	-0.975230	0.006363	-0.534485
32	1	3.325754	-0.011223	-0.472319
33	1	3.219064	0.007032	1.998148
34	1	1.747723	0.839010	-2.604876
35	1	1.692071	-0.929468	-2.583520
36	1	0.172268	0.002114	-2.636676
37	1	-5.044407	0.187160	0.920656
38	1	-5.601768	-0.689382	2.370770
39	1	-5.542848	1.079114	2.382957

Table S27. Optimised geometry calculated for complex **5** at DFT level [PBE0//ccpVDZ/LANL08(f)] in toluene (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom	Z	x	V	Z
number	-		3	E
1	6	-0.022222	0.007008	0.000724
2	6	-0.014755	0.016191	1.397540
3	7	1.150259	0.009819	2.095361
4	6	2.307442	0.005398	1.406817
5	6	2.356257	-0.002417	0.027083
6	6	1.168137	-0.004329	-0.718491
7	6	-1.223150	0.044346	2.222390
8	7	-0.998047	0.049231	3.561673
9	6	-2.060508	0.096324	4.387740
10	6	-3.362527	0.131628	3.929859
11	6	-3.623730	0.122599	2.551747
12	6	-2.520480	0.078892	1.706051
13	78	0.966054	-0.017650	4.133782
14	16	0.568858	-0.089125	6.365907
15	6	2.161465	0.059023	7.095324
16	6	3.280383	0.054953	6.328058
17	16	4.883962	0.041895	7.065703
18	6	4.519130	-1.255226	8.302207
19	6	3.600309	-0.782644	9.409044
20	16	2.175416	0.248861	8.850690
21	16	3.187022	-0.106370	4.581972
22	6	-5.024232	0.161451	2.027059
23	6	1.191245	-0.017289	-2.214323
24	1	4.086129	-2.103968	7.753591
25	1	5.484395	-1.571285	8.727767
26	1	4.144548	-0.141983	10.118063
27	1	3.198836	-1.650949	9.955981
28	1	-1.835217	0.109189	5.454859
29	1	-4.176548	0.168505	4.655300
30	1	-2.672399	0.074646	0.626969
31	1	-0.971638	0.008564	-0.534389
32	1	3.328966	-0.006994	-0.466930
33	1	3.219202	0.010365	2.005377
34	1	1.740994	0.854336	-2.601824
35	1	1.708865	-0.915315	-2.585825
36	1	0.178428	-0.003240	-2.637235
37	1	-5.047872	0.159476	0.929609
38	1	-5.597412	-0.706924	2.387221
39	1	-5.547222	1.062397	2.383348

Atom	7	V	**	77	Atom	7	V	**	7
number	L	X	У	Z	number	L	X	У	Z
1	6	-3.175848	-1.512666	0.029628	30	1	-4.128510	1.023090	0.072988
2	6	-2.016970	-0.736016	0.009422	31	1	-4.141272	-1.009075	0.065302
3	7	-0.783369	-1.311896	-0.032687	32	1	-1.683112	-4.543703	-0.075703
4	6	-0.715222	-2.653780	-0.065449	33	1	0.289574	-3.077118	-0.109614
5	6	-1.834600	-3.466069	-0.048170	34	6	-4.103925	-5.238170	-0.009600
6	6	-3.119101	-2.905286	0.002723	35	6	-5.181175	-3.421950	1.310083
7	6	-2.005950	0.724414	0.015547	36	6	-5.253860	-3.378119	-1.200780
8	7	-0.767295	1.280892	-0.021202	37	6	-5.613125	3.020171	0.104938
9	6	-0.679243	2.625783	-0.041636	38	6	-4.231110	4.711279	1.302435
10	6	-1.785566	3.448095	-0.016936	39	6	-4.308475	4.686486	-1.208587
11	6	-3.082571	2.903740	0.028396	40	1	-6.109748	-4.013334	1.341972
12	6	-3.159602	1.516408	0.042352	41	1	-4.588772	-3.667072	2.204909
13	78	0.800653	-0.024866	-0.029468	42	1	-5.461490	-2.359512	1.371815
14	16	2.427842	1.546378	0.002524	43	1	-5.049506	-5.800341	0.008622
15	6	3.913585	0.638473	-0.207070	44	1	-3.564471	-5.529737	-0.923751
16	6	3.901123	-0.719843	-0.215585	45	1	-3.511560	-5.560419	0.860438
17	16	5.405316	-1.639383	-0.266237	46	1	-6.182810	-3.969783	-1.200180
18	6	6.266215	-0.658291	1.013855	47	1	-5.537126	-2.314686	-1.208474
19	6	6.656582	0.726852	0.541076	48	1	-4.714002	-3.590199	-2.136354
20	16	5.368038	1.608519	-0.440873	49	1	-5.101603	5.385138	1.335316
21	16	2.409182	-1.613506	-0.006200	50	1	-4.228348	4.110177	2.224706
22	6	-4.306752	3.814076	0.056798	51	1	-3.325829	5.336349	1.304886
23	6	-4.399556	-3.737541	0.025094	52	1	-6.466156	3.714625	0.124995
24	1	5.595524	-0.611996	1.884187	53	1	-5.735286	2.375549	-0.779426
25	1	7.167417	-1.224200	1.298797	54	1	-5.679530	2.392227	1.007069
26	1	7.527276	0.674619	-0.129195	55	1	-5.180255	5.359450	-1.201510
27	1	6.916992	1.356853	1.407550	56	1	-3.405915	5.311554	-1.278653
28	1	0.331749	3.034213	-0.082044	57	1	-4.361194	4.067336	-2.117305
29	1	-1.623518	4.526159	-0.034270					

Table S28. Optimised geometry calculated for complex **6** at DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase (total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Table S29. Optimised geometry calculated for complex **6** at DFT level [PBE0//cc-pVDZ/LANL08(f)] in DMSO (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom number	Z	X	У	Z	Atom number	Z	X	У	Z
1	6	-3 178422	-1 510866	0.041001	30	1	1	-4 134175	1 011571
2	6	-2 020451	-0 741417	0.003173	31	1	1	-4 142054	-1 007000
3	7	-0.791131	-1.319246	-0.052633	32	1	1	-1.694208	-4.548738
4	6	-0.722792	-2.658390	-0.083197	33	1	1	0.277043	-3.090462
5	6	-1.844461	-3.471198	-0.052443	34	6	6	-4.113776	-5.235650
6	6	-3.122833	-2.907831	0.015750	35	6	6	-5.163902	-3.401663
7	6	-2.011224	0.725900	0.017471	36	6	6	-5.270498	-3.374056
8	7	-0.777745	1.288004	0.013488	37	6	6	-5.625861	2.994509
9	6	-0.692573	2.630574	0.014570	38	6	6	-4.285706	4.698963
10	6	-1.803920	3.450405	0.021090	39	6	6	-4.293660	4.668084
11	6	-3.094726	2.899378	0.021756	40	1	1	-6.093846	-3.989235
12	6	-3.166875	1.507694	0.020293	41	1	1	-4.560590	-3.647239
13	78	0.797297	-0.023285	-0.029732	42	1	1	-5.438537	-2.337729
14	16	2.434123	1.556334	0.079579	43	1	1	-5.063031	-5.790198
15	6	3.926828	0.650491	-0.165550	44	1	1	-3.588864	-5.535637
16	6	3.916362	-0.702296	-0.250762	45	1	1	-3.511280	-5.553634
17	16	5.423481	-1.618965	-0.354688	46	1	1	-6.202025	-3.960481
18	6	6.311474	-0.710230	0.961162	47	1	1	-5.546515	-2.308961
19	6	6.698471	0.694983	0.556697	48	1	1	-4.745057	-3.600580
20	16	5.381835	1.641825	-0.327410	49	1	1	-5.164183	5.362488
21	16	2.419133	-1.619279	-0.108618	50	1	1	-4.303826	4.098758
22	6	-4.325539	3.799120	0.016808	51	1	1	-3.387517	5.333832
23	6	-4.403952	-3.734289	0.061379	52	1	1	-6.481508	3.685614
24	1	5.660329	-0.713111	1.846831	53	1	1	-5.720608	2.349948
25	1	7.216809	-1.291977	1.192160	54	1	1	-5.710482	2.365488
26	1	7.548082	0.679912	-0.140446	55	1	1	-5.171015	5.333000
27	1	6.985624	1.273653	1.448489	56	1	1	-3.393973	5.299734
28	1	0.313636	3.050174	0.004631	57	1	1	-4.319546	4.045131
29	1	-1.644705	4.528658	0.021205					

