Supporting Information

2D Iron/Cobalt Metal-Organic Frameworks with an Extended Ligand for Efficient Oxygen Evolution Reaction

Wenjing Shang, Qiulin Li, Xiang Li, Ke Zhang, Binghao Wang, Yongbing Lou, Jinxi Chen* School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China *Corresponding author

*E-mail address: chenjinxi@seu.edu.cn (J. Chen)

Calculation formulas

Some data needed to be calculated in the experimental process, and the calculation formulas were as follows:

Overpotential: $\eta = E_{RHE}$ -1.23V,

where E_{RHE} referred to reversible hydrogen electrode, $E_{RHE}=E_{Ag/AgCI}+0.059*pH+0.197V$

Tafel slope: $\eta = b \log j + a$,

where b was the Tafel slope. It was derived from the LSV curve, log j (j was the current density) as the abscissa and η as the ordinate, and the resulting slope was called the Tafel slope.

 $2C_{dl}$ is estimated by plotting $\Delta J=(Ja-Jc)$ at 0.8794 V against the scan rates.

Figure S1. a) XRD patterns of Fe_xCo_{1-x}-MOF₂, b) Fe_{0.5}Co_{0.5}-MOF₁ and Fe_{0.5}Co_{0.5}-MOF₂, c) FT-IR spectra of Fe_xCo_{1-x}-MOF₂

Figure S2. a) SEM images of Fe-MOF₁/NF, b) Co-MOF₁/NF, c) Fe-MOF₂/NF, d) Co-MOF₂/NF

Figure S3. a,b) TEM and c) HRTEM image of Fe_{0.5}Co_{0.5}-MOF₁/NF before the OER test, d,e) TEM and f) HRTEM image of Fe_{0.3}Co_{0.7}-MOF₂/NF before the OER test

Figure S4. a) LSV curves b) Tafel plots c) C_{dl} curves and d) electrochemical impedance of

Figure S5. SEM Fe_{0.5}Co_{0.5}-MOF₁/NF after the 30 h stability test in 1 M KOH

igure S6. a) LSV curves in 1 M KOH and 1 M KOH+0.5 M NaCl of Fe_{0.5}Co_{0.5}-MOF₁/NF and Fe_{0.3}Co_{0.7}-MOF₂, b) Chronopotentiometric curve of Fe_{0.5}Co_{0.5}-MOF₁/NF in 1 M KOH+0.5 M NaCl

Figure S7. XRD patterns Fe_{0.5}Co_{0.5}-MOF₁/NF after the 30 h stability test in 1 M KOH

Figure S8. a) Photos, b) survey spectrum of pristine Fe_{0.5}Co_{0.5}-MOF₁/NF and $Fe_{0.5}Co_{0.5}$ -MOF₁/NF after OER test

Figure S9. The high-resolution XPS spectra of a) O 1s in pristine Fe_{0.5}Co_{0.5}-MOF₁/NF b) O 1s c) Co 2p d) Fe 2p in Fe_{0.5}Co_{0.5}-MOF₁/NF after OER test

Figure S10. TEM image and corresponding EDS elemental mapping images of $Fe_{0.5}Co_{0.5}$ -MOF₁/NF after OER test

Catalyst	Fe(NO ₃) ₃ ·9H ₂ O	Co(NO ₃) ₂ ·6H ₂ O	BPDC
Fe-MOF ₁ /NF	404.0 mg (1 mmol)	0 mg	242.2 mg (1 mmol)
Fe _{0.3} Co _{0.7} -MOF ₁ /NF	121.2 mg (0.3 mmol)	203.7 mg (0.7 mmol)	242.2 mg (1 mmol)
Fe _{0.5} Co _{0.5} -MOF ₁ /NF	202.0 mg (0.5 mmol)	145.5 mg (0.5 mmol)	242.2 mg (1 mmol)
Fe _{0.7} Co _{0.3} -MOF ₁ /NF	282.8 mg (0.7 mmol)	87.3 mg (0.3 mmol)	242.2 mg (1 mmol)
Co-MOF ₁ /NF	0 mg	291.0 mg (1 mmol)	242.2 mg (1 mmol)

