Electronic supplementary information

High radiative efficiency based on intramolecular charge transfer in 9,9'-bianthracene-*ortho*-carboranyl luminophore

Mingi Kim,^{a‡} Sanghee Yi,^{a‡} Dongwook Kim,^b Ilsup Shin,^a Yung Ju Seo,^a Dong Kyun You,^a Chan Hee Ryu,^a and Kang Mun Lee^{*a}

- ^{*a*} Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
- ^b Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.

[‡]The first and second authors contributed equally to this work.

Contents

Multinuclear NMR spectra for 9biAT and its precursor	S2–S4
Crystallographic data and parameters for 9biAT	S5
Selected bond lengths (Å) and angles (°) for 9biAT	S6
UV-vis absorption and PL spectra for anthracene	S7
Emission decay curves for 9biAT in solid and aggregated state	S 8
Emission decay curves for 9biAT in solution state	S9
Theoretical calculation results for 9biAT	S10–S12
Cartesian coordinates for 9biAT	S13–S14
Atomic charge for S_1 -optimized structure of 9biAT in various organic solvents	S15–S19

Fig. S1 ¹H (top) and ¹³C (bottom) NMR spectra of 9biATA in CDCl₃ (* from residual CHCl₃ in CDCl₃).

Fig. S2 ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of **9biAT** in THF- d_8 (* from residual THF in THF- d_8).

Fig. S3 ¹¹B{¹H} (top) NMR spectrum of 9biAT in THF- d_8 .

Table S1 Crystallographic data and parameters for 9biAT.

Compound	9biAT
Formula	$C_{44}H_{46}B_{20}$
Formula weight	791.01
Crystal system	Triclinic
Space group	P_{-1}
<i>a</i> (Å)	11.9622(7)
<i>b</i> (Å)	13.4561(8)
<i>c</i> (Å)	14.6657(9)
α (°)	75.096(2)
β (°)	73.810(2)
γ (°)	79.007(2)
$V(Å^3)$	2172.7(2)
Ζ	2
$\rho_{\rm calc}({\rm g~cm^{-3}})$	1.209
μ (mm ⁻¹)	0.061
<i>F</i> (000)	820
<i>T</i> (K)	296(2)
Scan mode	φ and ω scan
	-14 < h < 14,
hkl range	-16 < k < 16,
	-17 < l < 17
Measd reflns	32778
Unique reflns [R _{int}]	7915 [0.0929]
Reflns used for refinement	7915
Refined parameters	577
$R_1^a (\mathbf{I} > 2\sigma(\mathbf{I}))$	0.0804
wR_2^b all data	0.2004
GOF on F^2	0.981
$\rho_{\rm fin}$ (max/min) (e Å ⁻³)	0.198, -0.196
^{<i>a</i>} $\mathbf{R}_1 = \sum F\mathbf{o} - F\mathbf{c} $	$ \sum Fo $. b $wR_2 = \{[\sum w(Fo^2 - Fc^2)^2]/[\sum w(Fo^2)^2]\}^{1/2}$.

Compound	9biAT	
	length (Å)	
С9–С13	1.427(4)	
C9–C15	1.522(4)	
C15–C16	1.829(4)	
	angles (°)	
C13–C9–C15	120.3(3)	
C9–C15–C16	116.6(2)	

Table S2 Selected bond lengths (Å) and angles (°) for 9biAT

Fig. S4 UV-vis absorption (left side) and PL spectra (right side) for anthracene in THF (4.0×10^{-5} M, $\lambda_{ex} = 358$ nm).

Fig. S5 Emission decay curves for 9biAT in (a) film (5 wt% doped with PMMA), (b) in f_w (water fraction in a THF–water mixture) = 90% (2.0 × 10⁻⁵ M), and (c) crystalline states detected at each emissive maxima at 298 K. Each red-line is its double exponential fitting curve for the decay curves.

Fig. S6 Emission decay curves for 9biAT in (a) cyclohexane $(2.0 \times 10^{-5} \text{ M})$, (b) toluene, (c) diethyl ether, (d) tetrahydrofuran, and (e) dichloromethane detected at each emissive maxima at 298 K. Each orange-line is its single or double exponential fitting curve for the decay curves.

Fig. S7 The selected frontier orbitals of **9biAT** from PBE0 calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimised geometries in THF.

