Supporting Information

Epitaxial Growth of Hexahedral Fe₂O₃@SnO₂ Nano

Heterostructure for Improved Lithium-Ion Battery

Xiong Wang^a, Rui Wang^{a*}, Qiaoling Kang^{a*}, Feng Gao^b, Miaogen Chen^d, Yang Xu^a,

Hongliang Ge ac, Dongyun Li ac*

a College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China.

b Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, PR China.

c Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018, China

d Department of Physics, China Jiliang University, Hangzhou 310018, PR China

*Corresponding Authors: E-mail: wangrui@cjlu.edu.cn E-mail: lidongyun@cjlu.edu.cn

E-mail: kangqiaoling@cjlu.edu.cn

Content

Fig. S1. SEM images of (a-b) hexahedral Fe₂O₃ cubes; (c-d) SnO₂ nanopillars

Fig. S2. The survey spectra of the hexahedral $Fe_2O_3@SnO_2$ heterostructure.

Fig. S3. CV curves of initial three cycles at scan rate 0.1 mV s^{-1} of (a) hexahedral Fe₂O₃

heterostructure;(b) SnO₂ nanopillars.

Fig. S4. The equivalent circuit of the three samples.

Table S1. Key parameters in the mechanical and electrochemical simulations

Table S2. Hexahedral Fe_2O_3 (a) SnO_2 heterostructure and other Fe-based anode reported in other recent literatures are used to LIBs' anode.

Table S3. Formula form of strain and stress of electrochemical and thermal models.

Fig. S1. SEM images of (a-b) hexahedral Fe₂O₃ cubes; (c-d) SnO₂ nanopillars

Fig. S2. The survey spectra of the hexahedral $Fe_2O_3@SnO_2$ heterostructure.

Fig. S3. CV curves of initial three cycles at scan rate 0.1 mV s^{-1} of (a) hexahedral Fe₂O₃ heterostructure;(b) SnO₂ nanopillars.

Fig. S4. The equivalent circuit of the three samples.

Parameter	Value	Unit	Definition
T _{ref}	293.15	K	Reference temperature
$lpha_{fs}$	12.3E-5	K-1	Thermal expansion coefficient of Fe ₂ O ₃
$ ho_{fs}$	2.33	g cm ⁻³	Density of Fe ₂ O ₃
E_{fs}	140E-9	Pa	Young's modulus of Fe ₂ O ₃
\mathcal{V}_{fs}	0.256	1	Poisson's ratio of Fe ₂ O ₃

 Table S1. Key parameters in the mechanical and electrochemical simulations.

Table S2. Hexahedral Fe₂O₃@SnO₂ heterostructure and other Fe-based anode reported in other recent literatures are used to LIBs' anode.

Material system	Specific Capacity	Reference	
Fe ₂ O ₃ @SnO ₂	641.7 mAh g ⁻¹ @4 Ag ⁻¹	This work	
H-Co ₃ O ₄ @MCNBs	658 mAh g ⁻¹ @2 A g ⁻¹	Angew. Chem. Int. Ed. 59(45) (2020) 19914-19918.	
Co ₃ O ₄ @MnO ₂	696 mAh g ⁻¹ @1 A g ⁻¹	Small 17(19) (2021) 9. 2008165.	
SF	558.3 mAh g ⁻¹ @5 A g ⁻¹	Chem. Eng. J. 388 (2020) 8. 124119.	
α-MoO ₃ /SWCNH	654mAh g ⁻¹ @1C	Adv. Energy Mater. 10(36) (2020) 14. 2001627.	
d-H-Nb ₂ O ₅	138mAh g ⁻¹ @2 A g ⁻¹	Energy Environ. Sci. 15(1) (2022) 254-264.	
SnO ₂ @MOF/graphene	450 mAh g ⁻¹ @1 A g ⁻¹	Nano Energy 74 (2020) 10. 104868.	
HoCo ₃ O ₄ /NS-RGO	820 mAh g ⁻¹ @5 A g ⁻¹	ACS Nano 14(5) (2020) 5780-5787.	
V ₂ O ₅	318 mA h g ⁻¹ @3 A g ⁻¹	Nano Energy 78 (2020) 10. 105233.	
LBL	206 mAh g ⁻¹ @4 A g ⁻¹	Energy Stor. Mater. 38 (2021) 70-79.	

	Strain	Stress
Electrochemical model	$\varepsilon_e = \beta (I - I_{ref}) = \beta \Delta I^{[1]}$	$\sigma_t = E_e \beta \Delta I^{[2]}$
Thermal model	$\varepsilon_t = \alpha (T - T_{ref}) = \alpha \Delta T^{[3]}$	$\sigma_t = E_t \alpha \varDelta T^{[4]}$

Table S3. Formula form of strain and stress of electrochemical and thermal models.

Reference

- H. Yang, F. F. Fan, W. T. Liang, X. Guo, T. Zhu, S. L. Zhang, A chemo-mechanical model of lithiation in silicon, J. Mech. Phys. Solids 70 (2014) 349-361. https://doi.org/10.1016/j.jmps.2014.06.004.
- [2] H. M. Xie, Q. Zhang, H. B. Song, B. Q. Shi, Y. L. Kang, Modeling and in situ characterization of lithiation-induced stress in electrodes during the coupled mechanoelectro-chemical process, J. Power Sources 342 (2017) 896-903. https://doi.org/10.1016/j.jpowsour.2017.01.017.
- [3] M. Wang, X. R. Xiao, Investigation of the chemo-mechanical coupling in lithiation/delithiation of amorphous Si through simulations of Si thin films and Si nanospheres, J. Power Sources 326 (2016) 365-376. https://doi.org/10.1016/j.jpowsour.2016.07.011.
- [4] D. A. Cui, M. J. Cheng, Thermal stress modeling of anode supported micro-tubular solid oxide fuel cell, J. Power Sources 192(2) (2009) 400-407. https://doi.org/10.1016/j.jpowsour.2009.03.046.