C₂-Symmetric Atropisomeric N-Heterocyclic Carbene-Palladium(II) Complexes: Synthesis, Chiral Resolution and Application in enantioselective α-Arylation of Amides

Lingyu Kong, Yajie Chou, Muriel Albalat, Marion Jean, Nicolas Vanthuyne, Stéphane Humbel, Paola Nava and Hervé Clavier

Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France

herve.clavier@univ-amu.fr

I General considerations
II Imidazolium salts synthesis
III Preparation palladium-NHC complexes and their resolution by chiral HPLC13
IV Substrates syntheses
V Asymmetric catalysis
VI Theoretical calculations
VII References
VIII NMR Spectra of new compounds

I General considerations

All reagents were obtained from commercial sources and used as received. Solvents (THF, DCM, toluene and Et₂O) were purified and dried over Braun solvent purification system (MB-SPS-800) or dried by standard procedures prior to use.¹ Anilines have been prepared according to procedures from the literature.²

Analytical Thin Layer Chromatography (TLC) was carried out on Merck silica gel60 F_{254} . Products were revealed by ultraviolet light (254 or 366 nm) and stained with dyeing reagents solutions as potassium permanganate solution or *p*-anisaldehyde solution in ethanol followed by gentle heating. Flash chromatography was performed on Combiflash[®] Companion or with Merck silica gel 60 (230-400 mesh).

¹H, ¹³C and ¹⁹F spectra were recorded in CDCl₃ and acetone- d_6 at ambient temperature on Bruker Avance III 300 or 400 spectrometers operating at 300 and 400 MHz respectively for ¹H. ¹³C nuclei was observed with ¹H decoupling. Solvent residual signals were used as internal standard.³ Chemical shifts (δ) and coupling constants (*J*) are given in ppm and Hz respectively. The peaks patterns are indicated as the following format multiplicity (s: singlet; d: doublet; t: triplet; q: quartet; sept: septuplet; m: multiplet; dd: doublet of doublet; dt: doublet of triplet; dm: doublet of multiplet, etc.). The prefix br. indicates a broadened signal and p. for a pseudo multiplicity.

HRMS were recorded on SYNAPT G2 HDMS (Waters) or on QStar Elite (Applied Biosystems SGIEX) equipped with an Atmospheric Pressure Ionization (API) source. Mass spectra were obtained a Time Of Flight (TOF) analyser.

Melting points (uncorrected) were determined with a Büchi Melting Point B-545.

IR spectra were obtained using a Bruker Alpha Platinium ATR.

HRMS were recorded on SYNAPT G2 HDMS (Waters) or on QStar Elite (Applied Biosystems SGIEX) equipped with an Atmospheric Pressure Ionization (API) source. Mass spectra were obtained using a Time Of Flight (TOF) analyser.

Preparative chiral HPLC separations were performed on an Agilent 1260 Infinity unit (pump G1311C, autosampler G1329B, DAD G1365D and fraction collector G1364C), monitored by Agilent OpenLAB CDS Chemstation LC.

Optical rotations were measured on a Jasco P-2000 polarimeter with a sodium lamp (589 nm), a halogen lamp (578, 546, 436, 405, 365 and 325 nm), in a 10 cm cell, thermostated at 25°C with a Peltier controlled cell holder.

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at 25.0 ± 0.2 °C. A CD quartz cell of 1 mm of optical path length was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted. The baseline was always measured for the same solvent and in the same cell as the samples. Acquisition parameters: 0.1 nm as intervals, scanning speed 50 nm/min, band width 2 nm, and 3 accumulations per sample. The spectra are presented without smoothing and further data processing.

