Electronic Supplementary Information (ESI)

A highly stable chain-based Eu^{III} metal-organic framework as the turn-on and blue-shift luminescent sensor for 2,6-dipicolinic acid

Li Wang,^a Yu-Lian Zhu,^b Teng-Fei Zheng,^a Zi-Hao Zhu,^a* Yan Peng,^a Yong-Quan Wu,^b Jing-Lin Chen,^a Sui-Jun Liu^a* and He-Rui Wen^a

^aSchool of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China

^bSchool of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi Province, P.R. China

*Corresponding authors. E-mail: sjliu@jxust.edu.cn (S.-J. Liu), zhuzihao@jxust.edu.cn (Z.-H. Zhu).

Materials and instrumentations

All chemical reagents were obtained from commercial sources and used without further purification. Notably, H₂BTDB was purchased by Jilin Chinese Academy of Sciences - Yanshen Technology Co., Ltd. and the NMR spectrum is provided in Fig. S1. The powder X-ray diffraction (PXRD) patterns were recorded by Rigaku MiniFlex 600. The simulated PXRD pattern of single-crystal data was obtained using the Mercury (Hg) software, which is freely available on the Internet at http://www.iucr.org. Thermogravimetric analysis (TGA) was performed under a N₂ flow at a heating rate of 10 K min⁻¹ from 25 to 1000 °C on a NETZSCH STA2500 thermal analyzer. IR spectra in the range of 4000–400 cm⁻¹ were collected with KBr particles on a Bruker Alpha FT-IR spectrometer. The fluorescence lifetime decays were recorded on a HORIBA Flourolog fluorescence spectrophotometer. The UV-vis adsorption spectra were collected on a UV-2550 (SHIMADZU) spectrophotometer. Scanning electron microscopy (SEM) was carried out on MLA650F SEM (FIE, USA).

Crystallographic studies for JXUST-38

Single crystal X-ray diffraction data of **JXUST-38** were recorded on a Bruker D8 QUEST diffractometer under 296(2) K and Mo-K α radiation ($\lambda = 0.71073$ Å) by ω scan mode. SAINT program was used for diffraction profile integration.^{S1} The SHELXT program of SHELXTL software package was used to solve the structure directly, and the full matrix least square method was used to refine the structure.^{S2} The non-hydrogen atoms were situated in successive difference Fourier syntheses and refined by anisotropic thermal parameters on F^2 . Theoretically, the hydrogen atoms of ligands are formed on specific atoms, and isotropic refinement was carried out by a fixed thermal factor.

Fig. S1 NMR spectrum of the H_2BTDB ligand.

Fig. S2 The coordination modes of H₂BTDB ligand in JXUST-38.

(a)

Fig. S3 (a) Scanning electron microscopy of JXUST-38. (b) Elemental analysis from scanning electron microscope-energy dispersive X-ray analysis of JXUST-38.

Fig. S4 The TGA curves of (a) JXUST-38 and (b) the activated JXUST-38.

Fig. S5 The solid-state excitation and emission spectra of JXUST-38.

Fig. S6 CIE chromaticity diagram displaying the color coordinate of JXUST-38.

Fig. S7 Luminescence intensity with specific recognition of DPA in (a) EtOH and (b) aqueous solutions.

Fig. S8 Time-dependent emission spectra of JXUST-38 after adding DPA at room temperature.

Fig. S9 Relative luminescent intensity of JXUST-38 after five cycles of recycling experiments for DPA.

Fig. S10 (a) The PXRD patterns JXUST-38 with the fresh sample and soaked in DMF solution containing DPA for 24 hours. (b) The IR spectra of JXUST-38 and JXUST-38 after sensing DPA for 5 cycles.

Fig. S11 The luminescence decay curves of (a) JXUST-38 and (b) JXUST-38@DPA at room temperature.

Fig. S12 The emission spectrum of JXUST-38 and the UV-vis absorption spectrum of DPA.

Fig. S13 Bright-field transmission image, fluorescence image and superimposed field image of (a) JXUST-38 and (b) JXUST-38@DPA.

Fig. S14 The N_2 adsorption isotherms for JXUST-38 at 77 K. JXUST-38 does not exhibit a significant microporous structure based on the isotherms, which may be due to its lower porosity.

