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S1. Supplementary methods

1. Fitting of unary isotherm data

The unary isotherms for CH4, C2H6, and C3H8 measured at two different temperatures 

273 K, and 298 K in GNU-1a were fitted with excellent accuracy using the dual-site 

Langmuir-Freundlich model, where we distinguish two distinct adsorption sites A and 

B: 

𝑞 =
𝑞𝑠𝑎𝑡,𝐴𝑏𝐴𝑝𝑣𝐴

1 + 𝑏𝐴𝑝𝑣𝐴
+

𝑞𝑠𝑎𝑡,𝐵𝑏𝐵𝑝𝑣𝐵

1 + 𝑏𝐵𝑝𝑣𝐵
                                 (𝑆1)

In eq. (S1), the Langmuir-Freundlich parameters bA and bB are both temperature 

dependent:

𝑏𝐴 = 𝑏𝐴0exp (𝐸𝐴

𝑅𝑇); 𝑏𝐵 = 𝑏𝐵0exp (𝐸𝐵

𝑅𝑇)                (𝑆2)

In eq (S2), EA and EB are the energy parameters associated with sites A, and B, 

respectively.

The unary isotherm fit parameters for each of the guest molecules in GNU-1a are 

provided in Table S2.

2. Isosteric heat of adsorption calculations

The isosteric heat of adsorption (Qst) is defined as:

𝑄𝑠𝑡 =‒ 𝑅𝑇2(∂𝑙𝑛𝑝
∂𝑇 )                                                         (𝑆3)

Where the derivative in the right member of eq (S3) is determined at constant 

adsorbate loading, q; the derivative can be determined analytically using equations 

(S1), (S2), and (S3).

3. IAST calculations of selectivity

The adsorption selectivity for separation for components 1 and 2 is defined by:

𝑆𝑎𝑑𝑠 =
𝑞1 𝑞2

𝑝1 𝑝2

                                                                        (𝑆4)

IAST calculations were carried out for equimolar C3H6/C3H8/C2H2/C2H4/C2H6/CH4 

mixtures at 298 K.
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4. Grand canonical monte carlo simulations

All simulations were performed by the Materials Studio (MS) 2020 package. The 

preferred sorption locations were performed by GCMC simulations with Adsorption 

fixed pressure task and Metropolis method in the sorption calculation module at 298 K 

and 1 bar. As for all of the GCMC simulations, the framework was considered to be 

rigid. The framework and gas molecule were described by the force filed of 

COMPASSⅢ. The cutoff radius was set to 12.5 Å, for the Lennard-Jones (LJ) 

interactions, and the electrostatic interactions, and the Ewald summation method was 

selected to calculate the electrostatic interactions between adsorbates as well as between 

adsorbates and the framework. For state point in GCMC simulation, the system adopted 

1 × 106 Monte Carlo steps to guarantee equilibration, and the ultimate data was 

collected for another 1 × 107 Monte Carlo steps. The embedded charges of the atoms 

of both gas molecules and the framework were assigned by the force filed of 

COMPASSⅢ 1.

5. Synthesis of ligand H6bmipia

Dimethyl 5-amino-phthalate (209 mg, 1 mmol), dimethyl 5-bromomethyl phthalate 

(631.4 mg, 2.2 mmol) and sodium hydroxide (88 mg, 2.2 mmol) were added into a 250 

mL round-bottom flask, and then 50 mL distilled water was added. The reaction was 

refluxing at 80 oC for 24 h before filtration. Then, the dry white filter cake was 

transferred to the round-bottom flask, followed, sodium hydroxide and 50 mL distilled 

water were added into the flask, the reaction was also refluxing at 80 oC for 24 h. Then 

reaction mixture was poured into the beaker and hydrochloric acid was added, to adjust 

the pH to 1-2. The yellow solid product was obtained after filtration and drying (800 

mg, 81.0 %).