Table S30. Optimised geometry calculated for complex **6** at DFT level [PBE0//cc-pVDZ/LANL08(f)] in DMF (SCRF IEF-PCM; total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom number	Z	X	У	Z	Atom number	Z	X	У	Z
1	6	-3 178359	-1 510952	0.041224	30	1	-4 134153	1 011698	0.015003
2	6	-2.020421	-0.741410	0.003205	31	1	-4.142044	-1.007209	0.096234
3	7	-0.791075	-1.319193	-0.052926	32	1	-1.694081	-4.548707	-0.080936
4	6	-0.722722	-2.658326	-0.083933	33	1	0.277152	-3.090275	-0.134986
5	6	-1.844356	-3.471177	-0.053178	34	6	-4.113672	-5.235740	0.031949
6	6	-3.122740	-2.907885	0.015567	35	6	-5.163036	-3.402622	1.356216
7	6	-2.011188	0.725882	0.017399	36	6	-5.271139	-3.373422	-1.155472
8	7	-0.777670	1.287930	0.012893	37	6	-5.625768	2.994823	0.031762
9	6	-0.692459	2.630498	0.013585	38	6	-4.285008	4.698987	1.263020
10	6	-1.803766	3.450372	0.020374	39	6	-4.293932	4.668435	-1.250542
11	6	-3.094616	2.899430	0.021701	40	1	-6.093043	-3.990086	1.401035
12	6	-3.166817	1.507767	0.020458	41	1	-4.559245	-3.648822	2.243171
13	78	0.797326	-0.023308	-0.029872	42	1	-5.437466	-2.338677	1.413689
14	16	2.434028	1.556274	0.079056	43	1	-5.062875	-5.790374	0.067544
15	6	3.926668	0.650442	-0.165825	44	1	-3.589237	-5.535104	-0.888349
16	6	3.916213	-0.702381	-0.250542	45	1	-3.510713	-5.554296	0.896024
17	16	5.423385	-1.618937	-0.354146	46	1	-6.202641	-3.959887	-1.133408
18	6	6.310820	-0.709967	0.961907	47	1	-5.547223	-2.308329	-1.164900
19	6	6.697769	0.695316	0.557497	48	1	-4.746254	-3.599228	-2.096415
20	16	5.381753	1.641497	-0.328189	49	1	-5.163397	5.362629	1.269008
21	16	2.419099	-1.619251	-0.107642	50	1	-4.302793	4.098698	2.185645
22	6	-4.325364	3.799295	0.017256	51	1	-3.386734	5.333743	1.284719
23	6	-4.403840	-3.734396	0.061355	52	1	-6.481384	3.685967	0.030374
24	1	5.659286	-0.712796	1.847292	53	1	-5.720867	2.350316	-0.855642
25	1	7.216121	-1.291604	1.193387	54	1	-5.710167	2.365797	0.931313
26	1	7.548027	0.680325	-0.138877	55	1	-5.171251	5.333410	-1.265833
27	1	6.983971	1.274227	1.449459	56	1	-3.394238	5.300053	-1.294810
28	1	0.313798	3.049983	0.003100	57	1	-4.320107	4.045645	-2.157942
29	1	-1.644494	4.528622	0.020174					

1		2		3		4		5		6	
Pt-S1	2.261	Pt-S1	2.256	Pt-S1	2.258	Pt-S1	2.254	Pt-S1	2.261	Pt-S1	2.262
Pt-S2	2.260	Pt-S2	2.256	Pt-S2	2.258	Pt-S2	2.254	Pt-S2	2.260	Pt-S2	2.261
Pt-N1	2.040	Pt-N1	2.045	Pt-N1	2.048	Pt-N1	2.053	Pt-N1	2.041	Pt-N1	2.041
Pt-N2	2.040	Pt-N2	2.045	Pt-N2	2.048	Pt-N2	2.053	Pt-N2	2.041	Pt-N2	2.041
S1-C11	1.752	S1-C11	1.751	S1-C13	1.754	S1-C13	1.752	S1-C13	1.753	S1-C13	1.754
S2-C12	1.750	S2-C12	1.751	S2-C14	1.752	S2-C14	1.752	S2-C14	1.751	S2-C14	1.752
C11-S3	1.763	C11-S3	1.766	C13-S3	1.763	C13-S3	1.760	C13-S3	1.764	C13-S3	1.764
C12-S4	1.763	C12-S4	1.766	C14-S4	1.763	C14-S4	1.766	C14-S4	1.763	C14-S4	1.764
S3-C13	1.844	S3-C13	1.827	S3-C15	1.844	S3-C15	1.827	S3-C15	1.844	S3-C15	1.844
S4-C14	1.828	S4-C15	1.827	S4-C16	1.828	S4-C17	1.827	S4-C16	1.828	S4-C16	1.828
C11-C12	1.359	C11-C12	1.361	C13-C14	1.359	C13-C14	1.361	C13-C14	1.359	C13-C14	1.358
C13-C14	1.515	C13-C14	1.522	C15-C16	1.515	C15-C16	1.522	C15-C16	1.515	C15-C16	1.515
		C14-C15	1.522			C16-C17	1.522				
N1-C5	1.363	N1-C5	1.362	N1-C6	1.366	N1-C6	1.366	N1-C6	1.360	N1-C6	1.358
N2-C6	1.363	N2-C6	1.362	N2-C7	1.366	N2-C7	1.366	N2-C7	1.360	N2-C7	1.362
C5-C6	1.457	C5-C6	1.458	C6-C7	1.419	C6-C7	1.420	C6-C7	1.458	C6-C7	1.460
N1-Pt-S1	96.13	N1-Pt-S1	96.44	N1-Pt-S1	95.51	N1-Pt-S1	95.83	N1-Pt-S1	96.20	N1-Pt-S1	96.21
S1-Pt-S2	88.50	S1-Pt-S2	88.12	S1-Pt-S2	88.93	S1-Pt-S2	88.53	S1-Pt-S2	88.59	S1-Pt-S2	88.64
S2-Pt-N2	96.21	S2-Pt-N2	96.44	S2-Pt-N2	95.59	S2-Pt-N2	95.83	S2-Pt-N2	96.29	S2-Pt-N2	96.27
N1-Pt-N2	79.14	N1-Pt-N2	78.90	N1-Pt-N2	79.96	N1-Pt-N2	79.80	N1-Pt-N2	78.91	N1-Pt-N2	78.88
N1-Pt-S1-C11	172.96	N1-Pt-S1-C11	174.76	N1-Pt-S1-C13	173.10	N1-Pt-S1-C13	174.87	N1-Pt-S1-C13	173.02	N1-Pt-S1-C13	173.03
N2-Pt-S2-C12	172.71	N2-Pt-S2-C12	174.77	N2-Pt-S2-C14	172.84	N2-Pt-S2-C14	174.88	N2-Pt-S2-C14	172.76	N2-Pt-S2-C14	172.74
Pt-S1-C11-S3	172.00	Pt-S1-C11-S3	174.25	Pt-S1-C13-S3	172.23	Pt-S1-C13-S3	174.43	Pt-S1-C13-S3	172.11	Pt-S1-C13-S3	172.19
Pt-S2-C12-S4	179.18	Pt-S2-C12-S4	174.25	Pt-S2-C14-S4	179.39	Pt-S2-C14-S4	174.43	Pt-S2-C14-S4	179.30	Pt-S2-C14-S4	179.38
S1-C11-S3-C13	140.64	S1-C11-S3-C13	115.51	S1-C13-S3-C15	140.38	S1-C13-S3-C15	115.39	S1-C13-S3-C15	140.38	S1-C13-S3-C15	140.04
S2-C12-S4-C14	128.53	S2-C12-S4-C15	115.51	S2-C14-S4-C16	128.37	S2-C14-S4-C17	115.39	S2-C14-S4-C16	128.35	S2-C14-S4-C16	128.11
		C11-S3-C13-C14	81.08			C13-S3-C15-C16	81.14				
		C12-S4-C15-C14	81.07			C14-S4-C17-C16	81.14				

