Supporting Information

Redox-Switchable Pickering Emulsion Stabilized by Hexaniobate-based Ionic Liquid for Oxidation Catalysis

Wei Lu, Jing Dong,* Di Zhang, Peng Lei, Yingnan Chi* and Changwen Hu

Table of Contents

1. Characterization

Figure S1. ¹H NMR spectra of [C₁₆MIM]Nb₆ in CDCl₃.

Figure S2. XPS survey of [C₁₆MIM]Nb₆.

Figure S3. Thermogravimetric analyses of [C₁₆MIM]Nb₆(a), [C₁₄MIM]Nb₆(b), and [C₁₂MIM]Nb₆(c).

Figure S4. Confocal microscopy images of Pickering emulsion formed by H2O2-treated [C16MIM]Nb6.

Figure S5. XPS spectra of [C₁₆MIM]Nb₆ and [C₁₆MIM]Nb₆-O₂.

Figure S6. Zeta potential of [C₁₆MIM]Nb₆ and [C₁₆MIM]Nb₆-O₂.

Figure S7. SEM image of [C₁₆MIM]Nb₆.

Figure S8. Particle size of the three amphiphilic hexaniobate-based ionic liquids measured by DLS.

Figure S9. Optical micrographs of the Pickering emulsion stabilized by $[C_{16}MIM]Nb_6-O_2$ (left) and SEM images of the emulsifiers (right).

Figure S10. FT-IR spectra of $[C_{14}MIM]Nb_6$ and $[C_{14}MIM]Nb_6-O_2$.

Figure S11. FT-IR spectra of $[C_{12}MIM]Nb_6$ and $[C_{12}MIM]Nb_6-O_2$.

Figure S12. ¹H NMR spectra of $[C_{14}MIM]Nb_6$ in CDCl₃.

Figure S13. ¹H NMR spectra of [C₁₂MIM]Nb₆ in CDCl₃.

Figure S14. (a) SEM image of $[C_{12}MIM]Nb_6-O_2$ (inset: water contact angle); (b) SEM image of $[C_{14}MIM]Nb_6-O_2$ (inset: water contact angle); (c) microscope photograph of the oil-water system containing $[C_{12}MIM]Nb_6-O_2$; (d) microscope photograph of Pickering emulsion stabilized by $[C_{14}MIM]Nb_6-O_2$.

Figure S15. The optical micrographs of the reversible redox-triggered emulsification and demulsification of the Pickering emulsion containing [C₁₄MIM]Nb₆-O₂.

Figure S16. Optical micrographs of isooctane-water emulsion system stabilized with [C₁₆MIM]Nb₆-O₂.

Figure S17. Optical micrographs of *n*-heptane-water emulsion system stabilized with [C₁₆MIM]Nb₆-O₂.

Figure S18. The GC-MS spectrum of the oxidation product of DBT.

Figure S19. The optical micrographs of emulsion droplets in the recycle test.

Figure S20. Photographs of redox-responsive Pickering emulsion.

Figure S21. FT-IR spectra of $[C_{16}MIM]Nb_6-O_2$ before and after the catalytic reaction.

Table S1. The elemental analysis of [C_nMIM]Nb₆.

 Table S2. Oxidative desulfurization of DBT and other S-containing compounds in the Pickering emulsion

 system.

Table S3. Comparison of stimuli-responsive emulsion systems.

Table S4. Comparison of polyoxometalate-based emulsion catalysts in oxidative desulfurization of DBT.

2. References

Figure S1. ¹H NMR spectra of $[C_{16}MIM]Nb_6$ in CDCl₃. ¹H NMR (400 MHz, CDCl₃) of $[C_{16}MIM]Nb_6$, δ 9.96 (s, 1H), 7.49 (s, 1H), 7.22 (s, 1H), 4.41 (s, 2H), 4.24 (s, 3H), 1.82 (s, 2H), 1.23 (d, J = 12.5 Hz, 26H), 0.87 (t, J = 6.8 Hz, 3H).

Figure S2. XPS survey of [C₁₆MIM]Nb₆.