Table S3 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **9biAT** from TD-PBE0 calculations using the PBE0 geometries at the ground state (S₀) and first singlet excited state (S₁) optimised geometries in THF

state	λ_{calc} (/nm)	f_{calc}	Major contribution
			S_0
1	450.03	0.0819	HOMO-1 \rightarrow LUMO+1 (12.94%)
			HOMO \rightarrow LUMO (86.46%)
2	447.27	0.0000	HOMO-1 \rightarrow LUMO (55.23%)
			HOMO \rightarrow LUMO+1 (44.23%)
3	434.38	0.3207	HOMO-1 \rightarrow LUMO+1 (86.38%)
			HOMO \rightarrow LUMO (12.84%)
4	416.81	0.0117	HOMO-1 \rightarrow LUMO (43.65%)
			HOMO \rightarrow LUMO+1(54.57%)
5	332.24	0.0151	HOMO-3 \rightarrow LUMO+1(18.50%)
			HOMO-2 \rightarrow LUMO (44.26%)
			HOMO-1 \rightarrow LUMO+5 (8.89%)
			HOMO \rightarrow LUMO+4 (21.31%)
			S_1
1	626.50	0.5279	HOMO \rightarrow LUMO (98.96%)
2	465.50	0.2310	HOMO-1 \rightarrow LUMO (98.56%)
3	439.72	0.0020	HOMO \rightarrow LUMO+1 (97.89%)
4	403.54	0.0918	HOMO-1 \rightarrow LUMO+1 (99.52%)
5	373.15	0.0185	HOMO-4 \rightarrow LUMO (10.80%)
			HOMO-2 \rightarrow LUMO (76.61%)

	E (eV)	anthran cene1	carborane1	carborane phenyl1	anthran cene2	carborane2	carborane phenyl2
			S	0			
LUMO+3	-1.32	5.33	17.91	26.77	5.33	17.90	26.76
LUMO+2	-1.32	5.12	18.32	26.55	5.13	18.33	26.56
LUMO+1	-2.50	41.43	8.25	0.33	41.42	8.25	0.33
LUMO	-2.56	40.08	9.57	0.35	40.09	9.57	0.35
HOMO	-6.01	47.47	2.47	0.07	47.46	2.47	0.07
HOMO-1	-6.04	47.59	2.31	0.10	47.60	2.31	0.10
HOMO-2	-7.22	49.13	0.13	0.74	49.13	0.13	0.74
НОМО-3	-7.31	48.34	0.73	0.93	48.34	0.73	0.93
			S	1			
LUMO+3	-1.30	1.40	0.01	0.00	6.06	33.01	59.51
LUMO+2	-2.02	62.03	28.43	9.00	0.52	0.00	0.01
LUMO+1	-2.69	1.90	0.18	0.04	87.77	7.88	0.23
LUMO	-3.50	32.51	59.73	5.63	2.07	0.05	0.00
HOMO	-5.97	81.14	12.64	3.00	3.10	0.07	0.06
HOMO-1	-6.16	2.99	0.38	0.06	92.05	4.44	0.07
HOMO-2	-7.36	9.44	9.90	35.70	43.58	0.11	1.28
НОМО-3	-7.38	17.71	10.56	37.27	33.63	0.20	0.63

Table S4 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **9biAT** at the ground state (S_0) and first singlet excited state (S_1) optimised geometries in THF

