
## **Supporting Information**

# Single-phase ultrathin holey nanoflower Ni<sub>5</sub>P<sub>4</sub> as bifunctional electrocatalyst for efficient water splitting

Lihua Yao<sup>a,1</sup>, Zhuo Qiu<sup>a,1</sup>, Xingliang Yin<sup>b</sup>, Ying Yang<sup>a</sup>, Xiaodi Hong<sup>a</sup>, Zhi Yang<sup>a,\*</sup>



**Fig.S1.** XRD of precursor of Nickel phosphide which prepared with different concentrations of Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (2, 4, 6 mmol), (a) hydrothermal temperatures 120 °C; (b) hydrothermal temperatures 140 °C; (c) hydrothermal temperatures 160 °C.



**Fig. S2.** XRD of Nickel phosphide that of precursor was prepared with different concentrations of Ni(NO3)<sub>2</sub>·6H<sub>2</sub>O (2, 4, 6mmol) and different hydrothermal temperature, (a) hydrothermal temperatures 120 °C; (b) hydrothermal temperatures 140 °C.

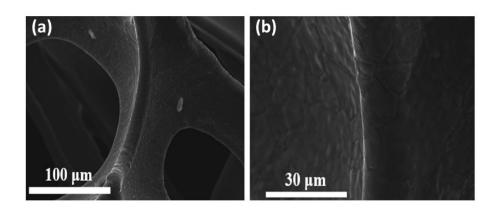



Fig. S3 (a) (b) SEM images of the NF.

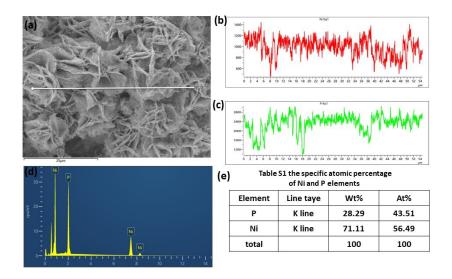



Fig. S4. (a b c d) Energy Dispersive Spectrum (EDS) of 3D SHF-Ni<sub>5</sub>P<sub>4</sub>; (e) The specific atomic percentage of Ni and P

elements of 3D SHF-Ni<sub>5</sub>P<sub>4</sub>.

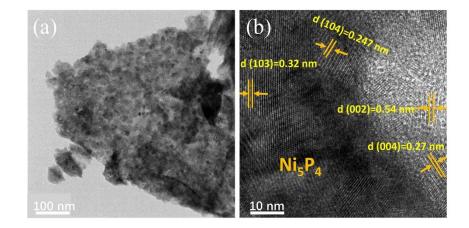



Fig. S5. TEM micrographs (a) of 3D SHF-Ni $_5P_4$ ; (c) HR-TEM image of 3D SHF-Ni $_5P_4$ .

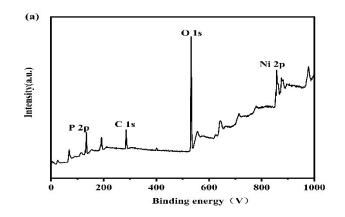
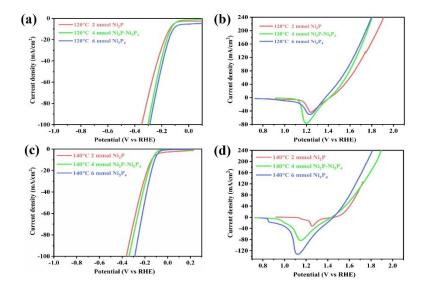




Fig. S6. A scan survey spectrum of 3D SHF-Ni<sub>5</sub>P<sub>4</sub>



**Fig.S7.** LSV polarization curve of nickel phosphide that of the precursor prepared with 2mmol, 4mmol, and 6mmol of Ni(NO3)<sub>2</sub>·6H<sub>2</sub>O solution at the different temperature in hydrothermal process; (a),(b) HER and OER of nickel phosphide precursor were prepared at 120 °C; (c),(d) HER and OER of nickel phosphide precursor were prepared at 140 °C.