Table S31. Selected optimised bond lengths (Å) and angles (°) calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase for complexes 1–6; numbering scheme as in Figure S5.

1		2		3		4		5		6	
Pt-S1	2.271	Pt-S1	2.271	Pt-S1	2.273	Pt-S1	2.268	Pt-S1	2.277	Pt-S1	2.277
Pt-S2	2.271	Pt-S2	2.271	Pt-S2	2.273	Pt-S2	2.268	Pt-S2	2.277	Pt-S2	2.277
Pt-N1	2.054	Pt-N1	2.054	Pt-N1	2.059	Pt-N1	2.062	Pt-N1	2.051	Pt-N1	2.050
Pt-N2	2.054	Pt-N2	2.054	Pt-N2	2.059	Pt-N2	2.062	Pt-N2	2.051	Pt-N2	2.050
S1-C11	1.761	S1-C11	1.761	S1-C13	1.763	S1-C13	1.761	S1-C13	1.763	S1-C13	1.763
S2-C12	1.761	S2-C12	1.761	S2-C14	1.762	S2-C14	1.761	S2-C14	1.761	S2-C14	1.762
C11-S3	1.770	C11-S3	1.770	C13-S3	1.768	C13-S3	1.770	C13-S3	1.768	C13-S3	1.768
C12-S4	1.770	C12-S4	1.770	C14-S4	1.767	C14-S4	1.770	C14-S4	1.768	C14-S4	1.767
S3-C13	1.830	S3-C13	1.830	S3-C15	1.847	S3-C15	1.830	S3-C15	1.847	S3-C15	1.847
S4-C14	1.830	S4-C15	1.830	S4-C16	1.829	S4-C17	1.830	S4-C16	1.829	S4-C16	1.829
C11-C12	1.358	C11-C12	1.358	C13-C14	1.356	C13-C14	1.358	C13-C14	1.355	C13-C14	1.356
C13-C14	1.521	C13-C14	1.520	C15-C16	1.513	C15-C16	1.520	C15-C16	1.513	C15-C16	1.513
		C14-C15	1.521			C16-C17	1.520				
N1-C5	1.359	N1-C5	1.359	N1-C6	1.364	N1-C6	1.364	N1-C6	1.357	N1-C6	1.356
N2-C6	1.359	N2-C6	1.359	N2-C7	1.364	N2-C7	1.364	N2-C7	1.357	N2-C7	1.360
C5-C6	1.465	C5-C6	1.465	C6-C7	1.423	C6-C7	1.424	C6-C7	1.466	C6-C7	1.467
N1-Pt-S1	96.38	N1-Pt-S1	96.38	N1-Pt-S1	95.51	N1-Pt-S1	95.80	N1-Pt-S1	93.17	N1-Pt-S1	96.17
S1-Pt-S2	88.12	S1-Pt-S2	88.12	S1-Pt-S2	88.92	S1-Pt-S2	88.51	S1-Pt-S2	88.59	S1-Pt-S2	88.62
S2-Pt-N2	96.39	S2-Pt-N2	96.39	S2-Pt-N2	95.57	S2-Pt-N2	95.80	S2-Pt-N2	96.24	S2-Pt-N2	96.22
N1-Pt-N2	79.21	N1-Pt-N2	79.11	N1-Pt-N2	80.00	N1-Pt-N2	79.59	N1-Pt-N2	79.02	N1-Pt-N2	79.01
N1-Pt-S1-C11	172.40	N1-Pt-S1-C11	176.04	N1-Pt-S1-C13	172.76	N1-Pt-S1-C13	175.59	N1-Pt-S1-C13	175.52	N1-Pt-S1-C13	172.55
N2-Pt-S2-C12	174.20	N2-Pt-S2-C12	176.07	N2-Pt-S2-C14	174.37	N2-Pt-S2-C14	175.57	N2-Pt-S2-C14	174.73	N2-Pt-S2-C14	174.86
Pt-S1-C11-S3	172.64	Pt-S1-C11-S3	175.41	Pt-S1-C13-S3	172.62	Pt-S1-C13-S3	175.06	Pt-S1-C13-S3	172.77	Pt-S1-C13-S3	172.99
Pt-S2-C12-S4	179.47	Pt-S2-C12-S4	175.41	Pt-S2-C14-S4	179.56	Pt-S2-C14-S4	175.06	Pt-S2-C14-S4	179.49	Pt-S2-C14-S4	179.49
S1-C11-S3-C13	142.28	S1-C11-S3-C13	116.08	S1-C13-S3-C15	141.90	S1-C13-S3-C15	116.23	S1-C13-S3-C15	142.38	S1-C13-S3-C15	142.18
S2-C12-S4-C14	129.73	S2-C12-S4-C15	116.07	S2-C14-S4-C16	129.66	S2-C14-S4-C17	116.23	S2-C14-S4-C16	129.73	S2-C14-S4-C16	129.46
		C11-S3-C13-C14	80.76			C13-S3-C15-C16	80.77				
		C12-S4-C15-C14	80.76			C14-S4-C17-C16	80.76				

Table S32. Selected optimised bond lengths (Å) and angles (°) calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] in DMSO (SCRF IEF-PCM) for complexes 1–6; numbering scheme as in Figure S5.

