Supplementary Material

Hierarchical Subcomponent Self-Assembly of
Covalent Triple-stranded Complex with 3d-4f
Vertices: Luminescence and Magnetic Property
Zhi Liu, ${ }^{\text {a,b }}$ Fan Yin, ${ }^{\text {a,b }}$ Jian Yang, ${ }^{\text {b }}$ Xiao-Qing Guo, ${ }^{\text {b }}$ Li-Peng Zhou, ${ }^{\text {b }}$ Chong-Bin Tian*a,b and Qing-Fu-Sun*a,b
a. College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
b. Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.

* Correspondence to: tianchongbin@fjirsm.ac.cn; qfsun@fjirsm.ac.cn
Table of contents

1. General 2
2. Synthesis Procedures of ligands $1-\mathrm{Ln}(\mathrm{Ln}=\mathrm{Sm}, \mathrm{Eu}, \mathrm{Yb}, \mathrm{Lu})$ 3
3. Self-assembly and characterization of $\mathbf{3 a - 3 c}-(\mathbf{L n}, \mathbf{Z n})$ and $\mathbf{3}^{\mathbf{a}}$-($\left.\mathbf{D y}, \mathbf{C o}\right)$ assemblies.4. UV-Vis and FL spectrum24
4. Magnetic Data 32
5. Single crystal X-ray diffraction studies 33
6. Continuous shape measurements analysis 42
7. Reference 44

1. General

All chemicals and solvents were purchased from commercial companies and used without further purification. Anhydrous solvents wre distilled according to standard procedures. Deuterated solvents were purchased from Admas and Sigma-Aldrich, 1D and 2D-NMR spectra were measured on a Bruker Biospin Avanced III (400 MHz) spectrometer. 1H-NMR chemical shifts were determined with respect to residual signals of the deuterated solvents used. ESI-MS spectra of $\mathbf{3 a - 3 c} \mathbf{-}(\mathbf{G d}, \mathbf{Z n})$ were recorded on LC-QTOF-MS (G6520B), while ESI-TOF-MS spectra of other compounds were recorded on an Impact II UHRTOF mass spectrometry from Bruker, with tuning mix as the internal standard. Data analysis was conducted with the Bruker Data Analysis software (Version 4.3) and simulations were performed with the Bruker Isotope Pattern software and Thermo Xcalibur Qual Browser software (Thermo Foundation 2.0). UV-vis spectra are recorded on UV-2700 UV-vis spectrophotometer from SHIMADZU. Excitation and emission spectra were recorded on the FS5 spectrofluorometer from Edinburg Photonics. Power X-Ray diffraction (P-XRD) data were collected using Miniflex600 $(\mathrm{Cu}-\mathrm{K} \alpha$ radiation: $\lambda=1.54056 \AA)$ in the range of $5^{\circ}<2 \theta<40^{\circ}$. Unless otherwise specified, all experiments have been carried out at room temperature (298 K). Thermogravimetric analyses were performed using a GA/NETZSCH STA449C instrument heated from 30-1200 ${ }^{\circ} \mathrm{C}$ (heating rate of $10^{\circ} \mathrm{C}$ $\min ^{-1}$, nitrogen stream). Elemental analyses of C, H, and N were measured using a Vario EL III elemental analyzer. Magnetic data were collected with a Quantum Design MPMS XL superconducting quantum interference device (SOUID) magnetometer. Diamagnetic corrections were made using Pascal's constants. The empirical molecular formula for $\mathbf{3 a} \mathbf{'}^{\prime}(\mathbf{D y}, \mathbf{C o})$ was determined according to the results of element analyses and TGA data.

2. Synthesis Procedures of ligands $1-\mathrm{Ln}(\mathrm{Ln}=\mathrm{Sm}, \mathrm{Eu}, \mathrm{Yb}, \mathrm{Lu})$

Scheme S1. The synthetic route of 1-Ln
The compounds of 2,6-Diformyl-p-cresol (DFMP), 1-Dy, 1-Yb and 1-Lu were synthesized following the literature procedure ${ }^{1,2}$.

Synthesis of ligands 1-Eu.

The synthetic progress of $\mathbf{1 - E u}$ is the same as that of $\mathbf{1 - S m}$ except that $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(326 \mathrm{mg}, 0.73 \mathrm{mmol})$ was used. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $7.87(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}),-1.60 \sim-2.04(\mathrm{~m}, 2 \mathrm{H}),-2.53 \sim-$ $3.08(\mathrm{~m}, 2 \mathrm{H}),-16.63(\mathrm{~s}, 1 \mathrm{H})$. ESI-MS: calcd. for $[\mathbf{M}+\mathbf{N a}]^{+}: 757.1508$, found 757.1496 .

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-Sm (400 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$).

Figure S2. ESI-TOF-MS spectrum of 1-Sm with insets showing the observed and simulated isotopic patterns of the +1 peak.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 - E u}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 298 \mathrm{~K}\right)$.

Figure S4. ESI-TOF-MS spectrum of 1-Eu with insets showing the observed and simulated isotopic patterns of the +1 peak.

3. Self-assembly and characterization of 3a-3b-(Ln, Zn) and 3a'-(Dy,

Co) assemblies.

The synthesis procedure of $\mathbf{3 a -}(\mathbf{S m}, \mathbf{Z n})$ is in the text.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a - (S m , ~ Z n)}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a} \mathbf{-}(\mathbf{S m}, \mathbf{Z n})\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S7. ESI-TOF-MS spectrum of $\mathbf{3 a -}(\mathbf{S m}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.
$\mathbf{3 a}-(\mathbf{E u}, \mathbf{Z n})$: The synthetic progress of $\mathbf{3 a}-(\mathbf{E u}, \mathbf{Z n})$ is similar with the procedure of 3a-(Sm, Zn). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H})$, $1.90(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.36(\mathrm{~m}, 1 \mathrm{H}),-0.02 \sim-0.25(\mathrm{~m}, 1 \mathrm{H}),-3.33 \sim-5.48(\mathrm{~m}, 2 \mathrm{H}),-10.37$ $(\mathrm{s}, 1 \mathrm{H}),-21.62(\mathrm{~s}, 1 \mathrm{H})$. ESI-TOF-MS for 3a-(Eu, $\mathbf{Z n}$): the following picked signals are those at the highest intensities. m / z calcd. for $\left.[\mathbf{3 a - (E u}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{2+} 984.1116$, found 984.1092; calcd. for $\left.[\mathbf{3 a - (E u , ~} \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{3+} 606.4236$, found 606.4230.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a - (E u , ~ Z n)}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S9. ESI-TOF-MS spectrum of $\mathbf{3 a}-(\mathbf{E u}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.
$\mathbf{3 a}-(\mathbf{Y b}, \mathbf{Z n})$: The synthetic progress of $\mathbf{3 a -}(\mathbf{Y b}, \mathbf{Z n})$ is similar with the procedure of $\mathbf{3 a - (S m}, \mathbf{Z n})$. ESI-TOF-MS for $\mathbf{3 a -}(\mathbf{Y b}, \mathbf{Z n})$: the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 a -}(\mathbf{Y b}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{\mathbf{2 +}}$ 1005.1296, found 1005.1275; calcd. for $\left[\mathbf{3}^{\mathbf{a}}-(\mathbf{Y b}, \mathbf{Z n})(\mathbf{O T f}) \mathbf{1}^{\mathbf{3 +}} \mathbf{6 2 0 . 4 3 5 6}\right.$, found 620.4342 .