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
C-5.488528-0.8928410.452071B6.764906-1.7845840.224675C-1.0905822.7612051.47C-5.0128150.453254-0.659410H6.758343-2.9534290.020970H-0.0282792.7377531.68B-5.9156270.7114660.804141B7.048894-0.619329-1.063525C-1.6049891.8354800.51H-5.4016161.2370751.722238H7.244178-0.959171-2.183417C-0.7275400.975454-0.16B-7.048877-0.6195731.063362B5.9156310.711639-0.804018C-1.2082830.196134-1.23H-7.244181-0.9596492.183180H5.4016241.237451-1.721996C-0.294710-0.551494-2.03'B-6.764880-1.784566-0.225072B6.3359201.5256090.721681H0.753430-0.558825-1.75'H-6.758298-2.953454-0.021609H6.1045052.6757370.886748C-0.708635-1.209549-3.15'B-5.467619-1.126738-1.228707B7.6083840.889789-0.333478H0.003267-1.753607-3.76'H-4.651912-1.842643-1.681296H8.3199731.631759-0.931784C-2.068250-1.132472-3.54'	0043
C-5.0128150.453254-0.659410H6.758343-2.9534290.020970H-0.0282792.7377531.68B-5.9156270.7114660.804141B7.048894-0.619329-1.063525C-1.6049891.8354800.51H-5.4016161.2370751.722238H7.244178-0.959171-2.183417C-0.7275400.975454-0.16B-7.048877-0.6195731.063362B5.9156310.711639-0.804018C-1.2082830.196134-1.23H-7.244181-0.9596492.183180H5.4016241.237451-1.721996C-0.294710-0.551494-2.03'B-6.764880-1.784566-0.225072B6.3359201.5256090.721681H0.753430-0.558825-1.75'H-6.758298-2.953454-0.021609H6.1045052.6757370.886748C-0.708635-1.209549-3.15'B-5.467619-1.126738-1.228707B7.6083840.889789-0.333478H0.003267-1.753607-3.769H-4.651912-1.842643-1.681296H8.3199731.631759-0.931784C-2.068250-1.132472-3.540	1513
B -5.915627 0.711466 0.804141 B 7.048894 -0.619329 -1.063525 C -1.604989 1.835480 0.51 H -5.401616 1.237075 1.722238 H 7.244178 -0.959171 -2.183417 C -0.727540 0.975454 -0.16 B -7.048877 -0.619573 1.063362 B 5.915631 0.711639 -0.804018 C -1.208283 0.196134 -1.23 H -7.244181 -0.959649 2.183180 H 5.401624 1.237451 -1.721996 C -0.294710 -0.551494 -2.03' B -6.764880 -1.784566 -0.225072 B 6.335920 1.525609 0.721681 H 0.753430 -0.558825 -1.75' H -6.758298 -2.953454 -0.021609 H 6.104505 2.675737 0.886748 C -0.708635 -1.209549 -3.15' B -5.467619 -1.126738 -1.228707 B 7.608384 0.889789 -0.333478 H 0.003267 -1.753607 -3.76'	57770
H-5.4016161.2370751.722238H7.244178-0.959171-2.183417C-0.7275400.975454-0.16B-7.048877-0.6195731.063362B5.9156310.711639-0.804018C-1.2082830.196134-1.23H-7.244181-0.9596492.183180H5.4016241.237451-1.721996C-0.294710-0.551494-2.03B-6.764880-1.784566-0.225072B6.3359201.5256090.721681H0.753430-0.558825-1.75'H-6.758298-2.953454-0.021609H6.1045052.6757370.886748C-0.708635-1.209549-3.15'B-5.467619-1.126738-1.228707B7.6083840.889789-0.333478H0.003267-1.753607-3.769H-4.651912-1.842643-1.681296H8.3199731.631759-0.931784C-2.068250-1.132472-3.540	2342
B -7.048877 -0.619573 1.063362 B 5.915631 0.711639 -0.804018 C -1.208283 0.196134 -1.23 H -7.244181 -0.959649 2.183180 H 5.401624 1.237451 -1.721996 C -0.294710 -0.551494 -2.03 B -6.764880 -1.784566 -0.225072 B 6.335920 1.525609 0.721681 H 0.753430 -0.558825 -1.75 H -6.758298 -2.953454 -0.021609 H 6.104505 2.675737 0.886748 C -0.708635 -1.209549 -3.15' B -5.467619 -1.126738 -1.228707 B 7.608384 0.889789 -0.333478 H 0.003267 -1.753607 -3.76' H -4.651912 -1.842643 -1.681296 H 8.319973 1.631759 -0.931784 C -2.068250 -1.132472 -3.54'	8993
H-7.244181-0.9596492.183180H5.4016241.237451-1.721996C-0.294710-0.551494-2.03B-6.764880-1.784566-0.225072B6.3359201.5256090.721681H0.753430-0.558825-1.75H-6.758298-2.953454-0.021609H6.1045052.6757370.886748C-0.708635-1.209549-3.15B-5.467619-1.126738-1.228707B7.6083840.889789-0.333478H0.003267-1.753607-3.769H-4.651912-1.842643-1.681296H8.3199731.631759-0.931784C-2.068250-1.132472-3.549	2278