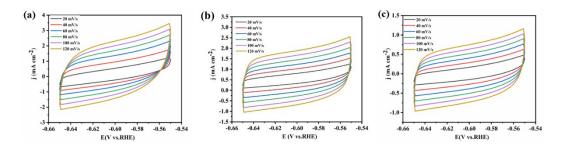



Fig. S8. OER CVs of (a) 3D SHF- Ni<sub>5</sub>P<sub>4</sub>; (b) Ni<sub>5</sub>P<sub>4</sub>-4; (c) Ni<sub>5</sub>P<sub>4</sub>-2 in 1 M KOH solution at scan rates of 20, 40, 60, 80, 100,

and 120 mV/s, respectively.

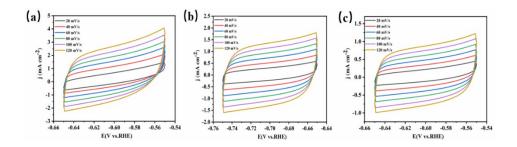



Fig. S9. HER CVs of (a) 3D SHF- Ni<sub>5</sub>P<sub>4</sub>; (b) Ni<sub>5</sub>P<sub>4</sub>-4; (c) Ni<sub>5</sub>P<sub>4</sub>-2 in 1 M KOH solution at scan rates of 20, 40, 60, 80, 100,

and 120 mV/s, respectively.

#### **Calculation of TOF values**

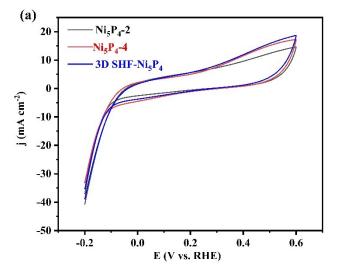



Fig. S10. (a) CV curves of  $Ni_5P_4$ -2  $\cdot$   $Ni_5P_4$ -4 and 3D SHF- $Ni_5P_4$  in 1.0 M KOH solution at a scan rate of 50 mV s<sup>-1</sup>.

#### The TOF values are calculated via the following equation:

$$TOF = \frac{J}{mFn}$$

m: electrons are consumed to form one  $H_2$  or  $O_2$  molecule from water (2electrons for HER, 4

electrons for OER)

J (mA cm<sup>-2</sup>): the current density at a fixed overpotential (OER 300mV, HER 200mV), during the LSV

measurement in 1.0M KOH solution.

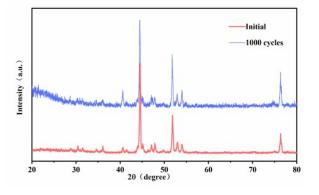
F: represents the Faraday constant (96485 C),

n: the total number of moles of active sites. The number of active sites (n) can be measured by a

formerly reported method, n = Q/2F

**Q**: the cyclic voltametric charge capacity obtained by integrating the CV cures. The CV curve was tested in 1.0 M KOH solution at -0.2-0.6 V (vs. RHE) with a sweep rate of 50 mV s<sup>-1</sup>.

#### For OER of 3D SHF-Ni₅P₄, determination of Turnover Frequency (TOF)


$$n = \frac{Q}{2F} = \frac{11.59}{2 \times 96485} = 6.01 \times 10^{-5}$$

$$TOF = \frac{J}{mFn} = \frac{65.54}{4 \times 96485 \times 6.01 \times 10^{-5}}_{= 2.83 \text{ S}^{-1}}$$

#### Post electrolysis characterization

To gain further insight into the catalyst transformation following electrocatalysis, XRD, SEM, and

XPS have been conducted to analyze 3D SHF-  $Ni_5P_4$  after electrocatalytic stability test.



**Fig. S11.** The XRD spectra of 3D SHF-  $Ni_5P_4$  for OER after 1000 cycles.

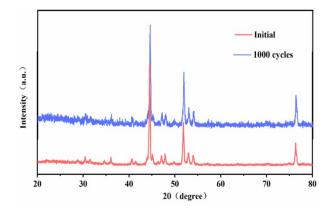



Fig. S12. The XRD spectra of 3D SHF-  $Ni_5P_4$  for HER after 1000 cycles.

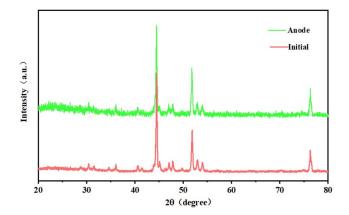



Fig. S13. The XRD spectra of 3D SHF-Ni $_5\mathrm{P}_4$  as anode for water splitting after 24h.