1		2		3		4		5		6	
Pt-S1	2.276	Pt-S1	2.271	Pt-S1	2.273	Pt-S1	2.268	Pt-S1	2.277	Pt-S1	2.277
Pt-S2	2.276	Pt-S2	2.271	Pt-S2	2.272	Pt-S2	2.268	Pt-S2	2.276	Pt-S2	2.277
Pt-N1	2.051	Pt-N1	2.054	Pt-N1	2.059	Pt-N1	2.062	Pt-N1	2.051	Pt-N1	2.050
Pt-N2	2.051	Pt-N2	2.054	Pt-N2	2.059	Pt-N2	2.062	Pt-N2	2.051	Pt-N2	2.050
S1-C11	1.763	S1-C11	1.760	S1-C13	1.763	S1-C13	1.761	S1-C13	1.763	S1-C13	1.763
S2-C12	1.761	S2-C12	1.760	S2-C14	1.761	S2-C14	1.761	S2-C14	1.761	S2-C14	1.761
C11-S3	1.768	C11-S3	1.770	C13-S3	1.768	C13-S3	1.770	C13-S3	1.768	C13-S3	1.768
C12-S4	1.767	C12-S4	1.770	C14-S4	1.767	C14-S4	1.770	C14-S4	1.767	C14-S4	1.767
S3-C13	1.847	S3-C13	1.830	S3-C15	1.847	S3-C15	1.830	S3-C15	1.847	S3-C15	1.847
S4-C14	1.829	S4-C15	1.830	S4-C16	1.829	S4-C17	1.830	S4-C16	1.829	S4-C16	1.826
C11-C12	1.355	C11-C12	1.358	C13-C14	1.356	C13-C14	1.358	C13-C14	1.355	C13-C14	1.355
C13-C14	1.513	C13-C14	1.520	C15-C16	1.513	C15-C16	1.520	C15-C16	1.513	C15-C16	1.513
		C14-C15	1.521			C16-C17	1.520				
N1-C5	1.359	N1-C5	1.359	N1-C6	1.364	N1-C6	1.364	N1-C6	1.357	N1-C6	1.356
N2-C6	1.359	N2-C6	1.359	N2-C7	1.364	N2-C7	1.364	N2-C7	1.357	N2-C7	1.359
C5-C6	1.465	C5-C6	1.465	C6-C7	1.423	C6-C7	1.423	C6-C7	1.466	C6-C7	1.467
N1-Pt-S1	96.11	N1-Pt-S1	96.39	N1-Pt-S1	95.510	N1-Pt-S1	95.80	N1-Pt-S1	96.170	N1-Pt-S1	96.17
S1-Pt-S2	88.53	S1-Pt-S2	88.12	S1-Pt-S2	88.92	S1-Pt-S2	88.50	S1-Pt-S2	88.590	S1-Pt-S2	88.62
S2-Pt-N2	96.18	S2-Pt-N2	96.39	S2-Pt-N2	95.57	S2-Pt-N2	95.80	S2-Pt-N2	96.240	S2-Pt-N2	96.22
N1-Pt-N2	79.21	N1-Pt-N2	79.10	N1-Pt-N2	80.00	N1-Pt-N2	79.89	N1-Pt-N2	79.010	N1-Pt-N2	79.00
N1-Pt-S1-C11	172.43	N1-Pt-S1-C11	176.02	N1-Pt-S1-C13	172.76	N1-Pt-S1-C13	175.57	N1-Pt-S1-C13	172.550	N1-Pt-S1-C13	172.550
N2-Pt-S2-C12	174.60	N2-Pt-S2-C12	176.05	N2-Pt-S2-C14	174.34	N2-Pt-S2-C14	175.57	N2-Pt-S2-C14	174.69	N2-Pt-S2-C14	174.83
Pt-S1-C11-S3	172.62	Pt-S1-C11-S3	175.40	Pt-S1-C13-S3	172.60	Pt-S1-C13-S3	175.06	Pt-S1-C13-S3	172.75	Pt-S1-C13-S3	172.98
Pt-S2-C12-S4	179.48	Pt-S2-C12-S4	175.39	Pt-S2-C14-S4	179.57	Pt-S2-C14-S4	175.06	Pt-S2-C14-S4	179.51	Pt-S2-C14-S4	179.47
S1-C11-S3-C13	142.23	S1-C11-S3-C13	116.07	S1-C13-S3-C15	141.91	S1-C13-S3-C15	116.23	S1-C13-S3-C15	142.30	S1-C13-S3-C15	142.14
S2-C12-S4-C14	129.70	S2-C12-S4-C15	116.06	S2-C14-S4-C16	129.63	S2-C14-S4-C17	116.22	S2-C14-S4-C16	129.70	S2-C14-S4-C16	129.43
		C11-S3-C13-C14	80.76			C13-S3-C15-C16	80.76				
		C12-S4-C15-C14	80.77			C14-S4-C17-C16	80.77				

Table S33. Selected optimised bond lengths (Å) and angles (°) calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] in DMF (SCRF IEF-PCM) for complexes 1–6; numbering scheme as in Figure S5.

Table S34. Selected optimised bond lengths (Å) and angles (°) calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] in different solvents (SCRF IEF-PCM) for complex **5**; numbering scheme as in Figure S5.

	CH ₃ CN	DMSO	Acetone	DMF	DCM	CHCl ₃	THF	Toluene
Pt-S1	2.277	2.277	2.276	2.277	2.275	2.272	2.274	2.268
Pt-S2	2.276	2.277	2.276	2.276	2.274	2.272	2.274	2.267
Pt-N1	2.051	2.051	2.051	2.051	2.050	2.049	2.050	2.047
Pt-N2	2.051	2.051	2.051	2.051	2.050	2.049	2.050	2.047
S1-C11	1.763	1.763	1.763	1.763	1.762	1.760	1.761	1.785
S2-C12	1.761	1.761	1.761	1.761	1.760	1.758	1.759	1.756
C11-S3	1.768	1.768	1.768	1.768	1.767	1.767	1.767	1.766
C12-S4	1.767	1.768	1.767	1.767	1.766	1.766	1.766	1.765
S3-C13	1.847	1.847	1.847	1.847	1.847	1.846	1.847	1.845
S4-C14	1.829	1.829	1.829	1.829	1.829	1.829	1.829	1.829
C11-C12	1.355	1.355	1.356	1.355	1.356	1.356	1.356	1.357
C13-C14	1.513	1.513	1.513	1.513	1.513	1.514	1.513	1.514
N1-C5	1.357	1.357	1.357	1.357	1.357	1.357	1.357	1.358
N2-C6	1.357	1.357	1.357	1.357	1.357	1.357	1.357	1.358
C5-C6	1.466	1.466	1.466	1.466	1.466	1.465	1.466	1.463
N1-Pt-S1	96.17	93.17	96.17	96.17	96.18	96.19	96.18	96.20
S1-Pt-S2	88.59	88.59	88.59	88.59	88.59	88.60	88.59	88.61
S2-Pt-N2	96.24	96.24	96.24	96.24	96.25	96.27	96.26	96.27
N1-Pt-N2	79.01	79.02	79.00	79.01	78.98	78.94	78.96	78.90
N1-Pt-S1-C11	172.55	175.52	172.63	172.55	172.77	172.79	172.76	172.86
N2-Pt-S2-C12	174.68	174.73	174.50	174.69	174.16	173.87	174.07	173.46
Pt-S1-C11-S3	172.74	172.77	172.66	172.75	172.49	172.41	172.46	172.35
Pt-S2-C12-S4	179.51	179.49	179.57	179.51	179.68	179.66	179.64	179.58
S1-C11-S3-C13	142.28	142.38	141.93	142.30	141.20	140.66	141.13	140.14
S2-C12-S4-C14	129.70	129.73	129.55	129.70	129.23	128.85	129.15	128.39

	-	-		
		N^N	S^S	Pt
1	HOMO	12	82	6
	LUMO	85	10	5
2	HOMO	13	79	8
	LUMO	86	9	5
2	HOMO	12	82	6
5	LUMO	86	9	5
4	HOMO	13	79	8
4	LUMO	86	9	5
5	HOMO	12	82	6
3	LUMO	86	9	5
6	HOMO	12	82	6
0	LUMO	87	8	5

Table S35. Frontier molecular orbital composition (%) calculated calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] at the optimised geometry in the gas phase for complexes 1-6 in terms of dimine N^N, 1,2-dithiolene ligand S^S, and platinum atom.