Figure S10. ESI-TOF-MS spectrum of $\mathbf{3 a} \mathbf{a}(\mathbf{Y b}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.
$\mathbf{3 a - (L u}, \mathbf{Z n})$: The synthetic progress of $\mathbf{3 a - (\mathbf { L u } , \mathbf { Z n }) \text { is similar with the procedure of }}$ 3a-(Sm, Zn). 1H NMR (400 MHz, CD ${ }_{3} \mathrm{CN}$) $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{td}, 1 \mathrm{H}), 3.77 \sim 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H})$, $3.36 \sim 3.26(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{td}, \mathrm{J}=9.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$. ESI-TOF-MS for 3a$(\mathbf{L u}, \mathbf{Z n})$: the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 a -}(\mathbf{L u}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{+2} \mathbf{1 0 0 7 . 1 3 0 4}$, found 1007.1304 ; calcd. for $[\mathbf{3 a -}(\mathbf{L u}$, $\left.\mathbf{Z n})(\mathbf{O T f})_{1}\right]^{\mathbf{3 +}} 621.7703$, found 621.7695 .

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a - (L u , ~ Z n)}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S12. ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of $\mathbf{3 a - (L u , ~ Z n)}$ ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$).

Figure S13. ESI-TOF-MS spectrum of $\mathbf{3 a} \mathbf{a}(\mathbf{L u}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +3 peak.
$\mathbf{3 a}-(\mathbf{G d}, \mathbf{Z n})$: The synthetic progress of $\mathbf{3 a - (G d}, \mathbf{Z n})$ is similar with the procedure of $\mathbf{3 a -}(\mathbf{S m}, \mathbf{Z n})$. ESI-TOF-MS for $\mathbf{3 a}-(\mathbf{G d}, \mathbf{Z n})$: the following picked signals are those at the highest intensities. m / z calcd. for $\left.[\mathbf{3 a - (G d}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{\mathbf{2 +}} 989.11$, found 989.11;
calcd. for $\left[\mathbf{3}^{\mathbf{a}}-(\mathbf{G d}, \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{3+} 609.76$, found 609.76 .

Figure S14. ESI-TOF-MS spectrum of $\mathbf{3 a} \mathbf{a}(\mathbf{G d}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.

3a'-(Dy, Co): The synthetic progress of $\mathbf{3 a}{ }^{\prime}-(\mathbf{D y}, \mathbf{C o})$ is the same as that of Synthesis of $\mathbf{3 a -}(\mathbf{S m}, \mathbf{Z n})$ except that $\mathbf{1 - D y}$ and $\mathrm{Co}(\mathrm{OTf})_{2}$ were used. ESI-TOF-MS: calcd. for
 609.0992, found 609.0986. Anal. calcd. for $\mathrm{C}_{82} \mathrm{H}_{89} \mathrm{~N}_{17} \mathrm{O}_{19} \mathrm{~S}_{4} \mathrm{~F}_{12} \mathrm{Dy}_{2} \mathrm{Co}_{2}$ (2415.24): C 40.74; H 3.71; N 9.86; found: C 40.70; H 3.833; N 9.83.

Figure S15. ESI-TOF-MS spectrum of 3a'-(Dy, Co) with insets showing the observed and simulated isotopic patterns of the +2 peak.

Figure S16. PXRD data of 3a'-(Dy, Co).

Figure S17. TG profiles for complex 3a'-(Dy, Co).
The self-assembly reactions of $\mathbf{3 b} \mathbf{- 3 c}-(\mathbf{L n}, \mathbf{Z n})$ were proceeded in similar procedures as $\mathbf{3 a - (\mathbf { L n } , \mathbf { Z n }) \text { . }}$

3b-(Sm, Zn): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.33$ (s, 1H), $7.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69 \sim 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~s}$, $1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 177.17,170.27,165.09,152.14,144.20,143.69,141.38,131.44$, 130.34, 127.07, $125.18,123.94,123.02,121.23,65.33,64.65,40.11$, 19.73. ESI-TOFMS for $\mathbf{3 b}$-($\mathbf{S m}, \mathbf{Z n}$): the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 b}-(\mathbf{S m}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{\mathbf{2 +}} 1190.1810$, found 1190.1812; calcd. for [3b$\left.\mathbf{(S m}, \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{\mathbf{3 +}} 743.8032$, found 743.8033 ; calcd. for $[\mathbf{3 b}-(\mathbf{S m}, \mathbf{Z n})]^{\mathbf{4 +}} 520.6143$, found 520.6147 .

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b} \mathbf{- (S m , ~ Z n) ~}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}-(\mathbf{S m}, \mathbf{Z n})\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S20. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of 3b-(Sm, Zn) $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} .298\right.$ K).

Figure S21. ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of 3b-(Sm, Zn) $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S22. ESI-TOF-MS spectrum of 3b-(Sm, Zn) with insets showing the observed and simulated isotopic patterns of the +2 peak.
$\mathbf{3 b - (E u}, \mathbf{Z n}):$ ESI-TOF-MS for $\mathbf{3 b}-(\mathbf{E u}, \mathbf{Z n})$: the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 b} \mathbf{-}(\mathbf{E u}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{\mathbf{2 +}}$ 1191.1828, found 1191.1833; calcd. for [3b-(Eu, Zn)(OTf) $\mathbf{1}^{\mathbf{3 +}} \mathbf{7 4 4 . 4 7 1 0 , ~ f o u n d ~ 7 4 4 . 4 7 1 4 . ~}$

Figure S23. ESI-TOF-MS spectrum of $\mathbf{3 b} \mathbf{-}(\mathbf{E u}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.