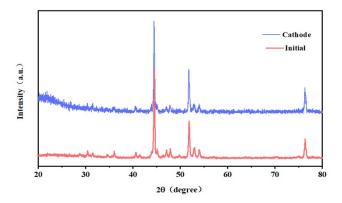



Fig. S14. The XRD spectra of 3D SHF-  $\rm Ni_5P_4$  as cathode for water splitting after 24 H.

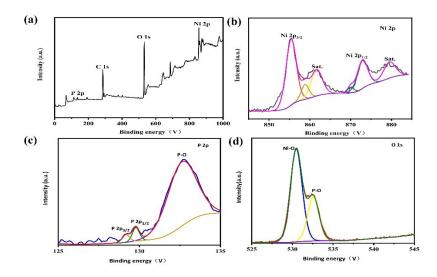



Fig. S15. XPS spectra of (a) a scan survey spectrum (b) Ni and (c) P after 22h of OER.

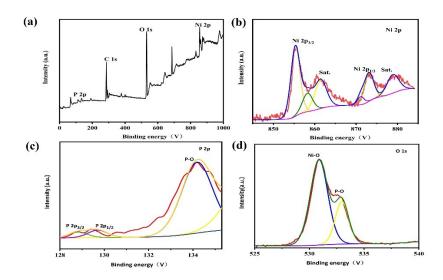



Fig. S16. XPS spectra of (a) a scan survey spectrum (b) Ni and (c) P after 22h of HER.

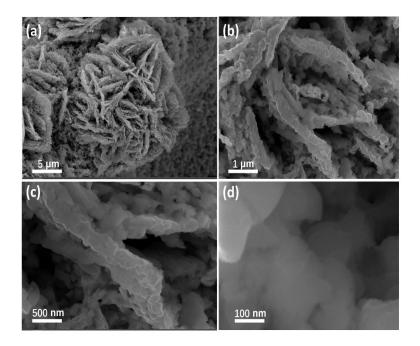



Fig. S17. (a-d) 3D SHF-  $Ni_5P_4$  for OER after 1000 cycles.

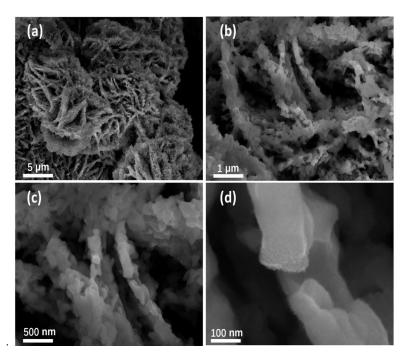



Fig. S18. (a-b) SEM of 3D SHF-  $Ni_5P_4$  for HER after 1000 cycles.

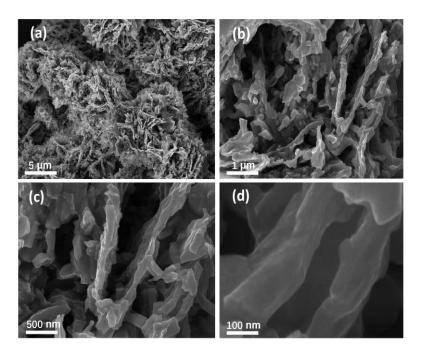



Fig. S19. (a-d) SEM of 3D SHF-  $Ni_5P_4$  for OER after22h.

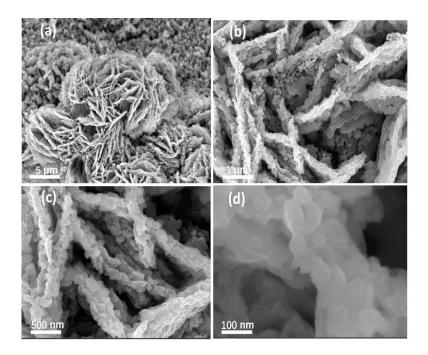



Fig. S20. (a-d) SEM of 3D SHF-  $Ni_5P_4$  for HER after 22h.

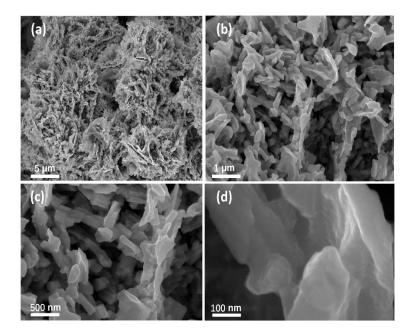



Fig. S21. (a-d) SEM of 3D SHF-Ni\_5P4 as anode for water splitting after 24h.