Compound	JXUST-38		
formula	$C_{60}H_{32}Eu_3N_6O_{16}S_3$		
Mr	1644.97		
<i>T</i> (K)	293(2)		
crystal system	triclinic		
space group	$P^{\overline{1}}$		
<i>a</i> (Å)	8.8463(3)		
<i>b</i> (Å)	18.8634(7)		
<i>c</i> (Å)	20.8662(7)		
α (°)	113.6650(10)		
β (°)	95.5710(10)		
γ (°)	102.2300(10)		
$V(Å^3)$	3051.60(19)		
Ζ	2		
<i>F</i> (000)	1598		
$D_{\rm calc} ({ m g \ cm^{-3}})$	1.79		
$\mu \text{ (mm}^{-1})$	3.221		
Reflections collected/unique	46674/13992		
$R_{\rm int}$	0.0259		
$R_1^{a}/wR_2^{b} [I > 2\sigma(I)]$	0.0205		
$R_1^{a/w}R_2^{b}$ (all data)	0.0263		
GOF on F^2	1.047		

 Table S1. Crystal data and structure refinements for JXUST-38.

 ${}^{\mathrm{a}}R_{1} = \overline{\Sigma(||F_{0}| - |F_{C}||)/\Sigma|F_{0}|}; {}^{\mathrm{b}}\mathrm{w}R_{2} = [\Sigma w(|F_{0}|^{2} - |F_{C}|^{2})^{2}/(\Sigma w|F_{0}|^{2})^{2}]^{1/2}.$

Eu1—O1	2.3360(18)	Eu2—O5 ⁱⁱ	2.5215(16)
Eu1—O9	2.5018(18)	Eu2—O4	2.4349(17)
Eu1—O7	2.3009(17)	Eu2—O8 ^v	2.3717(18)
Eu1—O5	2.5797(17)	Eu3—O3	2.3346(18)
Eu1—014	2.3724(16)	Eu3—O9 ^{vi}	2.6063(18)
Eu1—013	2.4064(16)	Eu3—O6 ^v	2.3420(16)
Eu1—015	2.3694(14)	Eu3—O11 ^{vii}	2.3414(18)
Eu1—O15 ⁱ	2.3433(14)	Eu3—O10 ^{vi}	2.4631(18)
Eu2—O2 ⁱⁱ	2.4438(18)	Eu3—O15 ^v	2.3694(14)
O1—Eu1—O5	74.12(6)	O2 ⁱⁱ —Eu2—O5 ⁱⁱ	71.44(6)
O1—Eu1—O14	98.79(7)	O4—Eu2—O2 ⁱⁱ	107.96(6)
O1—Eu1—O13	83.80(6)	O4—Eu2—O5 ⁱⁱ	79.04(6)
O1—Eu1—O15	148.22(6)	O8 ^{vi} —Eu2—O2 ⁱⁱ	73.21(7)
01—Eu1—O15 ⁱ	140.62(6)	O8 ^{vi} —Eu2—O5 ⁱⁱ	124.56(6)
O9—Eu1—O5	142.81(5)	O8 ^{vi} —Eu2—O4	72.99(6)
O7—Eu1—O1	93.38(7)	O3—Eu3—O9 ^{iv}	135.46(6)
O7—Eu1—O9	74.67(6)	O3—Eu3—O6 ^{vi}	86.83(6)
O7—Eu1—O5	86.71(6)	O3—Eu3—O11 ^{vii}	141.70(7)
O7—Eu1—O14	147.86(6)	O3—Eu3—O10 ^{iv}	94.48(7)
O7—Eu1—O13	141.99(6)	O3—Eu3—O15 ^{vi}	131.43(6)
O7—Eu1—O15	74.48(6)	O3—Eu3—O1W	72.31(8)
O7—Eu1—O15 ⁱ	85.16(6)	O6 ^{vi} —Eu3—O9 ^{iv}	134.94(6)
O14—Eu1—O9	137.23(6)	O6 ^{vi} —Eu3—O10 ^{iv}	162.38(7)
O14—Eu1—O5	68.49(5)	O6 ^{vi} —Eu3—O15 ^{vi}	75.83(5)
O14—Eu1—O13	69.31(5)	O6 ^{vi} —Eu3—O1W	84.89(8)
O13—Eu1—O9	67.95(6)	O11 ^{vii} —Eu3—O9 ^{iv}	74.29(6)
O13—Eu1—O5	128.00(5)	O11 ^{vii} —Eu3—O6 ^{vi}	78.05(6)
O151—Eu1—O9	66.49(5)	O11 ^{vii} —Eu3—O10 ^{iv}	90.34(7)
O15—Eu1—O9	126.90(6)	O11 ^{vii} —Eu3—O15 ^{vi}	78.68(6)
O15 ⁱ —Eu1—O5	144.68(5)	O11 ^{vii} —Eu3—O1W	71.45(8)
O15—Eu1—O5	75.91(5)	O10 ^{iv} —Eu3—O9 ^{iv}	51.24(6)
O15—Eu1—O14	79.69(5)	O15 ^{vi} —Eu3—O9 ^{iv}	64.41(5)
015 ⁱ —Eu1—O14	103.10(5)	O15 ^{vi} —Eu3—O10 ^{iv}	115.19(6)
O15 ⁱ —Eu1—O13	74.09(5)	O15 ^{vi} —Eu3—O1W	147.21(7)
O15—Eu1—O13	123.79(5)	O1W—Eu3—O9 ^{iv}	117.90(7)
015 ⁱ —Eu1—O15	68.79(6)	O1W—Eu3—O10 ^{iv}	78.82(8)
O1—Eu1—O9	75.16(6)		

