Supporting Information (SI):

$V \ \ doping \ \ Ni_2P \ \ nanoparticles \ \ grafted \ \ g-C_3N_4 \ \ nanosheets \ \ for \ \ enhanced$

photocatalytic hydrogen evolution performance under visible-light

Qian Chen^a, Jianfeng Huang^{a,*}, Xiao Ting^a, Liyun Cao^{a*}, Dinghan Liu^b, Xiaoyi Li^a, Mengfan Niu^a, Guoting Xu^a, Koji Kajiyoshi^c, Liangliang Feng^{a,*}

^a School of Materials Science & Engineering, International S&T Cooperation Foundation of

Shaanxi Province, Shaanxi University of Science and Technology, Xi'an 710021, China.

^b School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and

Technology, Xi'an 710021, China.

^c Kochi Key University, Research Laboratory of Hydrothermal Chemistry, Kochi 780-8520, Japan.

* Corresponding authors.

E-mail addresses: huangjf@sust.edu.cn (J. Huang), caoliyun@sust.edu.cn (L. Cao), fengll@sust.edu.cn (L. Feng).

Number of pages: 13

Number of figures: 10

Number of tables: 1

Containing 20 pages, 17 Figures and 1 Tables

Additional images and data:

Figure S1. XRD pattern of NiV-LDH and NiV-LDH/g-C₃N₄.

Figure S2. (a) N_2 adsorption-desorption isotherms at 77 K and (b) the corresponding pore size distribution curves of V-Ni₂P/g-C₃N₄.

Figure S3. SEM images of (a) g-C₃N₄, (b) NiV-LDH, (c) V-Ni₂P; TEM images of (d) g-C₃N₄.

Figure S4. TEM images of (a-b) NiV-LDH (2 µm), (c-d) V-Ni₂P (50 nm).

Figure S5. SEM images of (a) V-Ni₂P/g-C₃N₄, (b) Ni₂P/g-C₃N₄.

Figure S6. TEM images of V-Ni₂P/g-C₃N₄.

Figure S7. The banding energy of pure g-C₃N₄ and 7.8 wt% V-Ni₂P/g-C₃N₄.

Figure S8. (a) SEM and (b) TEM images of V-Ni₂P/g-C₃N₄ after tests.

Figure S9. The XPS spectra of (a) C 1s, (b) N 1s, (c) Ni 2p, (d) P 2p, (e) V 2p for V-Ni₂P/g-C₃N₄ after tests.

Figure S10. The valence band of 7.8 wt% V-Ni₂P/g-C₃N₄.

Table S1. Summary of the Photocatalytic H₂ Evolution on g-C₃N₄-Based Photocatalysts.

Figure S1. XRD pattern of (a) NiV-LDH and NiV-LDH/g-C₃N₄; (b) Ni₂P/g-C₃N₄

Figure S2. (a) N_2 adsorption-desorption isotherms at 77 K and (b) the corresponding pore size distribution curves of V-Ni₂P/g-C₃N₄.

Figure S3. SEM images of (a) $g-C_3N_4$, (b) NiV-LDH, (c) V-Ni₂P; TEM images of (d) $g-C_3N_4$.

Figure S4. TEM images of (a-b) NiV-LDH (2 µm), (c-d) V-Ni₂P (50 nm).

Figure S5. SEM images of (a) V-Ni₂P/g-C₃N₄, (b) Ni₂P/g-C₃N₄.

Figure S6. TEM images of V-Ni₂P/g-C₃N₄.

Figure S7. The banding energy of pure $g-C_3N_4$ and 7.8 wt% V-Ni₂P/g-C₃N₄.

Figure S8. (a) SEM and (b) TEM images of V-Ni $_2P/g$ -C $_3N_4$ after tests.

Figure S9. The XPS spectra of (a) C 1s, (b) N 1s, (c) Ni 2p, (d) P 2p, (e) V 2p for V-Ni_2P/g-C_3N_4

after tests.

Figure S10. The valence band of pure $g-C_3N_4$ and 7.8 wt% V-Ni₂P/g-C₃N₄.

	Photocatalysts	Co-catalysts	Power (Xe lamp), wavelength	Activity µmol h ⁻¹ g ⁻¹	Reference
1	g-C ₃ N ₄	V-Ni ₂ P	300 W, λ > 420 nm	271.5	This work
2	g-C ₃ N ₄	Co ₂ P	300 W, $\lambda > 420$ nm	128.4	30
3	g-C ₃ N ₄	FeP	300 W, $\lambda > 420$ nm	177.9	33
4	g-C ₃ N ₄	MoP	300 W, $\lambda > 420$ nm	327.5	39
5	g-C ₃ N ₄	Mo-Mo ₂ P	300 W, $\lambda > 420$ nm	219.7	55
6	g-C ₃ N ₄	CQDs, Pt	400 W, $\lambda > 420$ nm	116.1	68
7	g-C ₃ N ₄	Ni ₁₂ P ₅	350 W, $\lambda > 400$ nm	126.6	69
8	g-C ₃ N ₄	Ni	500 W	168.2	70
9	g-C ₃ N ₄	NiS	150 W, $\lambda > 400 \text{ nm}$	84	71

Table S1. Summary of the Photocatalytic H_2 Evolution on g-C₃N₄-Based Photocatalysts