Figure S3. Thermogravimetric analyses of $[C_{16}MIM]Nb_6$ (a), $[C_{14}MIM]Nb_6$ (b), and $[C_{12}MIM]Nb_6$ (c). For $[C_{16}MIM]Nb_6$, the first weight loss of 8 % between 24-153 °C can be ascribed to the loss of crystallographic water molecules. The second step weight loss of 65.4 % in the range of 153-549 °C is attributed to the decomposition of 1-hexadecyl-3-methylimidazolium cation. For $[C_{14}MIM]Nb_6$, the first weight loss of 4.0 % in the range of 20-172 °C is due to the removal of lattice water molecules. The second step weight loss of 59.6 % at 172-509 °C is attributed to the decomposition of 1-tetradecyl-3-methylimidazolium cation. For $[C_{12}MIM]Nb_6$, the first weight loss of 4.7 % between 20-178 °C is attributed to the loss of water molecules. The second step weight loss of 52.4 % in the range of 178-493 °C can be ascribed to the decomposition of 1-dodecyl-3-methylimidazolium cations.

Figure S4. Confocal microscopy images of Pickering emulsion formed by H_2O_2 -treated [C₁₆MIM]Nb₆, where the oil phase was stained by 0.01 wt% Nile Red. (left: light-field, middle: dark-field, right: superposed field)

Figure S5. XPS spectra of [C₁₆MIM]Nb₆ and [C₁₆MIM]Nb₆-O₂.

Figure S6. Zeta potential of [C₁₆MIM]Nb₆ and [C₁₆MIM]Nb₆-O₂.

Figure S7. SEM image of $[C_{16}MIM]Nb_6$.

Figure S8. Particle size of the three amphiphilic hexaniobate-based ionic liquids measured by DLS.

Figure S9. Optical micrographs of the Pickering emulsion stabilized by $[C_{16}MIM]Nb_6-O_2$ (left) and SEM images of the emulsifiers (right).

Figure S10. FT-IR spectra of [C₁₄MIM]Nb₆ and [C₁₄MIM]Nb₆-O₂.

Figure S11. FT-IR spectra of [C₁₂MIM]Nb₆ and [C₁₂MIM]Nb₆-O₂.

Figure S12. ¹H NMR spectra of $[C_{14}MIM]Nb_6$ in CDCl₃. ¹H NMR (400 MHz, CDCl₃) of $[C_{14}MIM]Nb_6$, δ 10.66 (s, 1H), 7.29 (s, 1H), 7.23 (s, 1H), 4.31 (t, J = 7.5 Hz, 2H), 4.13 (s, 3H), 1.91 (dd, J = 14.1, 7.1 Hz, 2H), 1.40 – 1.15 (m, 22H), 0.91 – 0.82 (m, 3H).

Figure S13. ¹H NMR spectra of $[C_{12}MIM]Nb_6$ in CDCl₃. ¹H NMR (400 MHz, CDCl₃) of $[C_{12}MIM]Nb_6$, δ 10.67 (s, 1H), 7.30 (s, 1H), 7.23 (s, 1H), 4.31 (t, J = 7.5 Hz, 2H), 4.13 (s, 3H), 1.91 (dd, J = 14.3, 7.3 Hz, 2H), 1.39 – 1.20 (m, 18H), 0.91 – 0.82 (m, 3H).

Figure S14. (a) SEM image of $[C_{12}MIM]Nb_6-O_2$ (inset: water contact angle); (b) SEM image of $[C_{14}MIM]Nb_6-O_2$ (inset: water contact angle); (c) microscope photograph of the oil-water system containing $[C_{12}MIM]Nb_6-O_2$; (d) microscope photograph of Pickering emulsion stabilized by $[C_{14}MIM]Nb_6-O_2$.

Figure S15. The optical micrographs of the reversible redox-triggered emulsification and demulsification of the Pickering emulsion containing $[C_{14}MIM]Nb_6-O_2$.

Figure S16. Optical micrographs of isooctane-water emulsion system stabilized with $[C_{16}MIM]Nb_6-O_2$.

Figure S17. Optical micrographs of *n*-heptane-water emulsion system stabilized with $[C_{16}MIM]Nb_6-O_2$.

Figure S18. The GC-MS spectrum of the oxidation product of DBT.

Figure S19. The optical micrographs of emulsion droplets in the recycle test.

Figure S20. Photographs of redox-responsive Pickering emulsion.

Figure S21. FT-IR spectra of $[C_{16}MIM]Nb_6-O_2$ before and after the catalytic reaction.

Table S1 The elemental analysis of $[C_nMIM]Nb_6$.