B -6.764880 -1.784566 -0.225072 B 6.335920 1.525609 0.721681 H 0.753430 -0.558825 -1.75 H -6.758298 -2.953454 -0.021609 H 6.104505 2.675737 0.886748 C -0.708635 -1.209549 -3.15 B -5.467619 -1.126738 -1.228707 B 7.608384 0.889789 -0.333478 H 0.003267 -1.753607 -3.769 H -4.651912 -1.842643 -1.681296 H 8.319973 1.631759 -0.931784 C -2.068250 -1.132472 -3.549	7213
H -6.758298 -2.953454 -0.021609 H 6.104505 2.675737 0.886748 C -0.708635 -1.209549 -3.15 B -5.467619 -1.126738 -1.228707 B 7.608384 0.889789 -0.333478 H 0.003267 -1.753607 -3.760 H -4.651912 -1.842643 -1.681296 H 8.319973 1.631759 -0.931784 C -2.068250 -1.132472 -3.54	7555
B -5.467619 -1.126738 -1.228707 B 7.608384 0.889789 -0.333478 H 0.003267 -1.753607 -3.76 H -4.651912 -1.842643 -1.681296 H 8.319973 1.631759 -0.931784 C -2.068250 -1.132472 -3.544	7421
H -4.651912 -1.842643 -1.681296 H 8.319973 1.631759 -0.931784 C -2.068250 -1.132472 -3.54	9301
	0166
B -6.050827 0.361347 -2.008399 B 8.141639 -0.673128 0.331877 H -2.392933 -1.579136 -4.47	5167
Н -5.621298 0.710716 -3.056084 Н 9.254911 -1.076469 0.212848 С -2.982001 -0.484190 -2.75	5874
В -7.144391 -1.011349 -1.767923 В 7.144412 -1.011686 1.767683 Н -3.995245 -0.412345 -3.11	7226
Н -7.518531 -1.652190 -2.697571 Н 7.518567 -1.652718 2.697193 С -2.619804 0.167764 -1.534	6015
B -8.141622 -0.673095 -0.332050 B 6.050845 0.360953 2.008455 C 3.544684 0.833034 0.674	4389
Н -9.254892 -1.076466 -0.213106 Н 5.621321 0.710104 3.056215 С 3.021718 1.804446 -0.232	3748
B -7.608382 0.889691 0.333622 B 7.699551 0.641464 1.424523 C 3.800639 2.830783 -0.852	3967
Н -8.319984 1.631529 0.932078 Н 8.483804 1.212480 2.113910 Н 4.836888 2.950427 -0.582	\$2871
B -6.335919 1.525739 -0.721392 C 4.443633 -1.568468 -1.287597 C 3.262796 3.735571 -1.72	.7416
Н -6.104511 2.675902 -0.886225 С 3.802590 -2.722852 -0.822737 Н 3.896426 4.514294 -2.14	1203
В -7.699537 0.641722 -1.424426 Н 4.021561 -3.105076 0.167392 С 1.893270 3.682448 -2.074	6738
Н -8.483788 1.212875 -2.113701 С 2.898083 -3.402748 -1.629992 Н 1.481267 4.390006 -2.784	9217
С -4.443635 -1.568720 1.287300 Н 2.415120 -4.299251 -1.254011 С 1.090593 2.761461 -1.47	1014
C -3.802160 -2.722706 0.822055 C 2.624034 -2.944597 -2.915728 H 0.028295 2.738036 -1.68	37295
Н -4.020768 -3.104512 -0.168315 Н 1.929363 -3.486403 -3.550692 С 1.604998 1.835561 -0.512	2010
C -2.897680 -3.402744 1.629223 C 3.256282 -1.796857 -3.386889 C 0.727547 0.975421 0.16	9178
Н -2.414371 -4.298934 1.252941 Н 3.055918 -1.433931 -4.390313 С 1.208290 0.195914 1.232	2326
C -2.624104 -2.945142 2.915256 C 4.160433 -1.113664 -2.580419 C 0.294708 -0.551829 2.03'	7144
Н -1.929466 -3.487078 3.550146 Н 4.659481 -0.233921 -2.969632 Н -0.753436 -0.559080 1.75	7500
C -3.256788 -1.797800 3.386802 C -3.544675 0.833175 -0.674243 C 0.708633 -1.210092 3.15	7230
Н -3.056793 -1.435309 4.390457 С -3.021712 1.804411 0.234083 Н -0.003276 -1.754227 3.76	59033
C -4.160906 -1.114464 2.580419 C -3.800638 2.830613 0.854519 C 2.068260 -1.133134 3.53'	9957
Н -4.660308 -0.235048 2.969920 Н -4.836892 2.950296 0.583457 Н 2.392948 -1.579985 4.47	4866
C 5.488544 -0.892731 -0.452274 C -3.262796 3.735231 1.728144 C 2.982016 -0.484736 2.75	5766
С 5.012826 0.453126 0.659486 Н -3.896431 4.513859 2.142098 Н 3.995270 -0.412996 3.11	, , , , 00
B 5.467637 -1.126976 1.228454 C -1.893263 3.682060 2.077432 C 2.619815 0.167462 1.53	7108