 Table S2. Selected bond lengths (Å) and angles (°) for JXUST-38^a.

^aSymmetry codes: (i) 2-*x*, 1-*y*, 1-*z*; (ii) -*x*, -*y*, -*z*; (iii) 1+*x*, 1+*y*, 1+*z*; (iv) -1-*x*, -1-*y*, -1-*z*; (v) 1-*x*, -*y*, -*z*; (vi) -1+*x*, -1+*y*, -1+*z*. (vii) 1-*x*, -*y*, -1-*z*.

JXUST-38					
ions	label	Shape	symmetry	distortion(τ)	
	OP-8	Octagon	$D_{8\mathrm{h}}$	30.380	
	HPY-8	Heptagonal pyramid	$C_{7\mathrm{v}}$	23.405	
	HBPY-8	Hexagonal bipyramid	$D_{6\mathrm{h}}$	15.601	
	CU-8	Cube	$O_{ m h}$	10.762	
	SAPR-8	Square antiprism	$D_{ m 4d}$	3.679	
	TDD-8	Triangular dodecahedron	D _{2d}	1.110	
Eu1	JGBF-8	Johnson gyrobifastigium J26	D_{2d}	12.292	
	JETBPY-8	Johnson elongated triangular bipyramid J14	$D_{3\mathrm{h}}$	26.864	
	JBTPR-8	Biaugmented trigonal prism J50	$C_{2\mathrm{v}}$	2.533	
	BTPR-8	Biaugmented trigonal prism	$C_{2\mathrm{v}}$	2.548	
	JSD-8	Snub diphenoid J84	D_{2d}	2.775	
	TT-8	Triakis tetrahedron	$T_{\rm d}$	11.216	
	ETBPY-8	Elongated trigonal bipyramid	$D_{3\mathrm{h}}$	24.465	
	OP-8	Octagon	$D_{8\mathrm{h}}$	32.300	
	HPY-8	Heptagonal pyramid	$C_{7\mathrm{v}}$	23.455	
Eu2	HBPY-8	Hexagonal bipyramid	$D_{6\mathrm{h}}$	12.413	
	CU-8	Cube	$O_{ m h}$	5.993	
	SAPR-8	Square antiprism	$D_{ m 4d}$	1.544	
	TDD-8	Triangular dodecahedron	D_{2d}	1.689	
	JGBF-8	Johnson gyrobifastigium J26	D_{2d}	14.525	
	JETBPY-8	Johnson elongated triangular bipyramid J14	$D_{3\mathrm{h}}$	27.569	
	JBTPR-8	Biaugmented trigonal prism J50	$C_{2\mathrm{v}}$	3.402	
	BTPR-8	Biaugmented trigonal prism	$C_{2\mathrm{v}}$	2.972	
	JSD-8	Snub diphenoid J84	D_{2d}	5.511	
	TT-8	Triakis tetrahedron	$T_{\rm d}$	6.870	
	ETBPY-8	Elongated trigonal bipyramid	$D_{3\mathrm{h}}$	24.253	
Eu3	OP-8	Octagon	$D_{8\mathrm{h}}$	29.650	