X-ray Diffraction: Intensity data were collected on an Agilent SuperNova AtlasS2 diffractometer using MoK α radiation (0.71073 Å) at 293(2) K or D8 VENTURE Bruker AXS diffractometer equipped with a (CMOS) PHOTON 100 detector using MoK α radiation (0.71073 Å) at T = 150 K. Data reduction was performed using the CrysAlisPro software package (version 1.171.37.31) or SHELXT program. The structures were resolved using the software SHELXS-97 by the direct methods and refined using SHELXL-2013-4. The CIF files of imidazolium salts and palladium complexes have been deposited with

CCDC numbers 2049184 ((+)-(R_a , R_a)-2d), 2049185 ((+)-(R_a , R_a)-2f), 2049186 ((-)-(R_a , R_a)-2e), 2250208 (*trans*-1e·BF₄), 2250209 (*trans*-1f·BF₄), 2250210 (*meso*-2a), 2250211 ((±)-2c), 2250212 (*meso*-2d), 2250213 (*meso*-2c), 2250214 (*meso*-2f), 2250215 ((-)-(1 S_a , $2R_a$)-*cis*-2b.

Enantiomeric excesses were determined by HPLC analysis (High Performance Liquid Chromatography) on Alliance e2695 Waters[®] HPLC with a UV/visible detector 2489 Waters[®].

II Imidazolium salts synthesis

Scheme S1. Preparation of imidazolium via a diimine

General Procedure A: Synthesis of diimines S1

To a solution of the aniline (57.5 mmol, 2.3 equiv.) in methanol (40 mL) at room temperature, biacetyl (25 mmol, 1.0 equiv.) and formic acid (57.5 mmol, 2.3 equiv.) were added. The resulting mixture was stirred at room temperature for 16 hours. The yellow solid was collected by filtration, washed with methanol (3 x 5 mL) and dried under vacuum to get the diamine **S1**.

N², N³-Bis(2-isopropylphenyl)butane-2, 3-diimine S1a⁴

According to the general procedure **A**, from 2-*iso* propylaniline (7.76 g, 57.5 mmol, 2.3 mmol), biacetyl (2.15 g, 25.0 mmol, 1.0 equiv.) and formic acid (2.65 g, 57.5 mmol, 2.3 equiv.), the title product was obtained as a yellow solid (5.20 g, 65% yield).

Rf = 0.85 (PE/Et₂O 20:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.33 (dd, *J*(H, H) = 7.3 and 1.5 Hz, 2H, *H*^{Ar}), 7.22-7.16 (m, 2H, *H*^{Ar}), 7.15-7.09 (m, 2H, *H*^{Ar}), 6.61 (dd, *J*(H, H) = 7.7 and 1.4 Hz, 2H, *H*^{Ar}), 2.97 (hept, *J*(H, H) = 6.9 Hz, 2H, *CH*), 2.17 (s, 6H, *CH*₃), 1.21 (d, *J*(H, H) = 6.9 Hz, 12H, CH(*CH*₃)₂). ¹³**C NMR (101 MHz, CDCl₃):** δ = 167.7 (*C*), 148.5 (*C*), 137.9 (*C*), 126.2 (*C*H), 125.9 (*C*H), 124.5 (*C*H), 118.1 (*C*H), 28.7 (*C*H), 22.9 (*C*H₃), 15.8 (*C*H₃).

N², N³-Bis(2-tertbutylphenyl)butane-2, 3-diimine S1b⁴

According to the general procedure **A**, from 2-*tert* butylaniline (8.57 g, 57.5 mmol, 2.3 mmol), biacetyl (2.15 g, 25.0 mmol, 1.0 equiv.) and formic acid (2.65 g, 57.5 mmol, 2.3 equiv.), the title was obtained as a yellow solid (7.78 g, 93% yield).