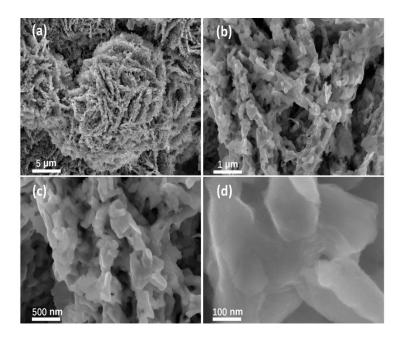



Fig. S22. (a-d) SEM of 3D SHF-Ni<sub>5</sub>P<sub>4</sub> as cathode for water splitting after 24h.



Fig. S23. Overall water splitting video and picture.

#### **OER and HER mechanism in alkaline**

Based on published articles, the mechanisms of OER and HER in alkaline are as follows:

(1) OER mechanism

The mechanism of OER is complicated and still debatable on the anode catalysts. The OER mechanism involves the adsorption and desorption of intermediates, i.e.,

 $OH_{ads} \rightarrow O_{ads} \rightarrow OOH_{ads} \rightarrow O_{2ads}$  process (adsorbate evolution mechanism, AEM). The steps of OER primitives under alkaline conditions are as follows:

- (1) OH<sup>-</sup>+ \*  $\rightarrow$  OH<sub>ads</sub> + e<sup>-</sup>
- (2)  $OH_{ads} + OH^- \rightarrow O_{ads} + H_2O + e^-$
- (3)  $O_{ads} + OH^- \rightarrow OOH_{ads} + e^-$
- (4)  $2O_{ads} \rightarrow O_2 + *$

Overall:  $4OH^{-} \rightarrow H_2O + O_2 + e^{-}$ 

Where the \* represents the active sites on the catalyst surface, and the "ads" represents adsorbed state of intermediates ( $OH_{ads}$ ,  $O_{ads}$ ,  $OOH_{ads}$ ,  $O_{2ads}$ )

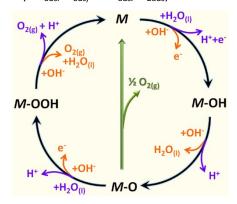



Fig. 1 Schematic diagram of OER mechanism<sup>[29]</sup>

(2) HER mechanism

In alkaline media, transition metal catalysts usually react with H2O and H<sup>\*</sup> to generate H<sub>2</sub>.

the first step of HER is to generate  $H^*$  by reaction with  $H_2O$ . The second step is the ratedetermining step(RDS), which depends of the activity of these catalysts.

The steps of HER primitives under alkaline conditions are as follows:

(1)  $H_2O + e^- \rightarrow OH^- + H_{ads}$  (Volmer)

(2)  $H_{ads} + H_2O + e^- \rightarrow OH^- + H_2(Heyrovsky)$ 

(3)  $2H_{ads} \rightarrow H_2(Tafel)$ 

Where the \* represents the active sites on the catalyst surface, and the "ads" represents adsorbed state of intermediates (H<sub>ads</sub>)

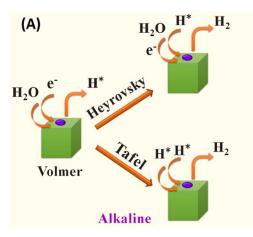



Fig. 2 Schematic diagram of HER mechanism in alkaline media<sup>[30]</sup>

According to reports, for HER reaction, the determination rate of the electrochemical reaction

can be judged according to the Tafel slope of the reaction. When the Tafel slope is 120 mV dec<sup>-1</sup>, the RDS is the Volmer process. When Tafel slope is 40 mV dec<sup>-1</sup>, RDS is Heyrovsky process. RDS is a Tafel process when the Tafel slope is 30 mV dec<sup>-1</sup>. In this work, there is no tafel slopes match the expected Tafel slopes of 30, 40, and 120 mV dec<sup>-1</sup>, each of which correlate with a different rate-determining step of the HER. Although the Tafel analysis is useful in elucidating the rate-determining steps, too simplified discussion, fails to accurately describe the surface electrocatalysis. The relation between tafel slope and reaction mechanism will be studied in the next part of this work.