Table S1. The amount of metal ions and ligands used to synthesize MOF_1

Table S2. The amount of metal ions and ligands used to synthesize MOF_2

Catalyst	Fe(NO ₃) ₃ ·9H ₂ O	Co(NO ₃) ₂ ·6H ₂ O	BDC
Fe-MOF ₂ /NF	404.0 mg (1 mmol)	0 mg	166.1 mg (1 mmol)
Fe _{0.3} Co _{0.7} -MOF ₂ /NF	121.2 mg (0.3 mmol)	203.7 mg (0.7 mmol)	166.1 mg (1 mmol)
Fe _{0.5} Co _{0.5} -MOF ₂ /NF	202.0 mg (0.5 mmol)	145.5 mg (0.5 mmol)	166.1 mg (1 mmol)
Fe _{0.7} Co _{0.3} -MOF ₂ /NF	282.8 mg (0.7 mmol)	87.3 mg (0.3 mmol)	166.1 mg (1 mmol)
Co-MOF ₂ /NF	0 mg	291.0 mg (1 mmol)	166.1 mg (1 mmol)

Table S3. Comparisons of electrochemical performance and the mass loading of electrodes

	Overpotential	Tafel			Mass
Catalyst	at 10 mA cm ⁻²	slope	C _{dl}	$\mathbf{R}_{ct}\left(\Omega\right)$	loading
	(mV)	(mV/dec)	(mF cm ⁻²)		(mg cm ⁻²)
Fe-MOF ₁ /NF	280	86.33	1.13	22.32	3.7
Fe _{0.3} Co _{0.7} -MOF ₁ /NF	252	41.21	2.17	17.12	4.3
Fe _{0.5} Co _{0.5} -MOF ₁ /NF	217	31.16	2.40	4.19	4.1
Fe _{0.7} Co _{0.3} -MOF ₁ /NF	254	51.90	1.86	2.68	4.0
Co-MOF ₁ /NF	270	74.38	1.24	6.62	4.7
Fe-MOF ₂ /NF	272	97.78	1.14	60.95	4.2
Fe _{0.3} Co _{0.7} -MOF ₂ /NF	249	58.17	1.64	14.91	4.4
Fe _{0.5} Co _{0.5} -MOF ₂ /NF	269	61.93	1.52	21.34	4.5
Fe _{0.7} Co _{0.3} -MOF ₂ /NF	258	62.11	1.27	29.04	4.2
Co-MOF ₂ /NF	284	74.60	1.24	31.21	3.8

Catalysts	Overpotential	Tafel slope	Ligand	Reference
Fe _{0.5} Co _{0.5} -MOF ₁ /NF	217@10	31.16	BPDC	This work
2D MOF-Fe/Co(1:2)	238@10	52	1,4-BDC	1
MIL-53(Co-Fe)/NF	262@100	69	TPA	2
Fe ₂ Co-MOF	224@10	45.3	TPA	3
Ni-Fe-MOF NSs	221@10	56	1,4-BDC	4
(Fe,Co)OOH/MI	230@10	53	MI	5
BaTiO ₃ @MOF-Fe/Co	247@10	38.4	1,4-BDC	6
CoFe-MOF-OH	265@10	44	$C_5H_4N_2O_4$	7
Co ₃ Fe-MOF	280@10	38	NH ₂ -BDC	8
Au _{5,30} /(FCN)MOF/NP	216@10	31.7	1,4-BDC	9
Fe-Co-O/Co@				
NC-mNS/NF	257@10	41.56	MI	10
Co ₂ Fe-MOF	280@10	44.7	H ₃ BTC	11
CF-PBA-400	254@10	51	PBA	12
CoFeBiP	273@10	77.3	MI	13
NiFc-MOF/NF	195@10	44.1	FcDA	14
Ni ₂ Fe ₁ Sq-zbr-MOF	230@10	37	$C_4H_2O_4$	15

Table S4. Comparison of OER catalytic performances of various MOF-based electrocatalysts