3b-(Yb, Zn): ESI-TOF-MS for 3b-(Yb, Zn): the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 b}-(\mathbf{Y b}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{2+} 1212.2005$, found 1212.1999; calcd. for $\left[\mathbf{3 b} \mathbf{-}(\mathbf{Y b}, \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{\mathbf{3 +}} 758.4829$, found 758.4825 .

Figure S24. ESI-TOF-MS spectrum of $\mathbf{3 b} \mathbf{-}(\mathbf{Y b}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.
$\mathbf{3 b - (L u}, \mathbf{Z n})$: ESI-TOF-MS for 3b-(Lu, Zn): the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 b} \mathbf{-}(\mathbf{L u}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{\mathbf{2}}$ 1214.2030, found 1214.2024; calcd. for $\left[\mathbf{3 b}-(\mathbf{L u}, \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{\mathbf{3 +}} 759.8178$, found 759.8176 .

Figure S25. ESI-TOF-MS spectrum of $\mathbf{3 b} \mathbf{- (L u}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.
$\mathbf{3 b}-(\mathbf{G d}, \mathbf{Z n})$: ESI-TOF-MS for $\mathbf{3 b} \mathbf{- (G d}, \mathbf{Z n})$: the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 b} \mathbf{-}(\mathbf{G d}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{2+} 1196.19$, found 1191.19; calcd. for [3b-(Gd, $\left.\mathbf{Z n})(\mathbf{O T f})_{1}\right]^{\mathbf{3 +}} 747.81$, found 747.81; calcd. for [3b-(Gd, $\left.\mathbf{Z n})(\mathbf{O T f})_{1}\right]^{4+} 523.62$, found 523.62.

Figure S26. ESI-TOF-MS spectrum of $\mathbf{3 b} \mathbf{-}(\mathbf{G d}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.
3c-(Sm, Zn): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}$, $1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.79(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$. ESI-TOF-MS for $\mathbf{3 c}-(\mathbf{S m}, \mathbf{Z n})$: the following picked signals are those at the highest intensities. m / z calcd. for $[\mathbf{3 c} \mathbf{c}(\mathbf{S m}$,
$\left.\mathbf{Z n})(\mathbf{O T f})_{2}\right]^{\mathbf{2 +}} \mathbf{1 3 2 8 . 2 3 7 3}$, found 1328.2371 ; calcd. for $\left.[\mathbf{3 c} \mathbf{- (S m}, \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{\mathbf{3 +}}$ 835.8407, found 835.8412; calcd. for $[\mathbf{3 c - (S m}, \mathbf{Z n})]^{4+} 589.6425$, found 589.6431 .

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c - (S m , ~ Z n) , ~ (~} 600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$).

Figure S28. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{3 c}-(\mathbf{S m}, \mathbf{Z n})\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298\right.$ K).

Figure S29. ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of $\mathbf{3 c} \mathbf{-}(\mathbf{S m}, \mathbf{Z n})\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S30. ESI-TOF-MS spectrum of $\mathbf{3 c}$-($\mathbf{S m}, \mathbf{Z n}$) with insets showing the observed and simulated isotopic patterns of the +2 peak.
$\mathbf{3 c}-(\mathbf{E u}, \mathbf{Z n})$: ESI-TOF-MS for $\mathbf{3 c - (E u , ~} \mathbf{Z n})$: the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 c -}(\mathbf{E u}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{2+}$ 1329.2393, found
1329.2392; calcd. for $\left.[\mathbf{3 c -} \mathbf{(E u}, \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{3+}$ 836.5087, found 836.5095; calcd. for $[3 \mathbf{c}-(\mathbf{E u}, \mathbf{Z n})]^{4+} 590.1434$, found 590.1440 .

Figure S31. ESI-TOF-MS spectrum of $\mathbf{3 c} \mathbf{c}(\mathbf{E u}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.
$\mathbf{3 c}-(\mathbf{Y b}, \mathbf{Z n})$: ESI-TOF-MS for $\mathbf{3 c}-(\mathbf{Y b}, \mathbf{Z n})$: the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 c -}(\mathbf{Y b}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{2+} 1350.2569$, found 1350.2562 ; calcd. for $\left[\mathbf{3 c}-(\mathbf{Y b}, \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{3+} 850.5204$, found 850.5206 ; calcd. for $[3 \mathbf{c}-(\mathbf{Y b}, \mathbf{Z n})]^{4+} 600.6522$, found 600.6521 .

Figure S32. ESI-TOF-MS spectrum of $\mathbf{3 c} \mathbf{c}(\mathbf{Y b}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.

3c-(Lu, Zn): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$, $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$. ESI-TOF-MS for $\mathbf{3 c}-(\mathbf{L u}$, $\mathbf{Z n}$): the following picked signals are those at the highest intensities. m / z calcd. for $\left[\mathbf{3 c}-(\mathbf{L u}, \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{\mathbf{2 +}} 1352.2595$, found 1352.2591; calcd. for $\left[\mathbf{3 c -}(\mathbf{L u}, \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{3+}$ 851.8555 , found 851.8557 ; calcd. for $[\mathbf{3 c - (L u}, \mathbf{Z n})]^{4+} 601.6535$, found 601.6538 .

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}-(\mathbf{L u}, \mathbf{Z n})\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S34. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{3 c} \mathbf{-}(\mathbf{L u}, \mathbf{Z n})\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S35. ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of $\mathbf{3 c} \mathbf{c}(\mathbf{L u}, \mathbf{Z n})\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$.

Figure S36. ESI-TOF-MS spectrum of $\mathbf{3 c} \mathbf{c}(\mathbf{L u}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +3 peak.
$\mathbf{3 c}-(\mathbf{G d}, \mathbf{Z n})$: ESI-TOF-MS for $\mathbf{3 c -}(\mathbf{G d}, \mathbf{Z n})$: the following picked signals are those at the highest intensities. m / z calcd. for $\left.[\mathbf{3 c - (G d , ~} \mathbf{Z n})(\mathbf{O T f})_{2}\right]^{2+} 1334.74$, found 1334.74; calcd. for $\left[\mathbf{3 c -}(\mathbf{G d}, \mathbf{Z n})(\mathbf{O T f})_{1}\right]^{3+} 839.84$, found 839.84 ; calcd. for $[\mathbf{3 c -}(\mathbf{G d}, \mathbf{Z n})]^{4+}$ 592.65 , found 592.65 .

