SUPPORTING INFORMATION

Lithium metal atoms fill vacancies in the germanium network of a type-I clathrate: Synthesis and structural characterization of $Ba_8Li_5Ge_{41}$

Kowsik Ghosh¹, Alexander Ovchinnikov^{1,2}, Michael Baitinger³, Mitja Krnel³, Ulrich Burkhardt³, Yuri Grin³, and Svilen Bobev^{1*}

¹ Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.

² Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.

³ Max Plank Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany.

Table of Contents

Additional crystallographic details

- 1. Table S1. Selected crystallographic data for Ba₈Li₅Ge₄₁ synthesized by *B* synthesis method; T = 200(2) K; Mo K α , $\lambda = 0.71073$ Å; space group $Pm\overline{3}n$, Z = 1.
- 2. Table S2. Selected data crystallographic data for Ba₈Li₅Ge₄₁ synthesized by *C* synthesis method; T = 200(2) K; Mo K α , $\lambda = 0.71073$ Å; space group $Pm\overline{3}n$, Z = 1.
- 3. Table S3. Selected crystallographic data for Ba₈Li₅Ge₄₁ synthesized by *A* synthesis method with doubly-reduced amount of Li in the nominal composition; T = 200(2) K; Mo K α , $\lambda = 0.71073$ Å; space group $Pm\overline{3}n$, Z = 1.
- 4. Table S4. Refined atomic coordinates and equivalent isotropic displacement parameters (U_{eq}^{a}) for Ba₈Li₅Ge₄₁ synthesized by *B* synthesis method.
- 5. Table S5. Refined atomic coordinates and equivalent isotropic displacement parameters (U_{eq}^{a}) for Ba₈Li₅Ge₄₁ synthesized by *B* synthesis method.
- 6. Table S6. Refined atomic coordinates and equivalent isotropic displacement parameters (U_{eq}^{a}) for Ba₈Li₅Ge₄₁ synthesized by *A* synthesis method with doubly-reduced amount of Li in the nominal composition.
- Figure S1. Powder X-ray diffraction pattern of Ba₈Li₅Ge₄₁ and the same after 6 weeks being exposed to the ambient atmosphere.

Additional characterization

- 1. Figure S2. Scanning Electron Microscopy (SEM) image and atomic percentages measured by the X-ray energy-dispersive method for crystals of Ba₈Li₅Ge₄₁ (sample from method *A*).
- Figure S3. Scanning Electron Microscopy (SEM) image of the cross-section of a Ba₈Li₅Ge₄₁ crystal (sample from method *A*).
- 3. Figure S4. Electrical resistivity of a single-crystal of the Ba₈Li₅Ge₄₁ clathrate (*A* synthesis method) in the temperature range 2–300 K.

Table S1. Selected crystallographic data for Ba₈Li₅Ge₄₁ synthesized by *B* synthesis method; T = 200(2) K; Mo K α , $\lambda = 0.71073$ Å; space group $Pm\overline{3}n$, Z = 1. CCDC no. 2257290.

Chemical formula	$Ba_8Li_{5.1(1)}Ge_{40.9}$
a /Å	10.8048(11)
$V/\text{\AA}^3$	1261.39(13)
$ ho_{ m calc.}/ m g\ m cm^{-3}$	5.40
μ (Mo-K α)/cm ⁻¹	300.5
$R_1 \left(I > 2\sigma(I)\right)^a$	0.0292
$wR_2 (I > 2\sigma(I))^a$	0.0680
R_1 (all data) ^a	0.0354
wR_2 (all data) ^a	0.0698
$\Delta \rho_{\rm max,min}/{\rm e}^{-{\rm \cdot}}{\rm \AA}^{-3}$	1.12, -1.21

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|; wR_2 = [\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]]^{\frac{1}{2}},$ where $w = 1 / [\sigma^2 F_0^2 + (0.0360 \cdot P)^2 + (3.264 \cdot P)],$ and $P = (F_0^2 + 2F_c^2) / 3$ Table S2. Selected crystallographic data for Ba₈Li₅Ge₄₁ synthesized by *C* synthesis method; T = 200(2) K; Mo K α , $\lambda = 0.71073$ Å; space group $Pm\overline{3}n$, Z = 1. CCDC no. 2257291.

Chemical formula	Ba ₈ Li _{5.1(1)} Ge _{40.9}
a /Å	10.8098(12)
$V/\text{\AA}^3$	1263.14(14)
$ ho_{\rm calc}/{ m g~cm^{-3}}$	5.40
μ (Mo-K α)/cm ⁻¹	300.1
$R_1 (I > 2\sigma(I))^a$	0.0223
$wR_2 (I > 2\sigma(I))^a$	0.0444
R_1 (all data) ^a	0.0269
wR_2 (all data) ^a	0.0455
$\Delta \rho_{\rm max,min}/{\rm e}^{-{\rm \cdot}}{\rm \AA}^{-3}$	0.85, -0.72

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|; wR_2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{\frac{1}{2}},$

where $w = 1/[\sigma^2 F_o^2 + (0.0155 \cdot P)^2 + (6.60 \cdot P)]$, and $P = (F_o^2 + 2F_c^2)/3$.

Table S3. Selected crystallographic data for Ba₈Li₅Ge₄₁ synthesized by *A* synthesis method with doubly-reduced amount of Li in the nominal composition; T = 200(2) K; Mo K α , $\lambda = 0.71073$ Å; space group $Pm\bar{3}n$, Z = 1. CCDC no. 2257292.