TPA, 1, 4-BDC: 1, 4-bezenedicarboxylate

MI: 2-Methylimidazole

C₅H₄N₂O₄: 4, 5-Imidazoledicarboxylic acid

NH₂-BDC: 2-Aminoterephthalic acid

H₃BTC: Trimesic acid

PBA: Prussian blue analogue

FcDA: 1, 1'-Ferrocene dicarboxylate

C₄H₂O₄: 3, 4-Dihydroxy-3-cyclobutene-1, 2-dione (squaric acid)

References

- K. Ge, S. Sun, Y. Zhao, K. Yang, S. Wang, Z. Zhang, J. Cao, Y. Yang, Y. Zhang, M. Pan and L. Zhu, *Angew. Chem., Int. Ed.*, 2021, 60, 12097-12102.
- 2 M. Xie, Y. Ma, D. Lin, C. Xu, F. Xie and W. Zeng, Nanoscale, 2020, 12, 67-71.
- 3 X. Ling, F. Du, Y. Zhang, Y. Shen, W. Gao, B. Zhou, Z. Wang, G. Li, T. Li, Q. Shen, Y. Xiong, X. Wang, Y. Zhou and Z. Zou, J. Mater. Chem. A, 2021, 9, 13271-13278.
- 4 F. L. Li, P. Wang, X. Huang, D. J. Young, H. F. Wang, P. Braunstein and J. P. Lang, *Angew. Chem., Int. Ed.*, 2019, **58**, 7051-7056.

- 5 W. Huang, J. Li, X. Liao, R. Lu, C. Ling, X. Liu, J. Meng, L. Qu, M. Lin, X. Hong, X. Zhou, S. Liu, Y. Zhao, L. Zhou and L. Mai, *Adv. Mater.*, 2022, **34**, 2200270.
- S. Wang, Q. Li, S. Sun, K. Ge, Y. Zhao, K. Yang, Z. Zhang, J. Cao, J. Lu, Y. Yang, Y. Zhang, M. Pan, Z. Lin and L. Zhu, *J. Mater. Chem. A*, 2022, 10, 5350-5360.
- 7 Z. Zou, T. Wang, X. Zhao, W.-J. Jiang, H. Pan, D. Gao and C. Xu, ACS Catal., 2019, 9, 7356-7364.
- 8 W. Li, W. Fang, C. Wu, K. N. Dinh, H. Ren, L. Zhao, C. Liu and Q. Yan, *J. Mater. Chem. A*, 2020, **8**, 3658-3666.
- 9 C.-C. Cheng, P.-Y. Cheng, C.-L. Huang, D. Senthil Raja, Y.-J. Wu and S.-Y. Lu, *Appl. Catal. B: Environ.*, 2021, 286.
- 10 T. I. Singh, G. Rajeshkhanna, U. N. Pan, T. Kshetri, H. Lin, N. H. Kim and J. H. Lee, *Small*, 2021, 17, 2101312.
- 11 S. Xie, F. Li, S. Xu, J. Li and W. Zeng, Chin. J. Catal., 2019, 40, 1205-1211.
- 12 J. Zhou, Y. Hu, Y.-C. Chang, Z. Hu, Y.-C. Huang, Y. Fan, H.-J. Lin, C.-W. Pao, C.-L. Dong, J.-F. Lee, C.-T. Chen, J.-Q. Wang and L. Zhang, ACS Catal., 2022, 12, 3138-3148.
- 13 C. Wang, H. Shang, Y. Wang, J. Li, S. Guo, J. Guo and Y. Du, *Nanoscale*, 2021, 13, 7279-7284.
- 14 J. Liang, X. Gao, B. Guo, Y. Ding, J. Yan, Z. Guo, E. C. M. Tse and J. Liu, Angew. Chem., Int. Ed., 2021, 60, 12770-12774.
- 15 S. Kandambeth, V. S. Kale, D. Fan, J. A. Bau, P. M. Bhatt, S. Zhou, A. Shkurenko, M. Rueping, G. Maurin, O. Shekhah and M. Eddaoudi, *Adv. Energy Mater.*, 2023, 13, 2202964.