Table S5 Cartesian coordinates of the ground state (S₀) fully optimised geometry of 9biAT in THF from TD-PBE0 calculations (in Å).

						-	-				
Atom	Х	Y	Ζ	Н	4.512946	-0.786315	2.202915	Н	-1.805589	5.306984	0.268001
С	-5.408965	-0.689303	0.798420	В	6.734880	-1.532678	1.051226	С	-1.285817	3.249011	-0.038072
С	-5.001852	-0.039798	-0.791542	Н	6.816078	-2.621157	1.528979	Н	-0.235771	3.390012	0.190128
В	-5.962783	0.857909	0.338347	В	7.014981	-1.151092	-0.662698	С	-1.719680	1.956556	-0.405779
Н	-5.496484	1.792721	0.879783	Н	7.310780	-1.947543	-1.498055	С	-0.756495	0.929300	-0.553179
В	-7.010127	-0.262742	1.206889	В	5.732817	0.118215	-0.956610	С	-1.170685	-0.303513	-1.109845
Н	-7.212597	-0.036825	2.352799	Н	5.202477	0.150458	-2.017542	С	-0.199787	-1.284498	-1.409845
В	-6.615775	-1.886426	0.646673	В	6.266450	1.677038	-0.162003	Н	0.826012	-1.104537	-1.110026
Н	-6.539875	-2.798840	1.399593	Н	6.185839	2.765782	-0.635639	С	-0.531476	-2.436164	-2.101073
В	-5.335539	-1.726203	-0.553718	В	7.476403	0.545360	-0.766973	Н	0.235154	-3.167185	-2.332139
Н	-4.456826	-2.506278	-0.604360	Н	8.177901	0.912587	-1.660036	С	-1.848578	-2.617983	-2.527519
В	-5.973695	-0.834170	-1.953020	В	8.072965	-0.462047	0.585526	Η	-2.113068	-3.476350	-3.135616
Н	-5.518285	-0.995458	-3.034553	Н	9.205718	-0.823923	0.690121	С	-2.835649	-1.710192	-2.180222
В	-6.995744	-1.988010	-1.077090	В	7.027077	-0.066407	1.981872	Н	-3.828793	-1.873771	-2.567315
Н	-7.299681	-3.021189	-1.579156	Н	7.397572	-0.149224	3.113459	С	-2.556362	-0.551295	-1.414646
В	-8.051985	-1.061002	0.014710	В	5.984816	1.293461	1.562770	С	3.498783	1.335281	0.238626
Н	-9.141482	-1.429644	0.315288	Н	5.691732	2.092375	2.394602	С	2.948264	1.719447	-1.046579
В	-7.639961	0.661030	-0.162832	В	7.624011	1.203290	0.882649	С	3.737739	2.244407	-2.099121
Н	-8.411996	1.549803	-0.001664	Н	8.430123	2.026178	1.197604	Н	4.788586	2.421497	-1.925912
В	-6.370554	0.790298	-1.392467	С	4.532401	-2.290677	-0.403807	С	3.212032	2.572459	-3.329063
Н	-6.185855	1.721948	-2.099829	С	3.863594	-3.057694	0.561989	Н	3.859562	2.984561	-4.096924
В	-7.652633	-0.413410	-1.581932	Н	4.054766	-2.872407	1.613915	С	1.842670	2.382860	-3.585057
Н	-8.441492	-0.300430	-2.464064	С	2.972131	-4.057471	0.189685	Η	1.425656	2.629902	-4.556904
С	-4.353475	-0.800383	1.858534	Н	2.472566	-4.642405	0.956808	С	1.029419	1.908417	-2.587120
С	-3.605234	-1.975656	1.994429	С	2.727342	-4.316640	-1.157740	Н	-0.033422	1.796170	-2.776818
Н	-3.749676	-2.798966	1.304828	Н	2.041693	-5.107852	-1.448135	С	1.539130	1.590684	-1.296005
С	-2.687297	-2.110820	3.029280	С	3.382666	-3.560481	-2.128335	С	0.675137	1.175752	-0.255797
Н	-2.118432	-3.030397	3.122048	Н	3.208636	-3.756933	-3.182719	С	1.153404	1.060160	1.068537
С	-2.509387	-1.080117	3.947655	С	4.272552	-2.558423	-1.755965	С	0.259421	0.822202	2.150738
Н	-1.801482	-1.194009	4.762799	Н	4.784078	-1.982676	-2.520402	Η	-0.797010	0.680946	1.943734
С	-3.252700	0.090665	3.822656	С	-3.553498	0.387317	-0.994478	С	0.698548	0.795905	3.450047
Н	-3.129527	0.896705	4.539162	С	-3.113323	1.714173	-0.672628	Н	-0.007583	0.635508	4.259036
С	-4.169792	0.231130	2.786630	С	-3.961106	2.848584	-0.669861	С	2.061892	1.001883	3.725814
Н	-4.757480	1.139269	2.718498	Н	-4.988335	2.756190	-0.982820	Н	2.415230	1.020749	4.752251
С	5.516395	-1.256235	-0.008869	С	-3.496692	4.114810	-0.354478	С	2.956107	1.181916	2.694188
С	4.887160	0.993964	0.388999	Н	-4.185267	4.951991	-0.393155	Н	3.994960	1.348061	2.936871
В	5.341165	-0.414917	1.438752	С	-2.161342	4.318599	-0.000661	 С	2.559756	1.191271	1.334425