Figure S37. ESI-TOF-MS spectrum of $\mathbf{3 c} \mathbf{c}(\mathbf{G d}, \mathbf{Z n})$ with insets showing the observed and simulated isotopic patterns of the +2 peak.

4. UV-Vis and FL spectrum

Figure S38. UV-Vis absorption spectra of 1-Sm ($1.0 \times 10^{-5} \mathrm{M}$ in MeCN), $\mathbf{3 a - (S m ,}$ $\mathbf{Z n})\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN$\left.), \mathbf{3 b} \mathbf{- (S m}, \mathbf{Z n}\right)\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN$), \mathbf{3 c}$-($\left.\mathbf{S m}, \mathbf{Z n}\right)(1.0$ $\times 10^{-5} \mathrm{M}$ in MeCN) at 298 K .

Figure S39. Excitation (blue line) and emission (red line, for the visible region only) of $\mathbf{3 a}-(\mathbf{S m}, \mathbf{Z n}) .\left(1.0 \times 10^{-5} \mathrm{M} ; \lambda_{\mathrm{ex}}=386 \mathrm{~nm}, \lambda_{\mathrm{em}}=645 \mathrm{~nm}\right.$, slits $\left.=3-4\right)$.

Figure S40. Excited state decay curve (black dots) with mono exponential fit (red line) of $\mathbf{3 a - (S m}, \mathbf{Z n}) .\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in $\mathrm{MeCN} ; \lambda_{\mathrm{ex}}=386 \mathrm{~nm}, \lambda_{\mathrm{em}}=645 \mathrm{~nm}$; lifetime $=14.71$
$\mu \mathrm{s})$.

Figure S41. Luminescent lifetime of organic backbone of $\mathbf{3 a}-(\mathbf{S m}, \mathbf{Z n})$ measured at $456 \mathrm{~nm}\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN ; lifetime $\left.=1.26 \mathrm{~ns}\right)$.

Figure S42. Emission (for the visible region only) of $\mathbf{3 b}-(\mathbf{S m}, \mathbf{Z n}) .\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in
$\mathrm{MeCN} ; \lambda_{\mathrm{ex}}=386 \mathrm{~nm}, \lambda_{\mathrm{em}}=645 \mathrm{~nm}$, slits $\left.=4-4\right)$.

Figure S43. Emission (for the visible region only) of $\mathbf{3 c}$-($\mathbf{S m}, \mathbf{Z n}$). $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{MeCN} ; \lambda_{\mathrm{ex}}=386 \mathrm{~nm}, \lambda_{\mathrm{em}}=645 \mathrm{~nm}\right)$.

Figure S44. UV-Vis absorption spectra of 1-Eu, $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN$\left.), \mathbf{3 a - (E u , ~} \mathbf{Z n}\right)$ $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN$), \mathbf{3 b - (E u , ~ Z n)}\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN$\left.), \mathbf{3 c - (E u , ~} \mathbf{Z n}\right)(1.0 \times$ $10^{-5} \mathrm{M}$ in MeCN) at 298 K .

Figure S45. Excitation (blue line) and emission (red line) of 3a-(Eu, Zn). (1.0 $\times 10^{-5}$ M in $\left.\mathrm{MeCN} ; \lambda_{\mathrm{ex}}=393 \mathrm{~nm}, \lambda_{\mathrm{em}}=612 \mathrm{~nm}\right)$.

Figure S46. Excited state decay curve (black dots) with mono exponential fit (red line) of $\mathbf{3 a -} \mathbf{- (E u}, \mathbf{Z n}) .\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in $\mathrm{MeCN} ; \lambda_{\text {ex }}=393 \mathrm{~nm}, \lambda_{\text {em }}=612 \mathrm{~nm}$; lifetime $=14.71$
$\mu \mathrm{s})$.

Figure S47. Emission spectrum of $\mathbf{3 b}-(\mathbf{E u}, \mathbf{Z n}) .\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN ; $\boldsymbol{\lambda}_{\mathrm{ex}}=393 \mathrm{~nm}$,

$$
\left.\lambda_{\mathrm{em}}=612 \mathrm{~nm}, \text { slits }=2-2\right) .
$$

Figure S48. Emission spectrum of $\mathbf{3 c} \mathbf{c}(\mathbf{E u}, \mathbf{Z n}) .\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN ; $\boldsymbol{\lambda}_{\mathrm{ex}}=393 \mathrm{~nm}$,

$$
\left.\lambda_{\mathrm{em}}=612 \mathrm{~nm}\right)
$$

Figure S49. UV-Vis absorption spectra of 1-Yb $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN$), \mathbf{3 a - (\mathbf { Y b } , \mathbf { Z n })}$ $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN$), \mathbf{3 b}-(\mathbf{Y b}, \mathbf{Z n})\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in MeCN$), \mathbf{3 c - (\mathbf { Y b } , \mathbf { Z n }) (1 . 0 \times}$
$10^{-5} \mathrm{M}$ in MeCN) at 298 K .

Figure S50. Excitation (black line) and emission (red line) spectra of $\mathbf{3 a} \mathbf{a}(\mathbf{Y b}, \mathbf{Z n})$. $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{MeCN} ; \lambda_{\mathrm{ex}}=408 \mathrm{~nm}, \lambda_{\mathrm{em}}=977 \mathrm{~nm}\right)$.

Figure S51. Excited state decay curve (black dots) with mono exponential fit (red line) of 3a-(Yb, Zn). $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in $\mathrm{MeCN} ; \lambda_{\text {ex }}=408 \mathrm{~nm}, \lambda_{\text {em }}=977 \mathrm{~nm}$; lifetime $=10.32$ $\mu \mathrm{s}$).