#### Table S2 Summary of various nickel phosphide catalytic electrodes

| Catalyst             |          | Current  | Potential | Electrolyte | Tafel    | Reference |
|----------------------|----------|----------|-----------|-------------|----------|-----------|
|                      | Activity | density  |           |             | slope    |           |
|                      |          | (mA/cm2) |           |             | (mV/dec) |           |
|                      |          |          |           |             |          |           |
| 3D SHF-Ni5P4         | OER      | 10       | 180       | 1 M KOH     | 54       | This work |
|                      | HER      | 10       | 106       | 1 M KOH     | 79.38    |           |
| N-C/Ni5P4/Fe3P       | OER      | 10       | 252 mV    | 1 M KOH     | 24       | [1]       |
| Ni5P4 on Nickel foil | HER      | 10       | 140 mV    | 0.5MH2SO4   |          | [2]       |
|                      |          |          | 150 mV    | 1 M KOH     |          |           |
| Ni5P4 -Ni2P-NS       | HER      | 10       | 120 mV    | 0.5MH2SO4   | 79.1     | [3]       |
| CoP/ Ni5P4/CoP       | HER      | 10       | 33 mV     | 0.5MH2SO4   | 43       | [4]       |
| Ni5P4/NF             | HER      | 10       | 64 mV     | 1 M KOH     | 64       | [5]       |
| Ni5P4/NF             | OER      | 10       | 182 mV    | 1 M KOH     | 58       | [5]       |
| Ni5P4@NiCo2O4        | HER      | 10       | 27 mV     | 1 M KOH     | 27       | [6]       |

for HER or OER

| S- Ni5P4 NPA/CP                      | HER        | 10       | 56 mV           | 1 M KOH        | 43.6       | [7]          |
|--------------------------------------|------------|----------|-----------------|----------------|------------|--------------|
| Ni5P4                                | HER        | 10       | 114 mV          | 1МКОН          | 34         | [8]          |
| Ni5P4/NiP2/Ni2P                      | HER        | 10       | 120 mV          | 0.5MH2SO4      | 47.3       | [9]          |
| Cuf@ Ni5P4                           | HER        | 10       | 90 mV           | 0.5MH2SO4      | 49         | [10]         |
| WS2/ Ni5P4- Ni2P                     | HER        | 10       | 90 mV           | 0.5MH2SO4      | 74         | [11]         |
| Ni5P4-Ru                             | HER        | 10       | 54 mV           | 1МКОН          | 52         | [12]         |
| Co-doped (6.6at.%)                   | HER        | 10       | 310 mV          | 0.5MH2SO4      | 90         | [13]         |
| Ni5P4                                |            |          |                 |                |            |              |
| CC@Ni-P                              | HER        | 10       | 93 mV           | 0.5MH2SO4      | 58.2       | [14]         |
| Ni2P/Ni5P4@3DNG                      | HER        | 10       | 139 mV          | 0.5MH2SO4      | 59         | [15]         |
|                                      | -          |          |                 |                |            |              |
| Ni5P4/Ni2PFeNi@C                     | OER        | 10       | 242 mV          | 1МКОН          | 46         | [16]         |
| Ni5P4/Ni2PFeNi@C<br>Co doping (i.e., | OER<br>HER | 10<br>10 | 242 mV<br>100.5 | 1МКОН<br>1МКОН | 46<br>65.8 | [16]<br>[17] |
|                                      |            |          |                 |                |            |              |
| Co doping (i.e.,                     |            |          | 100.5           |                |            |              |
| Co doping (i.e.,<br>20%)- Ni5P4      | HER        | 10       | 100.5<br>mV     | 1МКОН          | 65.8       | [17]         |