Table S3.	SHAPE	analysis	of the	EuIII	ions	in J X	KUS T	Г-38
		2						

HPY-8	Heptagonal pyramid	$C_{7\mathrm{v}}$	22.341
HBPY-8	Hexagonal bipyramid	$D_{6\mathrm{h}}$	14.032
CU-8	Cube	$O_{ m h}$	9.008
SAPR-8	Square antiprism	$D_{ m 4d}$	2.376
TDD-8	Triangular dodecahedron	D_{2d}	2.880
JGBF-8	Johnson gyrobifastigium J26	D_{2d}	12.027
JETBPY-8	Johnson elongated triangular bipyramid J14	$D_{3\mathrm{h}}$	26.569
JBTPR-8	Biaugmented trigonal prism J50	$C_{ m 2v}$	2.121
BTPR-8	Biaugmented trigonal prism	$C_{ m 2v}$	1.618
JSD-8	Snub diphenoid J84	D_{2d}	4.692
TT-8	Triakis tetrahedron	$T_{\rm d}$	9.675
ETBPY-8	Elongated trigonal bipyramid	$D_{3\mathrm{h}}$	21.751

 Table S4. Performance comparison of sensors for DPA detection.

Sensors	Linear ranges	LODs	Ref.
JXUST-38	0-78 μM	0.05 μΜ	This work
NH ₂ -MOF-76(Eu)	0-100 mM	3.8 µM	S3
[Eu _{0.1} Tb _{0.9} (NDC ²⁻)(H ₂ O)C1]	0-600 µM	0.248 μM	
[Eu _{0.1} Tb _{0.9} (BDC ²⁻)(H ₂ O)C1]	0-400 µM	0.874 μM	S4
[Eu _{0.1} Tb _{0.9} (BDC ^{2–})(H ₂ O)C1]	0-300 µM	2.277 μM	
[Tb(NDBC)(COO)]	0-1000 µM	5.21 µM	S5
$Tb_{0.875}Eu_{0.125}\text{-}Hddb$	0-400 µM	0.8494 μM	S 6
Eu/Tb(BTC)	0-400 µM	1087 nM	S7
[Tb _{0.43} Eu _{1.57} (1,4-phda) ₃ (H ₂ O)](H ₂ O) ₂	0-400 µM	0.17 μΜ	S 8
$\{[Ca_3(ddpa)\cdot 7H_2O]\}_n$	0-0.991 mM	$1.01 \times 10^{-6} \ \mathrm{M}^{-1}$	
$\{[Cd_3(ddpa)\cdot 6H_2O]\cdot 4H_2O\}_n$	0-0.991 mM	$1.17 \times 10^{-6} \ \mathrm{M}^{-1}$	S9
$\{[Zn_3(ddpa)\cdot 2H_2O]\}_n$	0-0.991 mM	$2.07 \times 10^{-6} \text{ M}^{-1}$	

References

- S1 SAINT, Version 6.02a, Bruker AXS Inc, Madison, WI, 2002.
- S2 G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv., 2015, A71, 3-8.
- S3 D. Wu, Z. Zhang, X. W. Chen, L. K. Meng, C. G Li, G. H. Li, X. B. Chen, Z. Shi and S. H. Feng, *Chem. Commun.*, 2019, **55**, 14918-14921.
- S4 M. L. Shen, B. Liu, L. Xu and H. Jiao, J. Mater. Chem. C, 2020, 8, 4392-4400.
- S5 M. M. Qiu, K. F. Chen, Q. R. Liu, W. N. Miao, B. Liu and L. Xu, *CrystEngComm*, 2022, 24, 132-142.
- S6 X. B. Chen, C. X. Qi, Y. B. Xu, H. Li, L. Xu and B. Liu, J. Mater. Chem. C, 2020, 8, 17325-17335.
- S7 M. N. Wu, Y. X. Zhuang, J. B. Liu, W. W. Chen, X. Y. Li and R. J. Xie, Opt. Mater., 2020, 106, 110006.
- S8 J. Othong, J. Boonmak, F. Kielar, S. Hadsadee, S. Jungsuttiwong and S. Youngme, *Sens. Actuators*, *B*, 2020, **316**, 128156.

S9 Z. Z. Cong, M. C. Zhu, Y, Zhang, W. Yao, Marina Kosinova, Vladimir P. Fedin, S. Y. Wu and E. J. Gao, *Dalton Trans.*, 2022, **51**, 250–256.