Figure S52. Emission spectrum of $\mathbf{3 b} \mathbf{-}(\mathbf{Y b}, \mathbf{Z n}) .\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in $\mathrm{MeCN} ; \boldsymbol{\lambda}_{\text {ex }}=408$

$$
\left.\mathrm{nm}, \lambda_{\mathrm{em}}=977 \mathrm{~nm}\right)
$$

Figure S53. Emission spectrum of $\mathbf{3 c}-(\mathbf{Y b}, \mathbf{Z n}) .\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in $\mathrm{MeCN} ; \boldsymbol{\lambda}_{\mathrm{ex}}=408 \mathrm{~nm}$,

$$
\left.\lambda_{\mathrm{em}}=977 \mathrm{~nm}\right) .
$$

Figure S54. Phosphorescence emission of complexes 3a-3c-(Gd, Zn) in MeCN at 77 $\mathrm{K}\left(\boldsymbol{\lambda}_{\mathrm{ex}}=390 \mathrm{~nm}\right.$ for $\left.\mathbf{3 a - 3 b} \mathbf{- (G d}, \mathbf{Z n}\right), \lambda_{\mathrm{ex}}=414 \mathrm{~nm}$ for $\mathbf{3 c} \mathbf{c}(\mathbf{G d}, \mathbf{Z n}), \mathrm{c}=1.0 \times 10^{-4} \mathrm{M}, \mathrm{N}_{2}$, gating $=0.02-10 \mathrm{~ms})$.

5. Magnetic Data

Figure S55. Field-dependent magnetization of $\mathbf{3 a}{ }^{\prime}$-($\mathbf{(D y , C o}$) in the temperature range of 2,3 and 5 K .

Figure S56. Temperature-dependent in-phase (χ^{\prime}) and out-of-phase (χ^{\prime} ') of 3a'-(Dy, $\mathbf{C o}$) at indicated frequencies under zero dc field.

Figure S57. Field dependent χ '" data of $\mathbf{3 a}{ }^{\prime}$-(Dy, Co) in the applied dc field of $0-10000 \mathrm{Oe}$ at 2 K and 1000 Hz .

6. Single crystal X-ray diffraction studies

The X-ray diffraction studies for heterometal-organic macrocycles were carried out on Bruker D8 VENTURE photon II diffractometer with I $\mu \mathrm{s} 3.0$ microfocus X-ray source using APEX III program. Data reduction was performed with the saint and SADABS package. The structures were solved by direct methods using SHELXS-97
and refined by full-matrix least-squares on F^{2} using SHELXL-2016 program. ${ }^{3}$ Solvent molecules were highly disordered and could not be reasonably located. These residual intensities were removed by PLATON/SQUEEZE routine ${ }^{4}$. Crystallographic data and other pertinent information for $\mathbf{3 a -}(\mathbf{L u}, \mathbf{Z n}), \mathbf{3 b}-(\mathbf{L u}, \mathbf{Z n}), \mathbf{3 c}-(\mathbf{L u}, \mathbf{Z n})$ and $\mathbf{3 a}{ }^{\mathbf{\prime}}$-(Dy, Co), were summarized in Table S1 and Table S2. In 3a-(Lu, Zn), some constraints (SIMU, DFIX and SADI) were applied to the free OTf anions to obtain the chemicalreasonable models and reasonable atomic displacement parameters. In $\mathbf{3 b}-(\mathbf{L u}, \mathbf{Z n})$, some constraints (SIMU, DFIX, SADI, ISOR and DELU) were applied to the free OTf anions to obtain the chemical-reasonable models and reasonable atomic displacement parameters. In $\mathbf{3 c}$-(Lu, Zn), some constraints (SIMU, EADP and DELU) were applied to obtain the chemical-reasonable models and reasonable atomic displacement parameters. In 3a'-(Dy, Co), some constraints (SIMU, DFIX and DELU) were applied to obtain the chemical-reasonable models and reasonable atomic displacement parameters. The CCDC numbers: 2256435 for $\mathbf{3 a - (L u , ~ Z n) , ~} 2256436$ for 3b-(Lu, Zn), 2256437 for 3b-(Lu, Zn) and 2256438 for 3a'-(Dy, Co).

Figure S58. The coordination environment of Lu and Zn in $\mathbf{3 a}-(\mathbf{L u}, \mathbf{Z n})$.

Figure S59. The coordination environment of Lu and Zn in $\mathbf{3 b} \mathbf{- (\mathbf { L u } , \mathbf { Z n }) \text { . }}$

Figure S60. The coordination environment of Lu and Zn in $\mathbf{3 c}-(\mathbf{L u}, \mathbf{Z n})$.

Figure S61. The coordination environment of Dy and Co in 3a'-(Dy, Co).

Figure S62. The dihedral angle generated by the plane of three coordinated nitrogen atom closest to panel backbone and one benzene ring plane for $\mathbf{3 c} \mathbf{c}(\mathbf{L u}, \mathbf{Z n})$ (A) and reported Zn_{4} tetrahedron (B).

Table S1. Crystal data and structure refinement for $\mathbf{3 a}-(\mathbf{L u}, \mathbf{Z n})$ and $\mathbf{3 b} \mathbf{- (L u}, \mathbf{Z n})$

Identification code	3a-(Lu, Zn)	3b-(Lu, Zn)
Empirical formula	$\mathrm{C}_{76} \mathrm{H}_{86} \mathrm{~F}_{9} \mathrm{Lu}_{2} \mathrm{~N}_{14} \mathrm{O}_{18} \mathrm{~S}_{3} \mathrm{Zn}_{2}$	$\mathrm{C}_{111} \mathrm{H}_{104} \mathrm{~F}_{12} \mathrm{Lu}_{2} \mathrm{~N}_{14} \mathrm{O}_{20} \mathrm{~S}_{4} \mathrm{Zn}_{2}$
Formula weight	2231.44	2791.00
Temperature	150(2) K	159.98 K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	C2/c
a / \AA	36.125(3)	20.602(2)
b/Å	25.6979(18)	26.315(2)
c/ \AA	26.505(4)	28.155(2)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	122.641(2)	93.285(4)
$\gamma /{ }^{\circ}$	90	90
Volume	20719(4) \AA^{3}	15239(2) \AA^{3}
Z	8	4
Density (calculated)	$1.431 \mathrm{Mg} / \mathrm{m}^{3}$	$1.217 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.485 \mathrm{~mm}^{-1}$	$1.720 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	8920	5608
Crystal size	$0.15 \times 0.11 \times 0.06 \mathrm{~mm}^{3}$	$0.25 \times 0.12 \times 0.1 \mathrm{~mm}^{3}$
Theta range for data collection	2.236 to 25.027°.	2.611 to 22.002°.
Index ranges	$-42<=\mathrm{h}<=42,-30<=\mathrm{k}<=30,-$	$-20<=\mathrm{h}<=21,-27<=\mathrm{k}<=27$, -
	$29<=1<=31$	$29<=1<=29$
Reflections collected	144292	47081
Independent reflections	18264 [$\mathrm{R}(\mathrm{int})=0.0751]$	9273 [$\mathrm{R}(\mathrm{int})=0.0866]$
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	18264 / 298 / 1180	9273 / 787 / 826
Goodness-of-fit on F^{2}	1.040	1.022
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0473, \mathrm{wR} 2=0.1188$	$\mathrm{R} 1=0.0815, \mathrm{wR} 2=0.2040$
R indices (all data)	$\mathrm{R} 1=0.0729, \mathrm{wR} 2=0.1393$	$\mathrm{R} 1=0.1151, \mathrm{wR} 2=0.2315$
Extinction coefficient	n / a	n / a
Largest diff. peak and hole	2.329 and -1.514 e. \AA^{-3}	1.426 and -0.966 e. \AA^{-3}