Table S36. Selected natural charges on the diimine N^N, 1,2-dithiolene ligand S^S, and platinum atom (|e|) calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] at the optimised geometry in the gas phase for complexes **1–6**.

	N^N	S^S	Pt
1	0.285	-0.319	0.034
2	0.307	-0.338	0.031
3	0.322	-0.351	0.029
4	0.289	-0.310	0.022
5	0.292	-0.321	0.029
6	0.295	-0.312	0.017

	Gas			DMSO			DMF		
	HOMO	LUMO	$\Delta E_{\text{HOMO-LUMO}}$	HOMO	LUMO	$\Delta E_{\text{HOMO-LUMO}}$	HOMO	LUMO	$\Delta E_{\text{HOMO-LUMO}}$
1	-4.534	-2.629	1.905	-5.123	-2.521	2.602	-5.114	-2.521	2.593
2	-4.670	-2.622	2.048	-5.251	-2.509	2.742	-5.242	-2.510	2.732
3	-4.505	-2.592	1.913	-5.118	-2.496	2.620	-5.110	-2.496	2.614
4	-4.639	-2.585	2.054	-5.242	-2.484	2.758	-5.234	-2.484	2.750
5	-4.410	-2.497	1.913	-5.086	-2.434	2.652	-5.077	-2.434	2.643
6	-4.351	-2.391	1.960	-5.086	-2.390	2.696	-5.234	-2.484	2.750

Table S37. Eigenvalues of Kohn-Sham HOMO and LUMO and HOMO-LUMO energy gap (eV) calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase, DMSO, and DMF (SCRF IEF-PCM) for complexes **1–6**.

	НОМО	LUMO	$\Delta E_{ m HOMO-LUMO}$
CH ₃ CN	-5.075	-2.434	2.641
DMSO	-5.086	-2.434	2.652
Acetone	-5.044	-2.434	2.610
DMF	-5.077	-2.434	2.643
DCM	-4.957	-2.436	2.521
CHCl ₃	-4.840	-2.441	2.399
THF	-5.077	-2.434	2.643
Toluene	-4.957	-2.436	2.521

Table S38. Eigenvalues of Kohn-Sham HOMO and LUMO and HOMO-LUMO energy gap (eV) calculated at the DFT level level [PBE0//cc-pVDZ/LANL08(f)] in different solvents (SCRF IEF-PCM) for complex **5**.

Table S39. Energy E (eV), wavelength λ (nm), and oscillator strength f of the lowest energy electronic transition (corresponding to the HOMO \rightarrow LUMO monoelectronic excitation) calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase, DMSO, and DMF (SCRF IEF-PCM for complexes 1–6.

		Gas			DMSO			DMF	
	Ε	λ	f	E	λ	f	Ε	λ	f
1	1.519	816	0.166	2.000	620	0.152	1.992	622	0.153
2	1.635	758	0.174	2.118	585	0.170	2.110	588	0.172
3	1.509	822	0.162	2.015	615	0.154	2.007	618	0.155
4	1.625	763	0.174	2.131	582	0.174	2.123	584	0.176
5	1.519	816	0.177	2.049	605	0.162	2.040	608	0.163
6	1.542	804	0.183	2.085	595	0.171	2.077	597	0.172

Table S40. Energy E (eV), wavelength λ (nm), and oscillator strength f of the lowest energy electronic transition (corresponding to the HOMO \rightarrow LUMO monoelectronic excitation) calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] in different solvents (SCRF IEF-PCM) for complex **5**.

	E	λ	f
CH ₃ CN	2.044	607	0.157
DMSO	2.049	605	0.162
Acetone	2.045	615	0.160
DMF	2.040	608	0.163
DCM	1.932	642	0.169
CHCl ₃	1.826	679	0.179
THF	1.907	650	0.170
Toluene	1.663	746	0.199

	35 p	0S	4 ns		
	Reγ	Imγ	Reγ	Imγ	
1	1.24 ± 0.02	-	-(25.5±0.8)	-(12±0.6)	
2	1.70 ± 0.04	-	$+(115\pm8)$	-(148±28)	
3	2.5±0.1	-	-(64±2)	-31±2	
4	3.36 ± 0.01	-	-(169±6)	-86±25	
5	2.0 ± 0.1	-	-(31.4±0.5)	$-(16.3\pm2.0)$	
6	2.9±0.1	-	-(67±10)	-(38±2)	

Table S41. Real (Re) and imaginary (Im) parts of second hyperpolarizability γ (×10⁻³¹ esu) of complexes 1–6, under 532 nm, 35 ps and 4 ns laser excitation.

Table S42. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex 1 in its input orientation (see below) in DMF (SCRF IEF-PCM).

]	Dipole	Linear polarizability		First hyperpolarizabilty		Second hyperpolarizabilty	
	lonient						
μ_x	-15.136	α_{xx}	654.243	β_{xxx}	-2.757×10^{4}	$\gamma_{\rm XXXX}$	8.129×10^{6}
μ_y	0.004	α_{yy}	479.634	β_{xxy}	2.008×10^{2}	$\gamma_{ m yyyy}$	3.482×10^{5}
μ_z	2.423	α _{zz}	190.459	β_{xyy}	-2.556×10^{3}	γzzzz	2.068×10^{4}
μ_{tot}	15.328	α_{tot}	441.445	β_{yyy}	7.046×10^{1}	$\gamma_{\rm xxyy}$	6.095×10^{5}
		α (esu) × 10 ⁻²⁴	65.334	β_{xxz}	4.620×10^{2}	$\gamma_{ m yyzz}$	6.071×10^{1}
				β_{xyz}	-3.036	γ_{xxzz}	-2.085×10^{4}
				β_{yyz}	3.496×10^{1}	γtot	1.935×10^{6}
				β_{xzz}	-2.909×10^{1}	γ (esu) \times 10 ⁻³⁶	974.6
				β_{yzz}	1.826×10^{1}		
				βzzz	1.253×10^{2}		
				β_{tot}	3.017×10^4		
				β (esu) × 10 ⁻³⁰	260.7		

Table S43. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex 1 in the dipole orientation in DMF (SCRF IEF-PCM).

Ε	Dipole	Linear polarizability		First hyperpolarizabilty		Second hyperpolarizabilty	
m	oment	Ŧ	,	71 1	51 I 5		5
μ_x	0.000	α_{xx}	202.566	β_{xxx}	3.246×10^{1}	γ_{xxxx}	2.186×10^{4}
μ_{y}	0.000	$\alpha_{ m yy}$	479.634	β_{xxy}	2.154×10^{1}	γ_{yyyy}	3.482×10^{5}
μ_z	15.328	αzz	642.136	β_{xyy}	-3.695×10^{2}	γzzzz	7.802×10^{6}
μ_{tot}	15.328	α_{tot}	441.445	β_{yyy}	6.868×10^{1}	$\gamma_{\rm xxyy}$	1.339×10^{4}
		α (esu) × 10 ⁻²⁴	65.334	β_{xxz}	5.857×10^{2}	$\gamma_{ m yyzz}$	5.968×10^{5}
				β_{xyz}	-2.425×10^{1}	γ_{xxzz}	1.420×10^{5}
				β_{yyz}	2.529×10^{3}	γ_{tot}	1.935×10^{6}
				β_{xzz}	-3.816×10^{3}	γ (esu) \times 10 ⁻³⁶	974.7
				β_{yzz}	1.923×10^{2}		
				βzzz	2.676×10^{4}		
				βtot	3.017×10^4		
				β (esu) × 10 ⁻³⁰	260.7		

Table S44. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex **2** in its input orientation (see below) in DMF (SCRF IEF-PCM).