Rf = 0.95 (PE/Et₂O 20 :1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.42 (dd, *J*(H, H) = 7.9 and 1.4 Hz, 2H, H^{Ar}), 7.22-7.16 (m, 2H, H^{Ar}), 7.11-7.05 (m, 2H, H^{Ar}), 6.51 (dd, *J*(H, H) = 7.7 and 1.4 Hz, 2H, H^{Ar}), 2.20 (s, 6H, CH₃), 1.35 (s, 18H, C(CH₃)₃). ¹³**C NMR (101 MHz, CDCl₃):** δ = 166.9 (*C*), 149.5 (*C*), 139.5 (*C*), 126.6 (CH), 126.5 (CH), 124.2 (CH), 119.4 (CH), 35.3 (*C*), 29.7 (CH₃), 16.5 (CH₃).

N², N³-Di([1,1'-biphenyl]-2-yl)butane-2, 3-diimine S1c

According to the general procedure **A**, from 2-phenylaniline (9.72 g, 57.5 mmol, 2.3 mmol), biacetyl (2.15 g, 25.0 mmol, 1.0 equiv.) and formic acid (2.65 g, 57.5 mmol, 2.3 equiv.), the title compound was obtained as a yellow solid (8.55 g, 88% yield).

Rf = 0.90 (PE/Et₂O 20 :1). **Mp** = 173.3-173.5 °C. ¹**H NMR (400 MHz, CDCl₃)**: δ = 7.38-7.20 (m, 14H, H^{Ar}), 7.19-7.11 (m, 2H, H^{Ar}), 6.70-6.64 (m, 2H, H^{Ar}), 1.80 (s, 6H, CH₃). ¹³**C NMR (101 MHz, CDCl₃)**: δ = 167.7 (*C*), 148.5 (*C*), 137.9 (*C*), 126.2 (*C*H), 125.9 (*C*H), 124.5 (*C*H), 118.1 (*C*H), 28.7 (*C*H), 22.9 (*C*H₃), 15.8 (*C*H₃). **HRMS (ESI)**: m/z: 389.2012 calcd for C₂₈H₂₅N₂⁺ [M+H]⁺: found 389.2013. **IR (ATR)**: 3050, 3018, 1631, 1590, 1561, 1498, 1448, 1429, 1356, 1285, 1248, 1195, 1154, 1119, 1071, 1045, 1008, 994, 973, 943, 912, 878, 850, 813, 771, 753, 741, 722, 701, 656, 614, 574, 528 cm⁻¹.

General Procedure B: Preparation of imidazolium salt 1 from diamine S1

To a solution of the diimine **S1** (10 mmol, 1.0 equiv.) in dry THF (100 mL), a mixture of paraformaldehyde (15 mmol, 1.5 equiv.) and HCl (2M in Et₂O, 18 mmol, 1.8 equiv.) was added dropwise at 0 °C under argon atmosphere. The resulting mixture was slowly warmed up to 25 °C and stirred for 16 hours. The solvent was removed under vacuum. Water (100 mL) was added in the residue and sat. NaHCO₃ solution was added to adjust the pH to 7. The aqueous phase was extracted by ethyl acetate (2 x 50 mL) and KBF₄ (20 mmol, 2.0 equiv.) was added to the aqueous phase. The mixture was stirred for 1 hour at 25 °C and then extracted by dichloromethane (3 x 100 mL). The combined dichloromethane phase was dried by Na₂SO₄ and filtered. The solvent was removed under vacuum and the residue was purified by silica gel column (DCM/acetone = 9:1) to give the imidazolium salt **1**.

1,3-Bis(2-isopropylphenyl)-4,5-dimethyl-imidazolium tetrafluoroborate 1a·BF4

According to the general procedure **B**, from N^2 , N^3 -Bis(2-*iso*propylphenyl)butane-2,3-diimine **S1a** (5.2 g, 16.3 mmol, 1.0 equiv.), paraformaldehyde (0.73 g, 24.3 mmol, 1.5 equiv.), HCl (14.6 mL, 2M in Et₂O, 29.2 mmol, 1.8 equiv.) and KBF₄ (4.11 g, 32.6 mmol, 2.0 equiv.), the title compound was obtained as a white solid (1.8 g, 26% yield).