Table S2. Crystal data and structure refinement for $\mathbf{3 c}$-($\mathbf{L u}, \mathbf{Z n}$) and 3a'-(Dy, Co)

Identification code	3c-(Lu, Zn)	3a'-(Dy, Co)
Empirical formula	$\mathrm{C}_{128} \mathrm{H}_{126} \mathrm{~F}_{9} \mathrm{Lu}_{2} \mathrm{~N}_{20} \mathrm{O}_{20} \mathrm{~S}_{3} \mathrm{Zn}_{2}$	$\mathrm{C}_{77} \mathrm{H}_{83} \mathrm{~F}_{9} \mathrm{Dy}_{2} \mathrm{~N}_{15} \mathrm{O}_{16} \mathrm{~S}_{3} \mathrm{Co}_{2}$
Formula weight	3012.34	2184.62
Temperature	170(2) K	150(2) K
Wavelength	0.71073 A	0.71073 A
Crystal system	Triclinic	Monoclinic
Space group	P-1	C2/c
a / \AA	16.624(3)	35.900(4)
b/ \AA	21.239(3)	25.827(3)
c/ \AA	25.607(4)	26.793(5)
$\alpha /{ }^{\circ}$	79.242(3)	90
$\beta /{ }^{\circ}$	81.468(4)	123.682(3)
$\gamma /{ }^{\circ}$	70.737(4)	90
Volume	8348(2) \AA^{3}	20671(5) \AA^{3}
Z	2	8
Density (calculated)	$1.198 \mathrm{Mg} / \mathrm{m}^{3}$	$1.404 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.561 \mathrm{~mm}^{-1}$	$1.882 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	3050	8744
Crystal size	$0.03 \times 002 \times 0.01 \mathrm{~mm}^{3}$	$0.13 \times 0.09 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	2.318 to 19.782°.	2.218 to 20.866°.
Index ranges	$-15<=\mathrm{h}<=15,-20<=\mathrm{k}<=20,-$	$-35<=\mathrm{h}<=35,-25<=\mathrm{k}<=25,-$
	$24<=1<=24$	$26<=1<=26$
Reflections collected	54390	99570
Independent reflections	$14647[\mathrm{R}(\mathrm{int})=0.1917]$	$10829[\mathrm{R}(\mathrm{int})=0.0531]$
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14647 / 5310 / 1575	10829 / 266 / 1152
Goodness-of-fit on F^{2}	0.937	1.075
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0673, \mathrm{wR} 2=0.1491$	$\mathrm{R} 1=0.0498, \mathrm{wR} 2=0.1282$
R indices (all data)	$\mathrm{R} 1=0.1293, \mathrm{wR} 2=0.1778$	$\mathrm{R} 1=0.0644, \mathrm{wR} 2=0.1443$
Extinction coefficient	n / a	n / a
Largest diff. peak and hole	0.786 and -0.994 e. \AA^{-3}	2.422 and -1.617 e. \AA^{-3}

Table S3. Selected bond distances (\AA) and angles (${ }^{\circ}$) for $\left.\mathbf{3 a - (L u}, \mathbf{Z n}\right)$

Zn1-O3	2.067(5)	$\mathrm{Zn} 2-\mathrm{O} 5$	2.037(5)
Zn1-N7	$2.075(5)$	Zn2-N9	2.082(6)
Zn1-N5	$2.113(5)$	Zn2-N10	2.164(5)
$\mathrm{Zn1-O} 2$	2.151(4)	$\mathrm{Zn} 2-\mathrm{O} 7$	2.191(4)
$\mathrm{Zn1-O4}$	2.167(4)	Zn2-N8	2.221(5)
Zn1-N6	$2.196(6)$	Zn2-O6	2.255(4)
Zn1-Lu1	3.2057(9)	Zn2-Lu2	3.2482(9)
Lu1-O3	2.217(4)	Lu2-O6	2.221(5)
Lu1-O4	2.237(4)	Lu2-O5	2.244(5)
Lu1-O2	$2.329(5)$	Lu2-O7	$2.305(5)$
Lu1-O1	2.331(5)	Lu2-O8	2.322(5)
Lu1-N2	2.383(6)	Lu2-N12	$2.385(7)$
Lu1-N3	2.423(6)	Lu2-N14	2.421(6)
Lu1-N4	2.507(7)	Lu2-N13	2.476(6)
Lu1-N1	2.601(7)	Lu2-N11	2.563(6)
O3-Zn1-O2	73.18(18)	O5-Zn2-O7	73.24(18)
O3-Zn1-O4	78.03(18)	O5-Zn2-O6	75.52(18)
O2-Zn1-O4	73.33(16)	O7-Zn2-O6	71.69(17)
O3-Zn1-N6	81.3(2)	O5-Zn2-N8	82.5(2)
N5-Zn1-O2	86.61(18)	N9-Zn2-O6	81.84(19)
N7-Zn1-O4	84.55(18)	O7-Zn2-N10	84.88(19)
O3-Lu1-O4	73.53(16)	O6-Lu2-O5	72.30(17)
O3-Lu1-O2	67.12(17)	O6-Lu2-O7	70.23(17)
O4-Lu1-O2	68.72(15)	O5-Lu2-O7	67.42(16)
O2-Lu1-N2	70.32(17)	O5-Lu2-N12	74.53(19)
O3-Lu1-N3	73.72(18)	O7-Lu2-N14	70.82(18)
O4-Lu1-N4	74.09(17)	O6-Lu2-N13	74.52(18)
$\mathrm{Zn1-O2-Lu1}$	91.29(17)	$\mathrm{Zn} 2-\mathrm{O} 5-\mathrm{Lu} 2$	98.6(2)
Zn1-O3-Lu1	96.81(18)	Lu2-O6-Zn2	93.07(18)
Zn1-O4-Lu1	93.41(16)	Zn2-O7-Lu2	92.47(17)
N5-Zn1-O4	159.84(19)	O5-Zn2-N9	157.3(2)
O2-Zn1-N6	154.3(2)	N10-Zn2-O6	156.57(19)
O3-Zn1-N7	162.44(19)	O7-Zn2-N8	155.45(19)