### Table S3 Summary of various nickel phosphide catalytic electrodes

for overall water splitting

| Catalyst | Activity | Current  | Potential | Electrolyte | Reference |
|----------|----------|----------|-----------|-------------|-----------|
|          |          | density  |           |             |           |
|          |          | (mA/cm²) |           |             |           |

| 3D SHF-Ni₅P₄                                 | HER             | 10  | 106 mV  | 1 M KOH | This work |
|----------------------------------------------|-----------------|-----|---------|---------|-----------|
|                                              | OER             | 10  | 180 mV  |         |           |
|                                              | Water plitting  | 10  | 1.47V   |         |           |
| Ni <sub>0.975</sub> Fe <sub>0.025</sub> P@CC | HER             | 10  | 131 mV  | 1 M KOH | [20]      |
|                                              | HER             | 100 | 257 mV  |         |           |
|                                              | Water plitting  | 10  | 1.50 V  |         |           |
| S-doped Ni-P                                 | HER             | 10  | 55      |         | [21]      |
|                                              | OER             | 10  | 229     |         |           |
|                                              | Water splitting | 10  | 1.51V   |         |           |
| Fe-Ni <sub>5</sub> P <sub>4</sub> /NiFeOH-   | HER             | 10  | 197 mV  | 1 M KOH | [22]      |
| 350                                          | OER             | 10  | 221 mV  |         |           |
|                                              | Water plitting  | 10  | 1.55 V  |         |           |
| Zn/F NiCoP/NF                                | HER             | 10  | 59      |         | [23]      |
|                                              | OER             | 10  | 285     |         |           |
|                                              | Water splitting | 10  | 1.568   |         |           |
| NixPy-325                                    | HER             | 20  | 160 mV  | 1 M KOH | [24]      |
|                                              | OER             | 10  | 320 mV  |         |           |
|                                              | Water plitting  | 10  | 1.57V   |         |           |
| D- Ni <sub>5</sub> P <sub>4</sub>  Fe        | HER             | 10  | 94.5 mV | 1 M KOH | [25]      |
|                                              | OER             | 10  | 217 mV  |         |           |
|                                              | Water plitting  | 10  | 1.59 V  |         |           |
| Ni <sub>2</sub> P/NiMoP <sub>2</sub> /CC     | HER             | 10  | 102     |         | [26]      |

|                              | OER             | 10 | 230  |      |
|------------------------------|-----------------|----|------|------|
|                              | Water splitting | 10 | 1.59 |      |
| A-Ni₂P/Cu₃P                  | HER             | 10 | 88   | [27] |
|                              | OER             | 10 | 262  |      |
|                              | Water splitting | 10 | 1.60 |      |
| Fe, Rh- Ni <sub>2</sub> P/NF | HER             | 10 | 73   | [28] |
|                              | OER             | 30 | 226  |      |
|                              | Water splitting | 10 | 1.62 |      |

#### Reference

- 1 L. Zhang, C. Chang, C. W. Hsu, C. W. Chang and S.Y. Lu, J. Mater. Chem. A., 2017, 537, 19656-19663.
- 2 M. Ledendecker, S. K. Calderon, C. Papp, H.P. Steinruck, M. Antonietti and M. Shalom, Angew. Chem. Int.Ed., 2015, 54, 12361-12365.
- 3 G Wang, Y.V. Kolen'ko, X.Q. Bao, K. Kovnir and L. F. Liu, Angew. Chem. Int.Ed., 2015, 5428, 8188-8192.
- 4 K. Mishra, H. Q. Zhou, J. Y. Sun, F. Qin, K. Dahal, J. M. Bao, S. Chen and Z. F. Ren, Energy. Environ. Sci., 2018, 11, 2246-2252.
- 5 G. Lai, X. B. Liu, Y. Q. Deng, H. Yang, H. H. Jiang, Z. C. Xiao and T. Liang, Inorg. Chem. Commun., 2018, 97, 98-102.
- 6 Zhang, K. N. Yang, C. Wang, S. Y. Li, Q. Zhang, X. J Chang, J. Y. Li, S. M. Li, S. F. Jia, J. B. ang and L. Fu, Advan. Energy. Mater., 2018,829,1801690.
- 7 F. Chang, K. Li, Z. J. Wu, J. J. Ge, C, P, Liu and W. Xing, ACS Appl. Mater. Interface., 2018,1031,26303-26311.
- 8 C.S. Jung, K. Park, Y. R. Lee, I.H. Kwak, I.S. Kwon, J. D. Kim, J. Seo, J.P. Ahn and J. G. Park, CrystEngComm, 2019, 21, 1143-1149.
- 9 C. Hu, J. G. Cai, S. Liu, C. Lv, J. H. Luo, M. Duan, C. G. Chen, Y. Shi, J. F.Song, Z. Zhang, A. Watanabe, E. Aoyagi and S. Ito, ACS Appl. Energy Mater., 2019, 31, 1036-1045.
- 10 M. Das, N. Jena, T. Purkait, N. Kamboj, A. De Sarkar and R.S. Dey, J. Mater. Chem. A., 2019, 7, 23989-23999.
- 11 S. H. Yu, W. Z. Chen, H. Y. Wang, H. Pan and D. H. C. Chua, Nano Energy, 2019, 55, 193-202.
- 12 Q. He, D. Tian, H. L. Jiang, D. F. Cao, S. Q. Wei, D. B. Liu, P. Song, Y. Lin and L. Song, Adv. Mater., 2020, 3211, 1906972.
- 13 X. Xiao, X. J. Wu, Y. H. Wang, K. Zhu, B. T. Liu, X. Q. Cai, T. Yang, X. Y. Xu and D. G. Zhang, Catal. Commun.,