Rf = 0.45 (DCM/acetone = 9:1). **Mp** = 193.4-193.9 °C In CDCl₃ (25 °C) this imidazolium salt exists in two isomeric forms in a 9:1 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CDCl₃): δ = 8.48 (s, 0.1H, NCHN, *min*), 8.29(s, 0.9H, NCHN, *maj*), 7.86 (dd, J(H,H) = 8.0 and 1.3 Hz, 1.8H, H^{Ar}, *maj*), 7.64-7.55 (m, 2.4H, H^{Ar}), 7.53-7.44 (m, 4H, H^{Ar}), 2.70 (sept, J(H,H) = 6.8 Hz, 0.2H, CH, *min*), 2.48 (sept, J(H,H) = 6.8 Hz, 0.8H, CH, *maj*), 2.18 (s, 0.6H, CH₃, *min*), 2.15 (s, 5.4H, CH₃, *maj*), 1.35-1.29 (m, 6H, CH(CH₃)₂), 1.25 (d, J(H,H) = 6.8 Hz, 0.6H, CH(CH₃)₂, *min*), 1.18 (d, J(H,H) = 6.8 Hz, 5.4H, CH(CH₃)₂, *maj*). ¹³C NMR (101 MHz, CDCl₃): δ = 145.6 (C), 147.7 (C), 144.0 (CH), 133.9 (CH), 130.5 (C), 130.3 (C), 129.4 (C), 129.1 (C), 128.4 (CH), 128.3 (CH), 128.0

(CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 127.5 (CH), 126.9 (CH), 28.4 (CH), 28.1 (CH), 24.7 (CH₃), 24.6 (CH₃), 23.1 (CH₃), 22.8 (CH₃), 8.9 (CH₃), 8.8 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃): -152.2 (s, 4F, BF₄). HRMS (ESI): *m/z*: 333.2325 calcd for C₂₃H₂₉N₂⁺ [C]⁺: found 333.2314. IR (ATR): 3124, 3065, 2961, 2926, 2868, 2358, 2165, 2079, 2029, 2002, 1980, 1637, 1543, 1491, 1451, 1390, 1368, 1353, 1308, 1285, 1253, 1225, 1202, 1167, 1098, 1044, 1026, 884, 842, 773, 755, 721, 671, 660, 627, 601, 573, 553, 520, 507 cm⁻¹.

1,3-Bis(2-phenylphenyl)-4,5-dimethyl-imidazolium tetrafluoroborate 1c·BF4

According to the general procedure B, from N^2 , N^3 -Bis(2-phenylphenyl)butane-2,3-diimine (8.5 g, 21.9 mmol, 1.0 equiv.), paraformaldehyde (0.99 g, 32.9 mmol, 1.5 equiv.), HCl (19.7 mL, 2M in Et₂O, 39.4 mmol, 1.8 equiv.) and KBF₄ (5.54 g, 44.0 mmol, 2.0 equiv.), the title compound was isolated as a white solid (2.12 g, 20% yield).

Rf = 0.65 (DCM/acetone = 9:1). **Mp** = 246.1-246.6 °C. ¹**H NMR (400 MHz, CDCl₃):** δ = 8.59 (s, 1H, NCHN), 8.00-7.56 (m, 6H, *H*^{Ar}), 7.55-7.48 (m, 2H, *H*^{Ar}), 7.43-7.31 (m, 6H, *H*^{Ar}), 7.15-6.95 (m, 4H, *H*^{Ar}), 1.76 (s, 6H, CH₃). ¹³**C NMR (101 MHz, CD₃COCD₃):** δ = 139.9 (C), 137.3 (C), 132.6 (CH), 132.5 (CH), 131.8 (C), 130.2 (CH), 130.0 (CH), 129.5 (CH), 129.3 (CH), 8.8 (CH₃). ¹⁹**F NMR (282 MHz, CDCl₃):** δ = -153.0 (s, 4F, BF₄). **HRMS (ESI)**: *m/z*: 401.2012 calcd for C₂₉H₂₅N₂⁺ [C]⁺: found 401.2019. **IR (ATR):** 3137, 3060, 2362, 1635, 1596, 1541, 1508, 1483, 1435, 1283, 1217, 1180, 1157, 1100, 1048, 1029, 1008, 952, 923, 841, 770, 739, 704, 660, 626, 611, 597, 553, 518 cm⁻¹.