Table S4. Selected bond distances (\AA) and angles (${ }^{\circ}$) for $\mathbf{3 b} \mathbf{b}(\mathbf{L u}, \mathbf{Z n})$

Zn1-O2	$2.074(8)$	Lu1-N4	$2.464(12)$
Zn1-N7	$2.086(11)$	Lu1-O2	$2.253(8)$
Zn1-O1	$2.154(7)$	Lu1-O1	$2.284(8)$
Zn1-N5	$2.153(9)$	Lu1-O4	$2.377(9)$
Zn1-N6	$2.154(9)$	Lu1-N1	$2.642(12)$
Zn1-O3	$2.285(8)$	Lu1-N2	$2.412(10)$
Zn1-Lu1	$3.2408(13)$	Lu1-N3	$2.400(15)$

Lu1-O3	$2.239(8)$	Lu1-O3-Zn1	$91.5(3)$
O3-Lu1-O2	$73.4(3)$	O2-Zn1-O1	$72.7(3)$
O3-Lu1-O1	$71.6(3)$	O2-Zn1-O3	$75.9(3)$
O2-Lu1-O1	$67.1(3)$	O1-Zn1-O3	$73.1(3)$
O2-Lu1-N3	$72.9(4)$	O1-Zn1-N5	$85.3(3)$
O1-Lu1-N2	$71.1(3)$	O2-Zn1-N6	$83.1(3)$
O3-Lu1-N4	$74.7(3)$	N7-Zn1-O3	$83.6(4)$
N5-Zn1-O3	$158.3(3)$	Zn1-O1-Lu1	$93.8(3)$
O2-Zn1-N7	$159.5(4)$	Zn1-O2-Lu1	$96.9(4)$
N6-Zn1-O1	$155.8(3)$		

Table S5. Selected bond distances for $\mathbf{3 c - (L u}, \mathbf{Z n})$

Lu1-O3	2.225(8)	Lu2-O6	2.210 (10)
Lu1-O2	2.224(10)	Lu2-O5	2.242(10)
Lu1-O1	$2.309(10)$	Lu2-O7	2.342(12)
Lu1-O4	$2.319(9)$	Lu2-N17	2.402(15)
Lu1-N3	$2.386(13)$	Lu2-N18	2.416(17)
Lu1-N2	2.402(12)	Lu2-O8	2.380 (13)
Lu1-N4	2.410(11)	Lu2-N19	2.471(13)
Lu1-N1	2.595(12)	Lu2-N20	2.581(14)
Lu1-Zn1	$3.2572(18)$	Lu2-Zn2	3.248(2)
$\mathrm{Zn1-O} 2$	2.055(9)	$\mathrm{Zn} 2-\mathrm{O} 5$	2.061(11)
Zn1-N5	2.100 (11)	Zn2-N16	2.084(13)
Zn1-N6	2.141(14)	$\mathrm{Zn} 2-\mathrm{O} 7$	2.120 (11)
Zn1-N7	$2.156(11)$	Zn2-N15	2.147(13)
Zn1-O1	$2.155(10)$	Zn2-N14	2.158(14)
Zn1-O3	$2.286(10)$	Zn2-O6	2.281(9)
O3-Lu1-O2	72.8(3)	O6-Lu2-O5	73.3(4)
O3-Lu1-O1	70.6(3)	O6-Lu2-07	70.8(4)
O2-Lu1-O1	66.4(3)	O5-Lu2-O7	65.4(4)
O3-Lu1-N2	76.0(4)	O5-Lu2-N27	73.9(4)
O1-Lu1-N3	70.9(4)	O7-Lu2-N18	71.0(4)
O2-Lu1-O4	74.5(4)	O6-Lu2-N19	76.0(4)
O2-Zn1-O3	74.7(4)	O5-Zn2-O6	75.3(4)
O2-Zn1-O1	71.9(4)	O7-Zn2-O6	73.6(4)
O1-Zn1-O3	72.6(4)	O5-Zn2-O7	72.7(5)
N6-Zn1-O1	84.4(4)	O5-Zn2-N14	82.1(5)
N5-Zn1-O3	83.8(4)	N16-Zn2-O6	83.0(4)
O2-Zn1-N7	84.3(4)	O7-Zn2-N15	85.5(5)
Zn1-O1-Lu1	93.7(4)	$\mathrm{Zn} 2-\mathrm{O} 5-\mathrm{Lu} 2$	97.9(5)
Zn1-O2-Lu1	99.1(4)	Lu2-O6-Zn2	92.6(4)
Lu1-O3-Zn1	92.4(3)	Zn2-O7-Lu2	93.3(5)

Table S6. Selected bond distances for 3a'-(Dy, Co)

