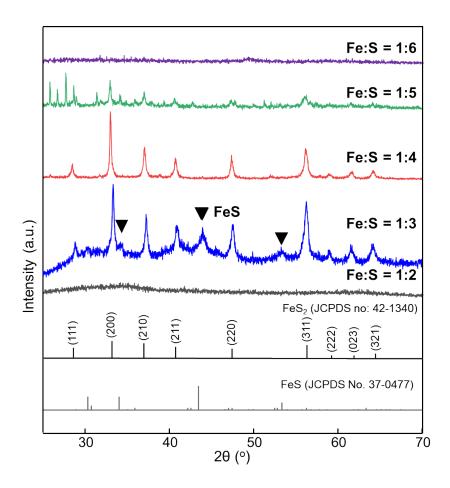
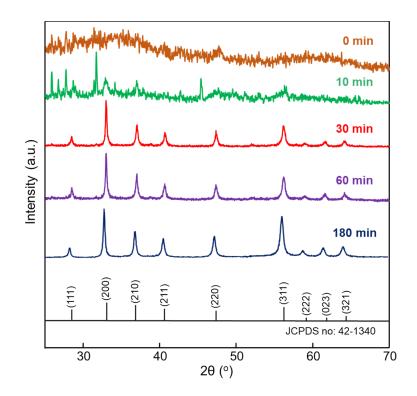
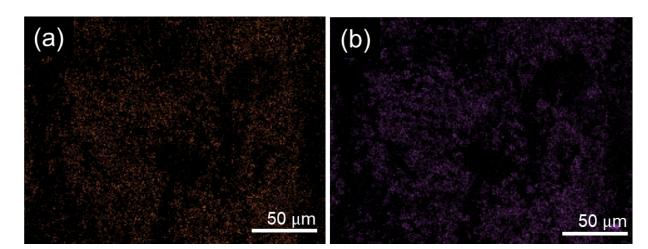
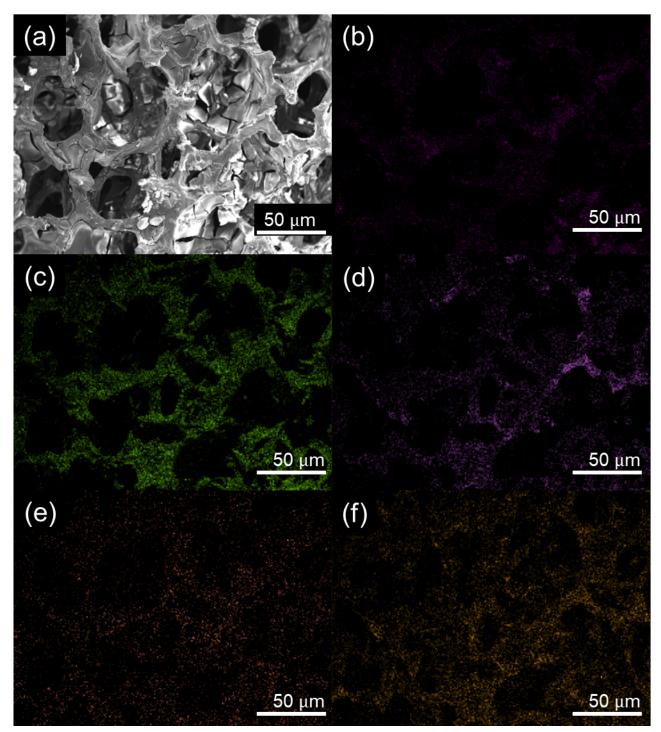
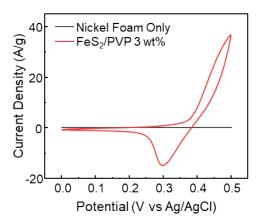
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

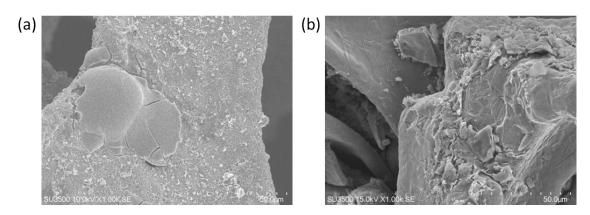
1	Supporting Information
2	A Novel Strategy for High-performance Supercapacitor through
3	Polyvinylpyrrolidone (PVP)-assisted In-situ Growth FeS ₂
4	Muhammad Alief Irham, ^{1,3} Oktaviardi Bityasmawan Abdillah, ^{1,3} Darul Roni Rodiansyah, ¹
5	Fakhrian Hanif Tejo Baskoro, ¹ Haerul Fahmi, ¹ Takashi Ogi ⁴ , Ferry Iskandar ^{1,2,3*}
6	¹ Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi
7	Bandung, Bandung 40132, Indonesia
8	² Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung,
9	Jl. Ganesha 10 Bandung 40132, Indonesia
10	³ Collaboration Research Center for Advanced Energy Materials, National Research and
11	Innovation Agency - Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java 40132,
12	Indonesia
13	⁴ Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate
14	School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama,
15	Hiroshima, Higashihiroshima, 739-8527, Japan
16	
17	*Corresponding author: ferry@fi.itb.ac.id

1 Crystalinity of Fe:S ratio


Figure S1. XRD peaks of FeS₂ with various Fe:S ratio. The Fe:S ratio of 1:4 show good
 crystallinity match with its JCPDS 42-1340


- Figure S2. XRD peaks of FeS₂ with various synthesis times. Starting from 30 min the
 FeS₂ is formed and no other peaks was observed in longer synthesis time.


- Figure S3. EDX mapping of (a) iron and (b) sulfur from the synthesized FeS₂/NF 0wt%
 corresponds to Figure 4a in main manuscript.

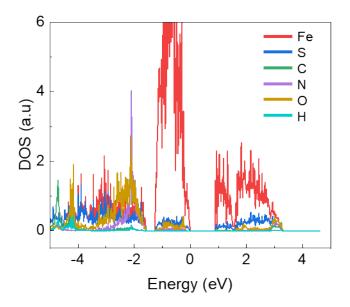

- Figure S4. (a) SEM images synthesized FeS₂/PVP 10wt% with its EDX mapping of (b)
- Carbon, (c) Oxygen, (d) Sulfur, (e) Iron, and (f) Nickel.

Figure S5. CV comparison of FeS₂/PVP 3wt% compared to the bare Nickel Foam.

Figure S6. SEM images of FeS2/PVP samples (a) before and (b) after cycling.

- 6 Figure S7. Projected Density of States (PDOS) of FeS₂/PVP slab per atom. The
- 7 hybridized states between O and Fe were observed, confirming those atom hybridization.