Sample	C (wt%)	H (wt%)	N (wt%)	Nb (wt%)	Molecular formula
[C ₁₆ MIM]Nb ₆	46.75	8.21	5.44	13.42	$(C_{20}H_{39}N_2)_8Nb_6O_{19}\cdot 16H_2O$
[C ₁₄ MIM]Nb ₆	42.40	7.34	5.39	21.92	$(C_{18}H_{35}N_2)_5H_3Nb_6O_{19}$. $5H_2O$
[C ₁₂ MIM]Nb ₆	38.69	6.41	5.56	25.84	$(C_{16}H_{31}N_2)_4H_4Nb_6O_{19}.5H_2O_{19}$

Table S2. Oxidative desulfurization of DBT and other S-containing compounds in the

 Pickering emulsion system.

Entry	Substrate	Time	Conversion (%)		
1ª	DBT	40 min	<mark>>99</mark>		
<mark>2ª</mark>	BT	<mark>60 min</mark>	<mark>>99</mark>		
3ª	DT	120 min	<mark>>99</mark>		
4 ^b	4,6-DMDBT	<mark>12 h</mark>	<mark>70</mark>		
[a] Reaction	conditions: [C ₁₆ MIM]Nb ₆ -	O ₂ (0.003 mmol), H ₂ O ₂	(0.3 mmol), n-octane (1 mL)		
containing substrate (800 ppm), H ₂ O (1 mL), 40 °C . [b] [C ₁₆ MIM]Nb ₆ -O ₂ (0.003 mmol), H ₂ O ₂ (1					

mmol), n-octane (1 mL) containing substrate (800 ppm), H_2O (1 mL), 60 °C.

 Table S3 Comparison of stimuli-responsive emulsion systems.

Emulsifier	Stimulus response	Demulsification			Stimulus response	Catalytic	Ref.
	type	Method	Temp. /ºC	Time	site	application	
[C ₁₆ MIM]Nb ₆ -O ₂	redox	adding Na ₂ SO ₃	r.t.	40 s	heterogeneous	yes	This work
Ferrocene surfactant (FcCOC ₁₀ N)/SiO ₂	redox	0.8V electrical oxidation	-	2 h	homogeneous	no	1
C_{10} -Se- C_{10} ·(COONa) ₂ /Al ₂ O ₃	redox	adding H ₂ O ₂	r.t.	50 s	homogeneous	no	2
C ₁₆ H ₃₄ N ₂ @SiO ₂	CO ₂ -N ₂	bubbling N ₂	65	80 min	heterogeneous	no	3
Triethylenetetramine-functionalized MOFs	CO ₂ -N ₂	bubbling N ₂	50	30 min	heterogeneous	yes	4
N-alkylimidazoles bicarbonates [C _n IM] ⁺ HCO ₃ ⁻ /SiO ₂	CO ₂ -N ₂	bubbling N ₂	25	40 min	homogeneous	no	5
Fe ₃ O ₄ @SiO ₂ @P(TMA-DEA)	CO ₂ -N ₂	bubbling CO ₂	r.t.	-	heterogeneous	yes	6
(MeO) ₃ SiCH ₂ CH ₂ CH ₂ (NHCH ₂ CH ₂) ₂ NH ₂ @(M eO) ₃ Si(CH ₂) ₇ CH ₃)@SiO ₂	pH	adding HCl	r.t.	3-5 min	heterogeneous	no	7
Lipase AYS@magnetic hollow mesoporous carbon nanospheres (AYS@MHMCS)	magnetism	magnetic field	-	15 min	heterogeneous	yes	8
Pd-SiO ₂ /azobenzene	light	UV irradiation	25	30 min	homogeneous	yes	9
Grafted silanes on TiO2 nanoparticles	light	UV irradiation	-	36 h	heterogeneous	no	10

"-": not mentioned

Table S4Comparisonofpolyoxometalate-basedemulsioncatalystsintheoxidativedesulfurization of DBT.