Table S6 Cartesian coordinates of the first excited state (S₁) fully optimised geometry of **9biAT** in THF from TD-PBE0 calculations (in Å)

Fig. S8 Atomic tag for 9biAT in S_1 -optimized geometry.

Tag	Atom	Charge	22	Н	0.00471	45	Н	0.02491	68	С	0.05680	91	С	-0.14812
1	С	-0.31643	23	С	0.13372	46	В	0.05194	69	С	-0.16340	92	Н	0.16039
2	С	-0.30391	24	С	-0.11663	47	Н	-0.00542	70	Н	0.16103	93	С	-0.13192
3	В	0.01109	25	Н	0.15892	48	В	-0.10138	71	С	-0.14029	94	Н	0.15439
4	Н	0.06631	26	С	-0.14694	49	Н	-0.00302	72	Н	0.14770	95	С	-0.14102
5	В	0.02216	27	Н	0.14922	50	В	0.05166	73	С	-0.14081	96	Н	0.15071
6	Н	0.03085	28	С	-0.11788	51	Н	-0.00581	74	Н	0.14706	97	С	-0.12884
7	В	0.02367	29	Н	0.14428	52	В	0.00696	75	С	-0.14699	98	Н	0.15666
8	Н	0.03068	30	С	-0.15467	53	Н	0.02439	76	Н	0.14989	99	С	0.08510
9	В	0.01144	31	Н	0.14821	54	В	-0.07578	77	С	0.07350	100	С	-0.14458
10	Н	0.06627	32	С	-0.11929	55	Н	-0.00371	78	С	-0.11675	101	С	0.08328
11	В	0.00740	33	Н	0.15963	56	С	0.12724	79	С	0.07747	102	С	-0.13005
12	Н	0.03408	34	С	-0.28530	57	С	-0.12778	80	С	-0.14846	103	Н	0.15951
13	В	-0.00347	35	С	-0.26748	58	Н	0.15425	81	Н	0.15582	104	С	-0.13922
14	Н	0.00307	36	В	-0.05796	59	С	-0.14676	82	С	-0.13668	105	Н	0.13796
15	В	-0.09407	37	Н	0.03502	60	Н	0.14435	83	Н	0.13848	106	С	-0.13252
16	Н	0.00557	38	В	0.03053	61	С	-0.12242	84	С	-0.13919	107	Н	0.15315
17	В	-0.00315	39	Н	0.02233	62	Н	0.14317	85	Н	0.14634	108	С	-0.14847
18	Н	0.00318	40	В	0.02946	63	С	-0.14985	86	С	-0.16757	109	Н	0.16028
19	В	0.00592	41	Н	0.02265	64	Н	0.14503	87	Н	0.16261	110	С	0.04060
20	Н	0.03523	42	В	-0.05903	65	С	-0.12846	88	С	0.05296			
21	В	-0.08043	43	Н	0.03657	66	Н	0.15545	89	С	0.06393			
			44	В	0.00665	67	С	0.05506	90	С	0.04302			

Table S7 Calculated atomic charge for 9biAT in S_1 -optimized geometry in cyclohexane.