Γ	Dipole	Linear polarizability		First hyperpolarizabilty		Second hyperpolarizability	
m	oment		zaomity	Thist hyperpolarizability		Second hyperpolarizability	
μx	15.104	α_{xx}	673.149	β_{xxx}	2.410×10^{4}	$\gamma_{\rm XXXX}$	6.285×10^{6}
μ_y	0.001	α_{yy}	493.141	β_{xxy}	3.929×10^{-1}	$\gamma_{ m yyyy}$	3.483×10^{5}
μ_z	4.060	α _{zz}	214.243	β_{xyy}	2.240×10^{3}	γzzzz	2.398×10^4
μ_{tot}	15.640	α_{tot}	460.178	β_{yyy}	1.628×10^{-1}	$\gamma_{\rm xxyy}$	5.858×10^{5}
		α (esu) × 10 ⁻²⁴	68.106	β_{xxz}	1.307×10^{3}	γyyzz	9.104×10^{2}
				β_{xyz}	1.324×10^{-1}	γ_{xxzz}	-4.571×10^{3}
				β_{yyz}	1.476×10^{2}	γtot	1.564×10^{6}
				β_{xzz}	2.781×10^{1}	γ (esu) \times 10 ⁻³⁶	787.9
				β_{yzz}	4.081×10^{-2}		
				β _{zzz}	1.738×10^{2}		
				β _{tot}	2.641×10^{4}		
				β (esu) × 10 ⁻³⁰	228.2		

Table S45. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex **2** in the dipole orientation in DMF (SCRF IEF-PCM).

Dipole Lin		Linear polari	inear polarizability		olarizabilty	Second hyperpolarizabilty		
m	oment	Linear polariz	Enter polarizaolity		T list hyperpolarizability		Second hyperpolarizability	
μ_x	0.000	α_{xx}	243.749	β_{xxx}	3.004×10^{1}	γ_{xxxx}	3.987×10^4	
μ_{y}	0.000	α_{yy}	493.141	β_{xxy}	$-1.375 imes 10^{-1}$	γуууу	3.483×10^{5}	
μ_z	15.640	αzz	643.643	β_{xyy}	4.389×10^{2}	γzzzz	5.716×10^{6}	
μ_{tot}	15.640	α_{tot}	460.178	β_{yyy}	$-2.910 imes 10^{-1}$	$\gamma_{\rm xxyy}$	2.945×10^{4}	
		α (esu) × 10 ⁻²⁴	68.106	β_{xxz}	1.022×10^{3}	γ_{yyzz}	5.576×10^{5}	
				β_{xyz}	-4.536×10^{-1}	γ_{xxzz}	2.719×10^{5}	
				β_{yyz}	2.202×10^{3}	γ_{tot}	1.565×10^{6}	
				β_{xzz}	4.802×10^{3}	γ (esu) $ imes$ 10 ⁻³⁶	788.0	
				β_{yzz}	-7.466×10^{-1}			
				β _{zzz}	2.266×10^{4}			
				β_{tot}	2.641×10^{4}			
				β (esu) × 10 ⁻³⁰	228.2			

Table S46. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex **3** in its input orientation (see below) in DMF (SCRF IEF-PCM).

Dipo	le moment	Linear polari	zability	First hyperpo	olarizabilty	Second hyperpolarizabilty	
μx	-15.660	α_{xx}	710.527	β_{xxx}	-2.852×10^{4}	$\gamma_{\rm XXXX}$	8.773×10^{6}
μ_y	0.010	α_{yy}	535.266	β_{xxy}	2.526×10^{2}	$\gamma_{ m yyyy}$	2.687×10^{5}
μ_z	2.404	α_{zz}	197.330	β_{xyy}	-3.443×10^{3}	γzzzz	2.068×10^{4}
μ_{tot}	15.844	α_{tot}	481.041	β_{yyy}	7.654×10^{1}	$\gamma_{\rm xxyy}$	9.330×10^{5}
		α (esu) × 10 ⁻²⁴	71.194	β_{xxz}	3.913×10^{2}	γ_{yyzz}	-1.945×10^{3}
				β_{xyz}	-2.138×10^{1}	$\gamma_{\rm xxzz}$	-2.263×10^{4}
				β_{yyz}	3.085×10^{1}	γ_{tot}	2.176×10^{6}
				β_{xzz}	-1.814×10^{1}	γ (esu) \times 10 ⁻³⁶	1096
				β_{yzz}	2.011×10^{1}		
				βzzz	1.257×10^{2}		
				β_{tot}	3.199×10^4		
				β (esu) × 10 ⁻³⁰	276.4		

Table S47. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex **3** in the dipole orientation in DMF (SCRF IEF-PCM).

Dipo	le moment	Linear polari	zability	First hyperpe	olarizabilty	Second hyper	polarizabilty
μx	0.000	α_{xx}	209.877	β_{xxx}	4.044×10^{1}	$\gamma_{\rm xxxx}$	2.176×10^4
μ_y	0.000	α_{yy}	535.265	β_{xxy}	1.814×10^{1}	$\gamma_{ m yyyy}$	2.686×10^{5}
μ_z	15.844	α_{zz}	697.981	β_{xyy}	-4.920×10^{2}	γzzzz	8.436×10^{6}
μ_{tot}	15.844	α_{tot}	481.041	β_{yyy}	7.091×10^{1}	$\gamma_{\rm xxyy}$	$1.707 imes 10^4$
		α (esu) × 10 ⁻²⁴	71.194	β_{xxz}	5.698×10^{2}	γ_{yyzz}	9.154×10^{5}
				β_{xyz}	-1.083×10^{1}	γ_{xxzz}	1.455×10^{5}
				β_{yyz}	3.408×10^{3}	γ_{tot}	2.176×10^{6}
				β_{xzz}	-3.860×10^{3}	γ (esu) $\times 10^{-36}$	1096
				β_{yzz}	2.426×10^{2}		
				βzzz	2.772×10^{4}		
				β_{tot}	3.199×10^4		
				β (esu) × 10 ⁻³⁰	276.4		

Table S48. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex 4 in its input orientation (see below) in DMF (SCRF IEF-PCM).

E	Dipole	Linear polariz	zability	First hyperpo	olarizabilty	Second hyper	polarizabilty
	oment						
μ_{x}	15.603	α_{xx}	730.684	β_{xxx}	2.526×10^{4}	γ_{xxxx}	6.949×10^{6}
μ_{y}	0.000	α_{yy}	548.965	β_{xxy}	-2.712×10^{-1}	$\gamma_{ m yyyy}$	2.657×10^{5}
μ_z	-3.900	αzz	220.782	β_{xyy}	3.087×10^{3}	γzzzz	2.417×10^{4}
μ_{tot}	16.083	α_{tot}	500.144	β_{yyy}	-3.322×10^{-2}	$\gamma_{\rm xxyy}$	8.807×10^{5}
		α (esu) $\times 10^{-24}$	74.021	β_{xxz}	-1.139×10^3 γ_{yyzz}		-1.098×10^{3}
				β _{xyz}	1.425×10^{-1}	γxxzz	-9.125×10^{3}
				β _{yyz}	-1.556×10^{2}	γtot	1.796×10^{6}
				β_{xzz}	2.106	γ (esu) $\times 10^{-36}$	904.6
				βyzz	-2.841×10^{-2}		
				β _{zzz}	-1.808×10^{2}		
				βtot	2.838×10^4		
				β (esu) × 10 ⁻³⁰	245.3		

Table S49. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex 4 in the dipole orientation in DMF (SCRF IEF-PCM).