2020, 138, 105957.

- 14 A. Y. Chen, L. Fu, W. J. Xiang, W. Wei, D. Liu and C. L. Liu, Int. J. Hydrogen Energy., 2021, 46, 11701-11710.
- 15 G. S. Ding, Y. X. Zhang, J. Dong and L. B. Xu, Mater. Lett., 2021, 299, 130071.
- 16 X. Y. Tian, P. Yi, J. W. Sun, C. Y. Li, R. Z. Liu and J.K. Sun, Nanomaterials, 2022, 1211, 1848.
- 17 C. C. Miao, Y. M. Zang, H. Wang, X. M Zhuang, N. Han, Y. X. Yin, Y. D Ma, M. Chen, Y. Dai, S. P. Yip, J.C. Ho and Z. X. Yang, Adv. Mater. Interfaces., 2022, 9, 2200739.
- [18 H. M. Li, S.Q. Lu, J. Y. Sun, J. J. Pei, D. Liu, Y. R. Xue, J. J. Mao, W. Zhu and Z. B. Zhuang, Chem. Eur. J., 2018, 2445, 11748-11754.
- 19 M. Pahuja, S. Riyajuddin, M. Afshan, S. A. Siddiqui, J. Sultana, T. Maruyama and K. Ghosh, ACS Appl. Nano Mater., 2022, 51, 1385-1396.
- 20 T. G. Ma, Y. F. Qiu, Y. Y. Zhang, X. Y Ji and P. A. Hu, ACS Appl. Energy. Mater., 2019, 25, 3091-3099.
- 21 M. A. Ashraf, Y. f. Yang, D. Q. Zhang and B. T. Pham, J. Colloid. Interface. Sci., 2020, 577, 265-278.
- 22 C. F. Li, J. W. Zhao, L. J. Xie, J. Q. Wu and G. R. Li, Appl. Catal. B Environ., 2021, 291, 119987.
- 23 J. J. Zhu, X. Y. Zheng, C. C. Liu, Y. K. Lu, Y. Liu, D. Li and D. L. Jiang, J. Colloid. Interface. Sci., 2023, 630, 559-569.
- 24 J. Y. Li, J. Li, X. M. Zhou, Z. M. Xia, W. Gao, Y. Y. Ma and Y. Q. Qu, ACS Appl. Mater. Interfaces., 2016, 817, 10826-10834.
- 25 J. L. Qi, T. X. Xu, J. Cao, S. Guo, Z. X. Zhong and J. C. Feng, Nanoscale, 2020, 1210, 6204-6210.
- 26 J. H. Lin, Y. T. Yan, T. X. Xu, J. Cao, X. H. Zheng, J. C. Feng and J. L. Qi, J. Colloid. Interface. Sci., 2020, 564, 37-42.
- 27 L. Sun, S. T. Zhao, L. N. Sha, G. L. Zhuang, X. J. Wang and X. G. Han, J. Colloid. Interface. Sci., 2023, 637, 76-84.
- 28 T. Chen, J. J. Duan, J. J. Feng, L. P. Mei, Y. Jiao, L. Zhang and A. J. Wang, J. Colloid. Interface. Sci., 2022, 605, 888-896.

29 T. Shinagawa, A. Garcia-Esparza, K. Takanabe, Sci. Rep., 2015, 5, 13801

30 Z. Li, B. Li, M. Yu, C. Yu and P. Shen, International Journal of Hydrogen Energy, 2022, 47, 26956-26977