Col-O3	2.131(7)	Co2-O5	$2.116(6)$
Col-O2	2.189(6)	Co2-O6	2.268(6)
Col-N7	2.195(7)	Co2-O7	2.220(6)
Col-O4	2.207(5)	Co2-N8	2.321(7)
Col-N5	2.210(7)	Co2-N9	2.188(8)
Col-N6	2.293(7)	Co2-N10	2.247(7)
Col-Dy1	$3.2365(15)$	Co2-Dy2	3.2727(15)
Dy1-O3	2.263(6)	Dy2-O5	2.277(6)
Dy1-O4	2.292(6)	Dy2-O6	2.286(7)
Dy1-O2	2.374(6)	Dy2-O7	2.345(6)
Dy1-O1	2.417(7)	Dy2-O8	2.384(6)
Dy1-N2	2.428(8)	Dy2-N11	2.598(8)
Dy1-N3	2.470(7)	Dy2-N12	2.432(8)
Dy1-N4	2.507(7)	Dy2-N13	2.509(7)
Dy1-N1	2.601(7)	Dy2-N14	2.449(8)
O3-Col-O2	73.4(2)	O5-Co2-O6	77.2(2)
O3-Col-O4	79.7(2)	O5-Co2-O7	73.9(2)
O2-Col-O4	74.9(2)	O7-Co2-O6	73.3(2)
O2-Col-N5	83.5(2)	O5-Co2-N8	79.7(3)
O3-Col-N6	78.0(3)	N9-Co2-O6	79.9(2)
N7-Col-O4	82.1(2)	O7-Co2-N10	82.2(2)
O3-Dy1-O2	75.3(2)	O5-Dy2-O6	73.7(2)
O3-Dy1-O4	67.6(2)	O5-Dy2-O7	68.7(2)
O4-Dy1-O2	69.9(2)	O6-Dy2-O7	70.7(2)
O2-Dy1-N2	70.1(2)	O5-Dy2-N12	73.7(2)
O3-Dy1-N3	74.0(2)	O7-Dy2-N14	70.7(2)
O4-Dy1-N4	73.0(2)	O6-Dy2-N13	73.5(2)
Col-O2-Dy1	90.3(2)	Co2-O5-Dy2	96.2(2)
Co1-O3-Dy1	94.8(2)	Co2-O6-Dy2	91.9(2)
Col-O4-Dy1	92.0(2)	Co2-O7-Dy2	91.6(2)

7. Continuous shape measurements analysis

A continuous shape measures (CShMs) analysis of Lu and Zn coordination polyhedra present in the asymmetric unit of $\mathbf{3 a - 3 c}-(\mathbf{L u}, \mathbf{Z n})$ and Dy and Co coordination polyhedra present in the asymmetric unit of $\mathbf{3 a} \mathbf{\prime}$-($\mathbf{D y}, \mathbf{C o}$) has been performed with the SHAPE 2.1 software considering an eight-coordination or sixcoordination ${ }^{5}$ (Table S7 and Table S8).

Table S7. Coordination geometries of $\operatorname{Ln}^{\text {III }}$ evaluated by SHAPE 2.1 considering an eight-coordination.

Abbreviation	Symmetry	Ideal geometry
OP-8	$\mathrm{D}_{8 h}$	Octagon
HPY-8	$\mathrm{C}_{7 v}$	Heptagonal pyramid
HBPY-8	$\mathrm{D}_{6 h}$	Hexagonal bipyramid
CU-8	O_{h}	Cube
SAPR-8	$\mathrm{D}_{4 d}$	Square antiprism
TDD-8	$\mathrm{D}_{2 d}$	Triangular dodecahedron
JGBF-8	$\mathrm{D}_{2 d}$	Johnson gyrobifastigium J26
JETBPY-8	$\mathrm{D}_{3 h}$	Johnson elongated triangular bipyramid J14
JBTPR-8	$\mathrm{C}_{2 v}$	Biaugmented trigonal prism J50
BTPR-8	$\mathrm{C}_{2 v}$	Biaugmented trigonal prism
JSD-8	$\mathrm{D}_{2 d}$	Snub disphenoid
TT-8	T_{d}	Triakis tetrahedron
ETBPY-8	$\mathrm{D}_{3 h}$	Elongated trigonal bipyramid

Table S8. Coordination geometries of $\mathrm{Zn}^{\text {II }}$ or $\mathrm{Co}^{\text {II }}$ evaluated by SHAPE 2.1 considering a six-coordination.

Abbreviation	Symmetry	Ideal geometry
HP-6	D6h	Hexagon
PPY-6	C5v	Pentagonal pyramid
OC-6	Oh	Octahedron
TPR-6	D3h	Trigonal prism
JPPY-6	C5v	Johnson pentagonal pyramid J2

Table S9. Coordination geometries of $\mathrm{Ln}^{\mathrm{III}}$ outputted by SHAPE 2.1 software.

Ln	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8
Center													
3a-(Lu, Zn)													
Lu1	32.499	21.433	14.751	13.409	4.349	1.990	9.836	26.432	3.328	2.502	3.541	14.037	21.218
Lu2	31.872	21.088	15.188	13.223	3.664	1.870	10.370	26.243	3.347	2.563	3.374	13.853	21.026
3b-(Lu, Zn)													
Lu1	32.432	21.722	14.435	13.711	4.048	1.930	9.595	26.277	3.370	2.749	3.402	14.313	21.517
$3 \mathrm{c}-(\mathrm{Lu}, \mathrm{Zn})$													
Lu1	31.557	21.658	14.918	13.297	3.633	1.650	10.216	26.460	3.304	2.654	3.218	14.006	21.818
Lu2	32.158	21.613	14.757	13.600	3.950	1.857	9.873	26.144	3.387	2.582	3.293	14.263	21.055
$3 a^{\prime}-(D y, C o)$													
Dyl	32.862	21.356	14.511	13.577	4.239	1.971	9.678	26.476	3.478	2.574	3.617	14.235	21.369
Dy2	31.720	20.768	15.019	13.109	3.482	1.936	10.375	25.815	3.546	2.755	3.579	13.761	20.539

Table S10. Coordination geometries of $\mathrm{Zn}^{\mathrm{II}}$ or $\mathrm{Co}^{\mathrm{II}}$ outputted by SHAPE 2.1 software.

Metal	HP-6	PPY-6	OC-6	TPR-6	JPPY-6
3a-(Lu, Zn)					
Zn1	33.142	24.196	2.263	10.984	28.438
Zn2	33.717	24.575	2.595	11.152	28.210
3b-(Lu, Zn)					
Zn1	33.409	24.265	2.474	9.994	27.804
3c-(Lu, Zn)					
Zn1	33.146	23.537	2.934	8.972	26.872
Zn2	32.963	23.168	3.042	8.718	26.586
3a'-(Dy, Co)					
Col	33.750	22.687	3.199	9.468	26.480
Co2	34.216	23.334	3.127	10.391	27.577

7. Reference

1. Z. Asadi, M. Golchin, V. Eigner, M. Dusek and Z. Amirghofran, Inorg. Chim. Acta, 2017, 465, 50.
2. C. D. Buch, S. H. Hansen, C. M. Tram, D. Mitcov and S. Piligkos, Inorg. Chem., 2020, 59, 16328.
3. G. M. Sheldrick, Acta Crystallogr C Struct Chem, 2015, 71, 3.
4. A. L. Spek, Appl. Crystallogr., 2003, 36, 7.
5. D. Casanova, M. Llunell, P. Alemany and S. Alvarez, Chem. Eur. J., 2005, 11, 1479.