Ι	Dipole	Linear polariz	zability	First hyperp	olarizabilty	Second hyper	olarizabilty
m	oment	21110ml pointin	3.00 1110 /	i not njptip	01411240110	seeona nypenj	, on an inclusion of the second se
μ_x	0.000	α_{xx}	250.174	β_{xxx}	1.562	$\gamma_{\rm XXXX}$	3.821×10^4
μ_{y}	0.000	$\alpha_{ m yy}$	548.965	β_{xxy}	-7.049×10^{-2}	γ_{yyyy}	2.657×10^{5}
μ_z	16.083	αzz	701.293	β_{xyy}	5.977×10^{2}	γzzzz	6.368×10^{6}
μ_{tot}	16.083	α_{tot}	500.144	β_{yyy}	-1.526×10^{-1}	$\gamma_{\rm xxyy}$	3.745×10^{4}
		α (esu) × 10 ⁻²⁴	74.021	β_{xxz}	9.801×10^{2}	γ_{yyzz}	8.432×10^{5}
				β_{xyz}	$-2.097 imes 10^{-1}$	γxxzz	2.747×10^{5}
				β_{yyz}	3.033×10^{3}	γ_{tot}	1.796×10^{6}
				β_{xzz}	4.843×10^{3}	γ (esu) \times 10 ⁻³⁶	904.8
				β_{yzz}	-1.387×10^{-2}		
				βzzz	2.384×10^{4}		
				β_{tot}	2.838×10^4		
				β (esu) × 10 ⁻³⁰	245.3		

Table S50. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex **5** in its input orientation (see below) in DMF (SCRF IEF-PCM).

I n	Dipole noment	Linear polariz	zability	First hyperpo	olarizabilty	Second hyper	polarizabilty
μx	-16.916	α_{xx}	699.526	β _{xxx}	-2.682×10^{4}	γ_{xxxx}	8.282×10^{6}
μ_{y}	-0.008	α_{yy}	521.013	β_{xxy}	1.735×10^{2}	γуууу	4.116×10^{5}
μ_z	2.420	α_{zz}	215.618	β_{xyy}	-2.381×10^{3}	γzzzz	2.186×10^{4}
μ_{tot}	17.089	α_{tot}	478.719	β_{yyy}	5.828×10^{1}	$\gamma_{\rm xxyy}$	6.844×10^{5}
		α (esu) × 10 ⁻²⁴	70.850	β_{xxz}	3.670×10^2 y _y		3.178×10^{3}
				β_{xyz}	-1.478×10^{1}	γ_{xxzz}	-1.785×10^{4}
				β_{yyz}	2.310×10^{1}	γ_{tot}	2.011×10^{6}
				β_{xzz}	-7.175×10^{1}	γ (esu) × 10 ⁻³⁶	1013
				β _{yzz}	1.877×10^{1}		
				βzzz	1.293×10^{2}		
				β _{tot}	2.928×10^4		
				β (esu) × 10 ⁻³⁰	253.0		

Table S51. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex **5** in the dipole orientation in DMF (SCRF IEF-PCM).

E m	Dipole oment	Linear polariz	zability	First hyperpo	olarizabilty	Second hyperp	oolarizabilty
μx	0.000	α _{xx}	226.145	β _{xxx}	4.114×10^{1}	γxxxx	2.286×10^4
μ_y	0.000	$\alpha_{ m yy}$	521.015	β_{xxy}	1.825×10^{1}	γ_{yyyy}	4.116×10^{5}
μ_z	17.089	α_{zz}	688.997	β_{xyy}	-3.144×10^{2}	γzzzz	$8.006 imes 10^6$
μ_{tot}	17.089	α_{tot}	478.719	β_{yyy}	6.130×10^{1}	$\gamma_{\rm xxyy}$	1.532×10^{4}
		α (esu) × 10 ⁻²⁴	70.850	β_{xxz}	5.165×10^{2}	$\gamma_{ m yyzz}$	6.731×10^{5}
				β_{xyz}	-9.749	γ_{xxzz}	1.191×10^{5}
				β_{yyz}	2.360×10^{3}	γ_{tot}	2.011×10^{6}
				β_{xzz}	-3.359×10^{3}	γ (esu) \times 10 ⁻³⁶	1013
				β_{yzz}	1.835×10^{2}		
				β _{zzz}	2.618×10^4		
				β_{tot}	2.928×10^4		
				β (esu) × 10 ⁻³⁰	253.0		

Table S52. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex **6** in its input orientation (see below) in DMF (SCRF IEF-PCM).

Ι	Dipole	Linear polariz	zahility	First hyperno	larizabilty	Second hyper	olarizabilty
n	noment	Ellical polariz	Edolinty	тизепурегре	Janizaonty	Second hyper	oolarizaolity
μx	-17.554	α_{xx}	800.015	β_{xxx}	-2.654×10^{4}	$\gamma_{\rm XXXX}$	8.262×10^{6}
μ_y	-0.036	α_{yy}	612.318	β_{xxy}	3.664×10^{2}	$\gamma_{ m yyyy}$	4.586×10^{5}
μ_z	2.359	αzz	306.518	β_{xyy}	-2.538×10^{3}	γzzzz	4.100×10^{4}
μ_{tot}	17.711	α_{tot}	572.950	β_{yyy}	9.690×10^{1}	$\gamma_{\rm xxyy}$	7.417×10^{5}
		α (esu) × 10 ⁻²⁴	84.797	β_{xxz}	2.577×10^{2}	γ_{yyzz}	1.055×10^4
				β_{xyz}	-3.275×10^{1}	γ_{xxzz}	-3.845×10^{3}
				β_{yyz}	1.696×10^{1}	γ_{tot}	2.052×10^{6}
				β_{xzz}	-5.817×10^{1}	γ (esu) \times 10 ⁻³⁶	1033
				β _{yzz}	-1.185×10^{2}		
				βzzz	1.221×10^{2}		
				βtot	2.914×10^4		
				β (esu) × 10 ⁻³⁰	251.8		

Table S53. Components of the dipole moment (Debye), linear polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) in a.u., and total values for α , β , and γ in a.u. and esu calculated at the DFT level [PBE0//cc-pVDZ/LANL08(f)] for complex **6** in the dipole orientation in DMF (SCRF IEF-PCM).

Γ	Dipole	Linear polariz	zability	First hyperpo	olarizabilty	Second hyperr	olarizabilty
m	oment	Enious poturis	Laonny	i not nyperpe	Julizaonty	Second hyperp	Johanizaonity
μ_x	0.000	α_{xx}	316.627	β_{xxx}	4.750×10^{1}	γ_{xxxx}	4.254×10^4
μ_{y}	0.000	α_{yy}	612.332	β_{xxy}	-1.164×10^{2}	γ_{yyyy}	4.587×10^{5}
μ_z	17.712	αzz	789.892	β_{xyy}	-3.221×10^{2}	γzzzz	8.004×10^{6}
μ_{tot}	17.712	α_{tot}	572.950	β_{yyy}	1.106×10^{2}	$\gamma_{\rm xxyy}$	2.279×10^{4}
		α (esu) × 10 ⁻²⁴	84.797	β_{xxz}	4.709×10^{2}	γ_{yyzz}	7.305×10^{5}
				β_{xyz}	-4.201×10^{1}	γ_{xxzz}	1.240×10^{5}
				β_{yyz}	2.519×10^{3}	γ_{tot}	2.052×10^{6}
				β_{xzz}	-3.214×10^{3}	γ (esu) $\times 10^{-36}$	1034
				β_{yzz}	4.034×10^{2}		
				βzzz	2.594×10^{4}		
				β_{tot}	2.914×10^4		
				β (esu) × 10 ⁻³⁰	251.8		