Chemical formula	$Ba_8Li_{5.1(1)}Ge_{40.9}$
a /Å	10.8090(7)
$V/\text{\AA}^3$	1262.86(14)
$ ho_{ m calc.}/ m g\ m cm^{-3}$	5.40
μ (Mo-K α)/cm ⁻¹	300.7
$R_1 (I > 2\sigma(I))^a$	0.0321
$wR_2 (I > 2\sigma(I))^a$	0.0646
R_1 (all data) ^a	0.0451
wR_2 (all data) ^a	0.0694
$\Delta \rho_{\rm max,min}/e^{-\cdot} {\rm \AA}^{-3}$	1.84, -1.40

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|; wR_2 = [\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]]^{\frac{1}{2}},$ where $w = 1/[\sigma^2 F_0^2 + (0.0201 \cdot P)^2 + (18.213 \cdot P)],$ and $P = (F_0^2 + 2F_c^2) / 3;$

Atom	Wyckoff Site	Occupancy /%	x	У	Z	U_{eq} /Å ²
Ba1	2 <i>a</i>	100	0	0	0	0.0099(3)
Ba2 ^b	6 <i>d</i>	100	0	1/2	¹ / ₄	0.0364(3)
Li/Ge1	6 <i>c</i>	84.5(7)/15.5(7)	1/4	1/2	0	0.007(2)
Ge2	16 <i>i</i>	100	0.18312(4)	x	x	0.0112(2)
Ge3	24 <i>k</i>	100	0.11636(6)	0.31002(7)	0	0.0138(2)

Table S4. Refined atomic coordinates and equivalent isotropic displacement parameters (U_{eq}^{a}) for Ba₈Li₅Ge₄₁ synthesized by *B* synthesis method.

^a U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

^b Ba2 can also be refined as off-centered at the 48*l* site (1/8 occupancy) with coordinates 0.011(1) 0.05127(9) 0.243(2) $U_{eq} = 0.022(3)$

Table S5. Refined atomic coordinates and equivalent isotropic displacement parameters (U_{eq}^{a}) for Ba₈Li₅Ge₄₁ synthesized by *C* synthesis method.

Atom	Wyckoff Site	Occupancy /%	x	у	Ζ	U_{eq} /Å ²
Ba1	2 <i>a</i>	100	0	0	0	0.0087(2)
Ba2 ^b	6 <i>d</i>	100	0	1/2	1⁄4	0.0354(2)
Li/Ge1	6 <i>c</i>	84.6(9)/15.4(9)	1/4	1/2	0	0.009(2)
Ge2	16 <i>i</i>	100	0.18305(3)	x	x	0.010(2)
Ge3	24 <i>k</i>	100	0.11607(5)	0.30970(5)	0	0.011(2)

^a U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

^b Ba2 can also be refined as off-centered at the 48*l* site (1/8 occupancy) with coordinates 0.016(3) 0.0506(1) 0.252(2) $U_{eq} = 0.029(1)$

Table S6. Refined atomic coordinates and equivalent isotropic displacement parameters (U_{eq}^{a}) for Ba₈Li₅Ge₄₁ synthesized by *A* synthesis method with doubly-reduced amount of Li in the nominal composition.

Atom	Wyckoff Site	Occupancy /%	x	У	Ζ	U_{eq} /Å 2
Ba1	2 <i>a</i>	100	0	0	0	0.0083(3)
Ba2 ^b	6 <i>d</i>	100	0	1/2	1⁄4	0.0384(4)
Li/Ge1	6 <i>c</i>	83(1)/17(1)	1/4	1/2	0	0.009(2)
Ge2	16 <i>i</i>	100	0.18318(5)	x	x	0.0108(3)
Ge3	24 <i>k</i>	100	0.11652(8)	0.31035(9)	0	0.0138(3)

 $^{a}U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

^b Ba2 can also be refined as off-centered at the 48*l* site (1/8 occupancy) with coordinates 0.0143(8) 0.0512(1) 0.241(2) $U_{eq} = 0.021(3)$

Figure S1. Powder X-ray diffraction pattern of $Ba_8Li_5Ge_{41}$ and the same after 6 weeks being exposed to the ambient atmosphere. For comparison, the simulated pattern of $Ba_8Li_5Ge_{41}$ is also provided (black trace).

Figure S2. Scanning Electron Microscopy (SEM) image and atomic percentages measured by the X-ray energy-dispersive method for crystals of $Ba_8Li_5Ge_{41}$ (sample from method *A*).

Figure S3. Scanning Electron Microscopy (SEM) image of the cross-section of a $Ba_8Li_5Ge_{41}$ crystal (sample from method *A*).

Figure S4. Electrical resistivity of a single-crystal of the $Ba_8Li_5Ge_{41}$ clathrate (*A* synthesis method) in the temperature range 2–300 K.

Away from the low-temperature limit, the $\rho(T)$ increases linearly with temperature, like in standard metals. The positive temperature coefficient in $\rho(T)$ demonstrates the dominant role of the electron-phonon inelastic scattering mechanism. In zero magnetic field, a sudden drop of resistivity is observed at T = 7.2 K, which can be attributed to superconducting (SC) transition of Pb. Pb is a starting material (flux) present in the synthesis of Ba₈Li₅Ge₄₁ and thus an impurity that cannot be avoided. Since the Pb to sample volume ratio is small, $\rho(T)$ does not drop to zero. In $\mu_0 H = 9$ T field $\rho(T)$ shows a saturation to a constant plateau in the $T \rightarrow 0$ limit due to scattering of electrons on quenched defects in the structure in the normal state. The SC transition

is suppressed in $\mu_0 H = 9$ T field and the difference between $\mu_0 H = 0$ T and 9 T resistivity values at T = 300 K is within the experimental error of a few %. According to the high resistivity values at T = 2 K ($\rho_{2K} \approx 190 \ \mu\Omega$ cm) and 300 K ($\rho_{300K} \approx 650 \ \mu\Omega$ cm) this material can be considered as a bad metal and a moderate electrical conductor.