Tag	Atom	Charge	22	2	Н	-0.00047	45	Н	0.02907	68	С	0.05696	91	С	-0.15316	
1	С	-0.31477	23	3	С	0.13156	46	В	0.04650	69	С	-0.16810	92	Н	0.16210	
2	С	-0.30367	24	4	С	-0.12317	47	Н	-0.01011	70	Н	0.16385	93	С	-0.13403	
3	В	0.01011	2:	5	Н	0.16369	48	В	-0.10619	71	С	-0.14359	94	Н	0.16272	
4	Н	0.07235	20	6	С	-0.15248	49	Н	-0.00999	72	Н	0.15532	95	С	-0.14489	
5	В	0.01991	2	7	Н	0.15738	50	В	0.04611	73	С	-0.14522	96	Н	0.15963	
6	Н	0.03246	23	8	С	-0.12256	51	Н	-0.01026	74	Н	0.15500	97	С	-0.13303	
7	В	0.02138	29	9	Н	0.15446	52	В	0.00379	75	С	-0.15186	98	Н	0.16135	
8	Н	0.03213	30	0	С	-0.15777	53	Н	0.02881	76	Н	0.15412	99	С	0.08633	
9	В	0.01008	3	1	Н	0.15710	54	В	-0.08017	77	С	0.07483	100	С	-0.14159	
10	Н	0.07265	32	2	С	-0.12494	55	Н	-0.01052	78	С	-0.11537	101	С	0.08474	
11	В	0.00443	33	3	Н	0.16426	56	С	0.12473	79	С	0.07766	102	С	-0.13301	
12	Н	0.03881	34	4	С	-0.28342	57	С	-0.13402	80	С	-0.15311	103	Н	0.16068	
13	В	-0.00766	3:	5	С	-0.26726	58	Н	0.15817	81	Н	0.15642	104	С	-0.14292	
14	Н	0.00042	30	6	В	-0.05834	59	С	-0.15221	82	С	-0.14101	105	Н	0.15013	
15	В	-0.09776	3	7	Н	0.03906	60	Н	0.15338	83	Н	0.14690	106	С	-0.13440	
16	Н	0.00014	3	8	В	0.02817	61	С	-0.12610	84	С	-0.14239	107	Н	0.16232	
17	В	-0.00727	39	9	Н	0.02203	62	Н	0.15369	85	Н	0.15482	108	С	-0.15353	
18	Н	0.00044	40	0	В	0.02706	63	С	-0.15343	86	С	-0.17195	109	Н	0.16201	
19	В	0.00315	4	1	Н	0.02238	64	Н	0.15388	87	Н	0.16568	110	С	0.04089	
20	Н	0.03970	42	2	В	-0.05905	65	С	-0.13437	88	С	0.05303	 			•
21	В	-0.08408	43	3	Н	0.04003	66	Н	0.15886	89	С	0.06389				
			44	4	В	0.00356	67	С	0.05435	90	С	0.04354				

Table S8 Calculated atomic charge for 9biAT in S_1 -optimized geometry in tetrahydrofuran.

Tag	Atom	Charge	22	2	Н	-0.00087	45	Н	0.02935	68	С	0.05695	91	С	-0.15337	
1	С	-0.31459	2	3	С	0.13111	46	В	0.04596	69	С	-0.16764	92	Н	0.16220	
2	С	-0.30351	24	4	С	-0.12295	47	Н	-0.01047	70	Н	0.16371	93	С	-0.13427	
3	В	0.01031	2	5	Н	0.16404	48	В	-0.10649	71	С	-0.14401	94	Н	0.16333	
4	Н	0.07303	2	6	С	-0.15294	49	Н	-0.01062	72	Н	0.15589	95	С	-0.14513	
5	В	0.01929	2	7	Н	0.15788	50	В	0.04563	73	С	-0.14554	96	Н	0.16029	
6	Н	0.03272	2	8	С	-0.12228	51	Н	-0.01061	74	Н	0.15559	97	С	-0.13343	
7	В	0.02158	2	9	Н	0.15526	52	В	0.00365	75	С	-0.15227	98	Н	0.16170	
8	Н	0.03208	3	0	С	-0.15850	53	Н	0.02902	76	Н	0.15446	99	С	0.08516	
9	В	0.01033	3	1	Н	0.15773	54	В	-0.08058	77	С	0.07455	100	С	-0.13880	
10	Н	0.07303	32	2	С	-0.12593	55	Н	-0.01113	78	С	-0.11415	101	С	0.08413	
11	В	0.00437	3	3	Н	0.16472	56	С	0.12434	79	С	0.07713	102	С	-0.13304	
12	Н	0.03897	3-	4	С	-0.28336	57	С	-0.13443	80	С	-0.15341	103	Н	0.16061	
13	В	-0.00803	3	5	С	-0.26703	58	Н	0.15851	81	Н	0.15648	104	С	-0.14360	
14	Н	0.00032	3	6	В	-0.05836	59	С	-0.15282	82	С	-0.14166	105	Н	0.15174	
15	В	-0.09790	3	7	Н	0.03939	60	Н	0.15399	83	Н	0.14790	106	С	-0.13443	
16	Н	-0.00030	3	8	В	0.02785	61	С	-0.12565	84	С	-0.14232	107	Н	0.16302	
17	В	-0.00786	3	9	Н	0.02196	62	Н	0.15446	85	Н	0.15557	108	С	-0.15389	
18	Н	0.00027	4	0	В	0.02703	63	С	-0.15418	86	С	-0.17263	109	Н	0.16219	
19	В	0.00274	4	1	Н	0.02221	64	Н	0.15451	87	Н	0.16622	110	С	0.04055	
20	Н	0.04014	42	2	В	-0.05905	65	С	-0.13498	88	С	0.05257	 			•
21	В	-0.08460	4	3	Н	0.04017	66	Н	0.15914	89	С	0.06361				
			4	4	В	0.00328	67	С	0.05397	90	С	0.04374				