Complex	Experimental technique	Laser pulses	Solvent	γ (×10 ⁻²⁹ esu)	Ref.
$(NEt_4)_2 \left[S \xrightarrow{S} \overbrace{S} \overbrace{S} \overbrace{S} \overbrace{S} \overbrace{S} \overbrace{S} \overbrace{S} \overbrace$	Z-scan	28 ps	Acetone	0.0517	1
	Z-scan	4 ns	CS_2	0.55	2
S S S	Z-scan	8 ns	CS_2	3.7	3
Ni s	Z-scan	40 ps	DMF	0.014	4
	Z-scan	8 ns	CS_2	6.3	3
	Z-scan	40 ps	CS_2	0.045	4
S S S S	Z-scan	8 ns	CS_2	1.4	3
S S S S	Z-scan	40 ps	DMF	0.0024	4
	Z-scan	200 ps	_	0.71	5
$NBu_{4} \left[\begin{array}{c} S \\ NBu_{4} \\ Ph \\ S \\ $	Z-scan	200 ps	_	0.81	5
	Z-scan	8 ns	CS_2	3.5	6
Ni S S	Z-scan	8 ns	CS_2	3.8	6
S S S S S	Z-scan	8 ns	CS_2	3.6	6
	Z-scan	8 ns	CS_2	2.2	6
$C_{10}H_{21}$	Z-scan	8 ns	CS_2	2.6	6
	Z-scan	8 ns	CS_2	2.3	7
	Z-scan	8 ns	CS_2	3.7	7
S S S S S S	DFWM	15 ps	Acetone	0.263	8
	DFWM	15 ps	Acetone	0.280	8

Table S54. Second hyperpolarizabilities of 1,2-dithiolene complexes obtained at 532 nm excitation wavelength under picosecond or nanosecond laser pulses by using the Z-scan or degenerate four-wave mixing (DFWM) techniques.

2. Schemes and Figures

Scheme S1. Synthetic route for the preparation of compounds 1–6.

Figure S1. Drawing and atom labeling scheme for complex 1, showing the disorder on the terminal carbons of the $dddt^{2-}$ 1,2-dithiolene ligand modelled over two positions. ⁱ : +x, 3/2-y, +z.

Figure S2. Perspective drawing of the interacting symmetry-related molecular units in the crystal structure of complex **5**. Intercentroid distance (a) 3.74; (b) 3.64 Å; Pt…Ptⁱ distance 3.77 Å. Hydrogen atoms have been omitted for clarity. Symmetry operations: $^{i} = 1-x$, 1-y, 1-z; $^{ii} = x$, y, -1+z.

Figure S3. Cyclic voltammogram recorded for an anhydrous DMSO solution of complex 5 (298 K; scan rate 100 mV s⁻¹; 0.1 M TBAPF₆).

Figure S4. Correlation between Eisenberg empirical parameters⁹ and experimentally measured λ_{max} visible absorption maxima recorded for complex **3** in eight solvents (R² = 0.998).

3

S3

Figure S5. Different perspectives of the geometries optimised for complexes **1–6** at the DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase. Hydrogen atoms were omitted for clarity.

Figure S6. KS-HOMO (left) and KS-LUMO (right) calculated for complexes **1–6** at the DFT level [PBE0//cc-pVDZ/LANL08(f)] in the gas phase. Hydrogen atoms were omitted for clarity. Isovalue 0.05 |e|.

Figure S7. "Open-aperture" (left) and "divided" (right) Z-scans of complexes 1–6 obtained from the Z-scan measurements under 35 ps, 532 nm laser excitation.

Figure S8. Variation of the ΔT_{p-v} parameter with the incident laser intensity under 4 ns (left) and 35 ps (right), 532 nm laser excitation conditions.

Figure S9. Absorption spectra in the visible region (400–800 nm) recorded for complexes 1–6 in DMF; the dotted line at $\lambda = 532$ nm indicates the laser excitation wavelength; molar extinction coefficients at 532 nm $\varepsilon_{532} = 1700$ (complex 1), 2800 (2), 2100 (3), 3800 (4), 2300 (5), and 2700 (6) $M^{-1} \cdot cm^{-1}$.

Figure S10. Schematic representation of the five-level model¹⁰ for the interpretation of NLO absorption: the initial linear absorption promotes the system from the ground state S_0 to the first singlet excited state S_1 . An intersystem crossing (ISC) to the triplet state T_1 can occur. Nonlinear absorption is observed when further excitations $S_1 \rightarrow S_n$ and $T_1 \rightarrow T_n$ take place (excited state absorption, ESA).

Figure S11. Jablonski diagram (0.0–4.0 eV) calculated for complex 4 at TD-DFT level [PBE0//ccpVDZ/LANL08(f)] in DMF (SCRF IEF-PCM). Excited states calculated for the $S_0 \rightarrow S_n$ and $T_1 \rightarrow T_n$ transitions with oscillator strength values f < 0.05 are represented as dashed lines. Red arrows represent energy gaps corresponding to the $S_0 \rightarrow S_1$ transition; wavy arrows correspond to the internal conversion of S_1 , ISC between S_1 and the triplet state optimised at the same geometry (dotted line), and the internal conversion leading from the former to T_1 .

3. References

- 1 X. Q. Wang, Q. Ren, F. J. Zhang, W. F. Guo, X. B. Sun, J. Sun, H. L. Yang, G. H. Zhang, X. Q. Hou and D. Xu, *Mater. Res. Bull.*, 2008, **43**, 2342–2353.
- 2 G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis and G. C. Papavassiliou, *Chem. Phys. Lett.*, 2011, **513**, 229–235.
- P. Aloukos, G. Chatzikyriakos, I. Papagiannouli, N. Liaros and S. Couris, *Chem. Phys. Lett.*, 2010, **495**, 245–250.
- G. Soras, N. Psaroudakis, G. A. Mousdis, M. J. Manos, A. J. Tasiopoulos, P. Aloukos, S. Couris, P. Labéguerie, J. Lipinski, A. Avramopoulos and M. G. Papadopoulos, *Chem. Phys.*, 2010, **372**, 33–45.
- 5 J.-L. Zuo, T.-M. Yao, F. You, X.-Z. You, H.-K. Funb and B.-C. Yipb, *J. Mater. Chem.*, 1996, **6**, 1633–1637.
- 6 P. Aloukos, S. Couris, J. B. Koutselas, G. C. Anyfantis and G. C. Papavassiliou, *Chem. Phys. Lett.*, 2006, **428**, 109–113.
- 7 G. C. Anyfantis, G. C. Papavassiliou, P. Aloukos, S. Couris, Y. F. Weng, H. Yoshino and K. Murata, *Zeitschrift für Naturforsch. B*, 2007, **62**, 200–204.
- 8 J. Dai, G. Q. Bian, X. Wang, Q. F. Xu, M. Y. Zhou, M. Munakata, M. Maekawa, M. H. Tong, Z. R. Sun and H. P. Zeng, *J. Am. Chem. Soc.*, 2000, **122**, 11007–11008.
- 9 S. D. Cummings and R. Eisenberg, J. Am. Chem. Soc., 1996, 118, 1949–1960.
- 10 B. J. Thompson, *Handbook of nonlinear optics*, Marcel Dekker, Inc., New York, 1996.