Scheme S2. Preparation of imidazolium via a formamidine

General Procedure C: Preparation of symmetrical formamidines S2

Acetic acid (85 μ L, 1.5 mmol, 0.05 equiv.) was added to a round bottom flask charged with the aniline (30 mmol, 1.0 equiv.) and triethyl orthoformate (5 mL, 30 mmol, 0.5 equiv.). The flask was fitted with a distillation head and stirred at 140 °C for 2 h, then at 160 °C for 2 h and finally at 180 °C for 12 h, until ethanol (3.5 mL, 30 mmol) was collected by distillation. After cooling to room temperature, the crude material was triturated with hexane (100 mL)/dichloromethane (20 mL) at -18 °C and filtered to give the expected product.

N'-(2-tertbutylphenyl)-N-(2-tertbutylphenyl)formamidine S2b

According to general procedure **C**, 2-*tert* butylaniline (4.47 g, 30 mmol), triethyl orthoformate (2.5 mL, 15 mmol) and acetic acid (43 μ L, 0.75 mmol) were heated at 140 °C for 12 hours. The crude material was triturated with hexane (15 mL) at -18 °C. The resulting solid was recrystallized in acetone to give a white solid (2.7 g, 57%).

Rf = 0.55 (PE/EtOAc = 9:1). In CDCl₃ (25 °C) this formamidine exists in two isomeric forms in a 4:1 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.84 (s, 1H, NCHN), 7.41-7.34 (m, 2H, H^{Ar}), 7.20-7.15 (m, 2H, H^{Ar}), 7.10-6.90 (m, 5H, NH and H^{Ar}), 1.48 (s, 9H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ = 147.8 (CH), 141.2 (C), 138.6 (C), 127.2 (CH), 126.6 (CH), 123.9 (CH), 121.5 (CH), 35.2 (C), 30.6 (CH₃).

N'-(2-(tertbutyl)phenyl)-N-(2-isopropylphenyl)formamidine S2b'

Acetic acid (43 μ L, 0.75 mmol, 0.05 equiv.) was added to a round bottom flask charged with 2isobutylaniline (2.05 g, 15 mmol), and triethyl orthoformate (2.5 mL, 15 mmol, 1.0 equiv.). The flask was fitted with a distillation head and was stirred and heated to 140 °C for 12 h and at 160 °C for 2 h. 2-tertbutylaniline (2.23 g, 15 mmol) was added and the mixture was heated to 140 °C for 12 h and at 160 °C for 2 h, then cooled to room temperature. The crude material was triturated with hexane (15 mL) at -18 °C. The resulting oil was purified by flash chromatography (petroleum ether/ethyl acetate 20:1) to give a white solid (2.24 g, 34%).