Catalyst	<mark>Temp.</mark> (°C)	Extraction agent	System	Time	<mark>Conv.</mark> (%)	Reference
[C ₁₆ MIM]Nb ₆ -O ₂	<mark>40</mark>	H ₂ O	stimuli-responsive emulsion	40 min	<mark>>99</mark>	This work
Organic-functionalized V ₆ O ₁₉	<mark>40</mark>	H_2O	emulsion	<mark>80 min</mark>	<mark>98</mark>	<mark>11</mark>
$[C_{16}H_{33}N(CH_3)_3]_{11}P_2W_{13}V_5O_{64}$	<mark>60</mark>	IL	emulsion	<mark>60 min</mark>	<mark>98</mark>	12
[BMIM] ₄ SiW ₁₂ O ₄₀ -based Janus nanosheets	<mark>60</mark>	IL	emulsion	<mark>90 min</mark>	<mark>>99</mark>	<mark>13</mark>
PW ₁₂ O ₄₀ /P[tVPB-VPx]	<mark>50</mark>	methanol	emulsion	<mark>2 h</mark>	<mark>99</mark>	<mark>14</mark>
C-SiO ₂ -PW ₁₂ O ₄₀	<mark>50</mark>	acetonitrile	emulsion	<mark>2 h</mark>	<mark>>99</mark>	<mark>15</mark>
$[(C_nH_{2n+1})_3NCH_3]_2W_6O_{19}$	<mark>60</mark>	IL	emulsion	20 min	<mark>98</mark>	<mark>16</mark>
$[C_{16}H_{33}N(CH_3)_3]_{11}P_2W_{13}V_5O_{64}$	<mark>70</mark>	IL	emulsion	45 min	<mark>100</mark>	<mark>17</mark>
SiO ₂ @C-dots/PW ₁₂	<mark>50</mark>	acetonitrile	biphase	<mark>3 h</mark>	<mark>100</mark>	18
PMo ₁₂ /BzPN-SiO ₂	<mark>60</mark>	H ₂ O	biphase	<mark>3 h</mark>	<mark>100</mark>	<mark>19</mark>

Reference

- 1 S. Yu, D. Zhang, J. Jiang and W. Xia, ACS Sustainable Chem. Eng., 2019, 7, 15904-15912.
- 2 S. Yu, H. Zhang, J. Jiang, Z. Cui, W. Xia and B. P. Binks, *Green Chem.*, 2020, 22, 5470-5475.
- 3 J. Jiang, Y. Zhu, Z. Cui and B. P. Binks, Angew. Chem. Int. Ed., 2013, 52, 12373-12376.
- 4 Y. Shi, D. Xiong, Z. Li, H. Wang, J. Qiu, H. Zhang and J. Wang, ACS Appl. Mater. Interfaces, 2020, 12, 53385-53393.
- 5 Y. Shi, D. Xiong, Y. Chen, H. Wang and J. Wang, J. Mol. Liq., 2019, 274, 239-245.
- 6 J. Tang, X. Zhou, S. Cao, L. Zhu, L. Xi and J. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 16156-16163.
- 7 J. Huang and H. Yang, Chem. Commun., 2015, 51, 7333-7336.
- 8 T. Yang, Y. Zhang, J. Wang, F. Huang and M. Zheng, *ACS Sustainable Chem. Eng.*, 2021, 9, 12070-12078.
- 9 Z. Li, Y. Shi, A. Zhu, Y. Zhao, H. Wang, B. P. Binks and J. Wang, Angew. Chem. Int. Ed., 2021, 60, 3928-3933.
- 10 Q. Zhang, R. X. Bai, T. Guo and T. Meng, ACS Appl. Mater. Interfaces, 2015, 7, 18240-18246.
- 11 Y. Ding, W. Zhu, H. Li, W. Jiang, M. Zhang, Y. Duan and Y. Chang, *Green Chem.*, 2011, 13, 1210-1216.
- 12 P. Yin, J. Wang, Z. Xiao, P. Wu, Y. Wei and T. Liu, Chem. Eur. J., 2012, 18, 9174-9178.
- 13 D. Julião, A. C. Gomes, M. Pillinger, R. Valença, J. C. Ribeiro, B. D. Castro, I. S. Gonçalves, L. C. Silva and S. S. Balula, *Eur. J. Inorg. Chem.*, 2016, DOI: 10.1002/ejic.201600442, 5114-5122.
- 14 F. Banisharif, M. R. Dehghani and J. M. Campos-Martin, *Energy Fuels*, 2017, 31, 5419-5427.
- 15 F. Banisharif, M. R. Dehghani, M. Capel-Sánchez and J. M. Campos-Martin, *Ind. Eng. Chem. Res*, 2017, **56**, 3839-3852.
- 16 M. Craven, X. Dong, C. Kunstmann-Olsen, E. F. Kozhevnikova, F. Blanc, A. Steiner and I. V. Kozhevnikov, *Appl. Catal. B Environ.*, 2018, 231, 82-91.
- 17 Y. Q. Zhang and R. Wang, Appl. Catal. B Environ., 2018, 234, 247-259.
- 18 S. Y. Dou and R. Wang, Chem. Eng. J., 2019, 369, 64-76.
- 19 R. Xia, W. Lv, K. Zhao, S. Ma, J. Hu, H. Wang and H. Liu, *Langmuir*, 2019, **35**, 3963-3971.