Supporting Information

Strontium ferrite modified separator for adsorption and catalytic

conversion of polysulfides for excellent lithium-sulfur batteries

Zhuoying Su¹, Wenjuan Qiu¹, Yuming He¹, Ying Zeng¹, Dongming Xie¹, Xin Xiao¹,

Junmin Nan^{1,} *, Xiaoxi Zuo^{1,} *

1. School of Chemistry, South China Normal University, Guangzhou 510006, P.

R. China

Corresponding author:

E-mail addresses: zuoxiaoxi75@163.com (X. Zuo), jmnan@scnu.edu.cn (J. Nan).

Figure S1. The charge-discharge curves of the cells were assembled with (a) PP, (b) AB@PP and (c) FSO/AB@PP separators at 0.5 C. (d) The capacity decay and capacity retention of the upper discharge platforms (Q_H and R_{QH} , respectively) and (e) the lower discharge platforms (Q_L and R_{QL} , respectively) with different separators.

In Figure S1d, the cell using PP separator shows a low Q_H value (265 mAh g⁻¹) with a retention rate (R_{QH}) of 44.7% after 300 cycles, which means the severe capacity fading. Although the cell using the AB@PP separator has a higher Q_H value of 342 mAh g⁻¹, it retains only 60.3% capacity after 300 cycles. On the contrary, the cell with FSO/AB@PP separator displays the Q_H of 384 mA h g⁻¹ and 67.3% retention after 300 cycles. These results clearly indicate that the FSO/AB@PP separator effectively suppresses the shuttle behavior of LiPSs, which is more pronounced in the low platform region. From Figure S1e, the R_{OL} value of AB@PP separator reaches up

to 90.7% at 50 cycles, but the capacity loss of the cell is serious as the cycle progresses, and the R_{QL} value after 300 cycles is even lower than that of PP separator. On the contrary, FSO/AB@PP separator maintains the highest R_{QL} of 70.4% after 300 cycles. Compared with the rapid capacity decay of PP and AB@PP separators, there is no significant capacity loss of FSO/AB@PP separator, elucidating that the FSO/AB@PP separator not only successfully restrains the diffusion of LiPSs, but also guarantees the high activity and adequate reaction in terms of insoluble Li₂S/Li₂S₂.

Figure S2.CV curves of the cells with (a) PP, (b) AB@PP and (c) FSO/AB@PP separators.

Figure S3. Tafel plots of the cells with different separators.

Figure S4. Optimized geometries of AB with (a) Li_2S_4 , (b) Li_2S_6 , and (c) Li_2S_8 .

Sample	Before cycling			А	After 50 cycles		
	$R_s(\Omega)$	$R_{surf}(\Omega)$	$R_{ct}(\Omega)$	$R_s(\Omega)$	$R_{surf}(\Omega)$	$R_{ct}(\Omega)$	
РР	1.516	3.148	33.30	2.836	15.96	15.65	
AB@PP	1.864	3.206	29.51	2.350	3.590	4.830	
FSO/AB@PP	1.919	0.952	9.496	2.214	2.547	2.769	

Table S1. List of R_s , R_{ct} and R_{surf} of cells with different separators before and after cycling.

Table S2. Li^+ diffusion coefficient values of the cells with different separators.

Correcto	Li ⁺ diffusion coefficient (D_{Li^+}) (cm ² s ⁻¹)					
Sample	A (cathodic peak)	B (cathodic peak)	C (anodic peak)			
РР	1.54×10 ⁻⁸	7.26×10 ⁻⁹	5.64×10 ⁻⁹			
AB@PP	5.29×10 ⁻⁸	1.08×10 ⁻⁸	1.65×10 ⁻⁸			
FSO/AB@PP	3.13×10-7	2.51×10-7	6.59×10 ⁻⁸			