Electronic Supplementary Information

Decarbonating layered double hydroxides with carbonated salt solution

Luofu Min, Jingying Duan, Chuan Song, Yanan Chen, Wen Zhang, Yuxin Wang*

State Key Laboratory of Chemical Engineering Tianjin Key Laboratory of Membrane Science and Desalination Technology School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. *Corresponding author. E-mail address: <u>yxwang@tju.edu.cn</u>

Fig. S1 Decarbonation process of Mg_2Al -LDH-CO₃ by carbonated NaCl solution. (a) XRD patterns and (b) FTIR spectra as a function of reaction time. The diffraction signal from the (006) plane of Mg_2Al -LDH LDHs splits into two peaks during the decarbonation process, indicating a phase transformation from Mg_2Al -LDH-CO₃ to Mg_2Al -LDH-Cl. Furthermore, peaks assigned to CO_3^{2-} at 3000 cm⁻¹ and 1360 cm⁻¹ in FTIR spectra of LDHs dimed as a function of time.

Fig. S2 Decarbonation kinetic analysis. 2D advancing interface model¹ fitted well with the decarbonation of MgAl-LDH by carbonated NaCl solution. The reaction extent α (Cl/Al ratio in LDHs) of decarbonation process is associated with the increment of carbonate in the solution, and t represents the reaction time. The exact increment of carbonate in decarbonation system was calculated from the dissociation equilibrium constant of H₂CO₃-HCO₃⁻-CO₃²⁻ and real-time pH value in **Fig. 1b**. The decarbonation kinetic demonstrate that the decarbonation reaction advances along the channel. The coexistence of Mg₂Al-LDH-CO₃ and Mg₂Al-LDH-Cl phase in **Fig. S1** during the initial stage of the decarbonation process is also in line with the advancing interface model.

Fig. S3 (a) EDS spectra indicating complete decarbonation of Mg₃Al-LDH-CO₃; (b) XRD patterns showing the peak shift and d-spacing change from Mg₃Al-LDH-CO₃ to Mg₃Al-LDH-Cl; (c) FTIR spectra showing the disappearance of CO_3^{2-} vibration peaks; (d & e) SEM images indicating well-kept morphology of Mg₃Al-LDH after anion exchange from CO_3^{2-} to Cl⁻.

Fig. S4 Decarbonation of $Mg_2Al-LDH-CO_3$ by carbonated NaNO₃ and NaBr solution. (a) XRD patterns (b) FTIR spectra of $Mg_2Al-LDH$ -Br and $Mg_2Al-LDH$ -NO₃. The peak at 1356 cm⁻¹ is attributed to the residual CO_3^{2-} in LDHs.

Fig. S5 Raman spectra of (a) pristine Mg₃Al-LDH-CO₃, (b) Mg₃Al-LDH-CO₃ treated with carbonated water, (c) Mg₃Al-LDH first treated with carbonated water then NaCl solution, (d) pristine Mg₃Al-LDH-CO₃ treated with carbonated NaCl solution for 8 minutes and (e) pristine Mg₃Al-LDH-CO₃ treated with carbonated NaCl solution for two rounds. In contrast to CO_3^{2-} , HCO_3^{-} in LDHs can be easily substituted by Cl⁻. After MgAl-LDH intercalated with HCO_3^{-} was treated with NaCl solution, the Cl/Al ratio of LDHs is 0.17. In addition,

the absence of HCO_3^- in LDHs during the decarbonation process demonstrates that almost all of the HCO_3^- in LDHs are substituted by Cl⁻. The residual anion in LDHs is only CO_3^{2-} , confirming MgAl-LDH-HCO₃ with higher anion-exchange ability than that of MgAl-LDH-CO₃.

Fig. S6 EDS spectra of (a) pristine Mg₃Al-LDH-CO₃, (b) Mg₃Al-LDH-CO₃ treated with only NaCl solution, (c) Mg₃Al-LDH first treated with carbonated water, then treated with NaCl solution. Massive Cl was detected after LDH intercalated with HCO₃⁻ was treated with NaCl solution.

Fig. S7 Raman spectrum of Mg₂Al-LDH-CO₃ treated with carbonated water.

Fig. S8 Distribution coefficient of H_2CO_3 - HCO_3^{-} - CO_3^{2-} as a function of pH. Although CO_3^{2-} is always accompanied by HCO_3^{-} because of the dissociation equilibrium, CO_3^{2-} was dramatically depressed in carbonated water, and the content of CO_3^{2-} is in the range of $10^{-7} \sim 10^{-9}$.

Anion	Hydration energy / kJ mol ⁻¹
CO ₃ ²⁻	-1315
OH-	-430
F-	-465
Cl	-340
HCO ₃ -	-335
Br⁻	-315
NO ₃ -	-300
I-	-275

Tab. S1. Hydration energy for various anions.²

References

- 1. L. Palin, M. Milanesio, W. van Beek and E. Conterosito, J. Nanomater., 2019, 2019, 1-9.
- 2. Y. Marcus, J. Chem. Soc., Faraday Trans., 1991, 87, 2995-2999.