Table S9 Calculated atomic charge for 9biAT in S_1 -optimized geometry in dichloromethane.

Tag	Atom	Charge	2	22	Н	-0.00192	45	Н	0.03061	68	С	0.05698	91	С	-0.15471	
1	С	-0.31409	2	23	С	0.13060	46	В	0.04445	69	С	-0.16958	92	Н	0.16274	
2	С	-0.30356	2	24	С	-0.12565	47	Н	-0.01121	70	Н	0.16491	93	С	-0.13462	
3	В	0.00978	2	25	Н	0.16543	48	В	-0.10816	71	С	-0.14451	94	Н	0.16522	
4	Н	0.07443	2	26	С	-0.15454	49	Н	-0.01201	72	Н	0.15764	95	С	-0.14601	
5	В	0.01900	2	27	Н	0.15995	50	В	0.04403	73	С	-0.14649	96	Н	0.16235	
6	Н	0.03303	2	28	С	-0.12413	51	Н	-0.01123	74	Н	0.15743	97	С	-0.13453	
7	В	0.02052	2	29	Н	0.15799	52	В	0.00269	75	С	-0.15350	98	Н	0.16281	
8	Н	0.03266	3	30	С	-0.15866	53	Н	0.03047	76	Н	0.15560	99	С	0.08670	
9	В	0.00965	3	31	Н	0.16008	54	В	-0.08198	77	С	0.07520	100	С	-0.14051	
10	Н	0.07480	3	32	С	-0.12700	55	Н	-0.01240	78	С	-0.11499	101	С	0.08529	
11	В	0.00345	3	33	Н	0.16590	56	С	0.12370	79	С	0.07740	102	С	-0.13411	
12	Н	0.04047	3	34	С	-0.28267	57	С	-0.13628	80	С	-0.15494	103	Н	0.16069	
13	В	-0.00919	3	35	С	-0.26724	58	Н	0.15958	81	Н	0.15634	104	С	-0.14401	
14	Н	-0.00005	3	36	В	-0.05854	59	С	-0.15410	82	С	-0.14235	105	Н	0.15454	
15	В	-0.09923	3	37	Н	0.04048	60	Н	0.15629	83	Н	0.14999	106	С	-0.13482	
16	Н	-0.00144	3	38	В	0.02721	61	С	-0.12731	84	С	-0.14324	107	Н	0.16518	
17	В	-0.00876	3	39	Н	0.02198	62	Н	0.15728	85	Н	0.15755	108	С	-0.15511	
18	Н	-0.00010	4	40	В	0.02609	63	С	-0.15464	86	С	-0.17335	109	Н	0.16269	
19	В	0.00223	4	41	Н	0.02233	64	Н	0.15678	87	Н	0.16689	110	С	0.04094	
20	Н	0.04122	4	42	В	-0.05908	65	С	-0.13653	88	С	0.05292	 			-
21	В	-0.08552	4	43	Н	0.04111	66	Н	0.16002	89	С	0.06405				
			4	14	в	0.00249	67	С	0.05407	90	С	0.04368				

Table S10 Calculated atomic charge for 9biAT in S_1 -optimized geometry in acetone.