6

Scheme S1. Synthetic route to the organic linker
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S2. Supplementary tables

Table S1. Crystal data and structure refinement parameters for GNU-1

Empirical formula C26 H19 Cu3 N O15

Formula weight (g mol-1) 776.04

Crystal system orthorhombic

Space group Cmce

a (Å) 13.7215(3)

b (Å) 35.1471(8)

c (Å) 19.2775(5)

α/° 90

β(°) 90

γ/° 90

V (Å3) 9297.0(4)

Z 8

ρcalc (g cm-3) 1.109

μ (mm‑1) 2.022

F (000) 3112.0

2Θ range for data collection/° 5.028 to 127.99

Index ranges -15≤h≤6, -40≤k≤40, -22≤l≤22

Reflections collected 14985

Independent reflections 4018 [Rint = 0.0485, Rsigma = 0.0303]

Goodness-of-fit on F2 1.110

Final R indexes [I>=2σ (I)]a R1 = 0.0788, wR2 = 0.2738

Final R indexes [all data]b R1 = 0.0872, wR2 = 0.2857

Largest diff. peak/hole / e Å-3 0.85/-0.59

CCDC deposition number 2233603

aR1=∑|| Fo | - |Fc||/∑|Fo|. bwR2={∑[w(Fo
2 - Fc

2)2]/∑w(Fo
2)2}1/2

Table S2 Comparison of C3H8/C2H6/CH4 uptakes and C3H8/CH4 (5/85) and C2H6/CH4 (10/85) 
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selectivities of some reported materials (298 K, 1 bar)

Materials
C3H8/C2H6/CH4

uptake ( mmol/g)

C3H8/CH4 

selectivity

C2H6/CH4 

selectivity
Reference

Ni(tmbdc)(dabco)0.5 5.54/5.81/1.50 274 29 2

FIR-51 4.54/4.21/0.644 326.8 15 3

GNU-1 6.64/4.60/1.12 330.13 17.54 This work

Cu-MOF 5.98/3.22/0.39 203.6 9.3 4

Fe2(dobdc) 5.73/5.05/0.792 - 32 5

PAF-40-Fe 2.61/1.87/0.644 56 16.2 6

JUC-100 6.14/4.14/0.479 65 8 7

RT-MIL-100(Fe) 6.85/2.23/3.96 33.3 6 8

HKUST-1 7.13/5.63/0.990 97 17 9

0.3Gly@HKUST-1 7.87/6.55/1.04 173 12.6 9

MIL-142A 5.32/3.82/0.54 1300 13.7 10

BSF-2 2.23/1.46/0.40 2609 53 11

PCN-224 8.25/2.93/0.48 609 12 12

MFM-202a 6.76/4.21/0.45 87 10 13

FJI-C1 6.33/3.72/0.43 471 22 14

UTSA-35a 2.97/2.43/0.43 80 15 15

Zr-FUM 2.38/-/0.53 292 - 16

FIR-7a-ht 7.24/4.06/0.46 78.8 14.6 17

A-AC-4 11.76/6.59/1.18 88.8 15.1 18

JLU-Liu45 3.79/3.78/0.69 42.7 20.1 19

Zr-SDBA 2.42/2.08/0.57 97.5 15.0 19

Zr-OBBA 0.78/0.5/0.16 105.6 16.7 19

UPC-33 4.18/1.56/0.31 41.8 6.64 20

FJI-H21 3.61/3.45/0.32 145.2 17.1 21

UPC-100-In 5.31/5.33/0.51 186.4 17.90 22

LIFM-26 5.21/4.61/0.49 46 11 23

mailto:0.3Gly@hkust-1
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S3. Supplementary figures

Figure S1. Comparison of FTIR spectra of ligands (left) and as-synthesized GNU-1 (right).

Figure S2. (a) Copper paddlewheel and ligand construct 2D Layer; (b) The Double 2D layer; (c) 

3D framework.

Figure S3. TGA curves of as-synthesized, MeOH-exchanged, and activated GNU-1 under N2 

atmosphere.
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Figure S4. Comparison of PXRD patterns of GNU-1.

Figure S5 Virial fitting of C3H8 adsorption data for GNU-1 at 273 and 298 K.
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Figure S6 Virial fitting of C2H6 adsorption data for GNU-1 at 273 and 298 K.

Figure S7 Virial fitting of CH4 adsorption data for GNU-1 at 273 and 298 K.
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Figure S8 Dual-site Langmuir-Freundlich model for C3H8 adsorption isotherm on 

GNU-1 at 298 K.

 

Figure S9 Dual-site Langmuir-Freundlich model for C3H8 adsorption isotherm on 

GNU-1 at 273 K.
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Figure S10 Dual-site Langmuir-Freundlich model for C2H6 adsorption isotherm on 

GNU-1 at 298 K.

Figure S11 Dual-site Langmuir-Freundlich model for C2H6 adsorption isotherm on 

GNU-1 at 273 K.
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Figure S12 Single-site Langmuir-Freundlich model for CH4 adsorption isotherm on 

GNU-1 at 298 K.

Figure S13 Single-site Langmuir-Freundlich model for CH4 adsorption isotherm on 

GNU-1 at 273 K.
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