Rf = 0.25 (PE/EtOAc = 20:1). **Mp** = 118.5-119.3 °C ¹**H NMR (400 MHz, CDCl₃):** δ = 7.90 (s, 1H, NCHN), 7.37 (dd, *J*(H,H) = 7.8 and 1.6 Hz, 1H, *H*^{Ar}), 7.29 (d, *J*(H,H) = 7.3 Hz, 1H, *H*^{Ar}), 7.22-7.04 (m, 6H, NH and *H*^{Ar}), 6.86 (d, *J*(H,H) = 7.6 Hz, 1H, *H*^{Ar}), 3.21 (sept, *J*(H,H) = 6.9 Hz, 1H, *H*^{Ar}), 1.46 (s, 9H, C(CH₃)₃), 1.30 (d, *J*(H,H) = 6.9 Hz, 6H, CH₃). ¹³C **NMR (101 MHz, CDCl₃):** δ = 147.8 (CH), 144.2 (CH), 142.1 (C), 138.2 (C), 127.1 (CH), 126.8 (CH), 126.4 (CH), 126.0 (CH), 124.0 (CH), 123.9 (CH), 121.6 (CH), 118.4 (CH), 35.5 (C), 30.6 (CH₃), 27.8 (CH₃), 23.0 (CH₃). **HRMS (ESI)**: *m/z* 295.2169 calcd for: C₂₀H₂₇N₂⁺ [M+H]⁺: found 295.2169. **IR (ATR):** 3191, 3057, 2995, 2955, 2927, 2865, 2359, 2341, 1651, 1636, 1599, 1586, 1568, 1508, 1480, 1449, 1389, 1361, 1348, 1275, 1253, 1201, 1159, 1127, 1085, 1051, 1037, 994, 936, 904, 844, 809, 745, 638, 612 cm⁻¹.

N'-(2-benzhydrylphenyl)-N-(2-benzhydrylphenyl) formamidine S2d

According to the general procedure **C**, from 2-benzhydrylaniline (5.19 g, 20 mmol), triethyl orthoformate (1.66 mL, 10 mmol) and acetic acid (57 μ L, 0.5 mmol) a white solid was obtained (4.80 g, 91%).

Rf = 0.32 (PE/ Et₂O 1:1). **Mp** = 199.2-119.9 °C. In CDCl₃ (25 °C), this formamidine exists as a mixture of rotamers. ¹H NMR chemical shifts cannot be denoted. ¹H NMR (400 MHz, CDCl₃): δ = 7.45-6.95 (m,

24.4H, H^{Ar} and N=CH and NH), 6.90-6.78 (m, 4H, H^{Ar}), 6.70-6.60 (m, 1H, H^{Ar}), 6.48 (s, 0.6H, H^{Ar}), 6.00-5.90 (m, 0.2H, CH), 5.85-5.65 (m, 1.6H, CH), 5.00 (s, 0.2H, CH). ¹³C NMR (101 MHz, CDCl₃): δ = 148.7 (CH), 143.8 (C), 143.2 (C), 135.9 (C), 130.0 (CH), 129.7 (CH), 129.6 (CH), 129.4 (CH), 128.8 (CH), 128.6 (CH), 128.3 (CH), 127.5 (CH), 126.6 (CH), 123.8 (CH), 120.0 (CH), 52.0 (CH). HRMS (ESI): m/z: 529.2638 calcd for: C₃₉H₃₃N₂⁺ [M+H]⁺: found 529.2637. IR (ATR): 3057, 3024, 2863, 2324, 1668, 1589, 1493, 1478, 1447, 1301, 1206, 1153, 1090, 1075, 1030, 983, 920, 808, 776, 747, 732, 697, 658, 606, 539 cm⁻¹.

N'-(2-benzhydryl-4-fluoro-6-methylphenyl)-N-(2-benzhydryl-4-fluoro-6-methylphenyl) formamidine S2e

According to the general procedure **C**, from 2-benzhydryl-4-fluoro-6-methylaniline (5.82 g, 20 mmol), triethyl orthoformate (1.66 mL, 10 mmol) and acetic acid (57 μ L, 0.1 mmol) a white solid was obtained (4.58 g, 77%).

Rf = 0.33 (PE/ Et₂O 1:1). **Mp** = 196.2-196.8 °C. In CDCl₃ (25 °C), this formamidine exists as a mixture of rotamers. ¹H NMR chemical shifts cannot be denoted. ¹H NMR (400 MHz, CDCl₃): δ = 7.35-6.65 (m, 24.3H, *H*^{Ar} and N=C*H* and N*H*), 6.46-6.38 (m, 1.4H, *H*^{Ar}), 6.27 (s, 0.3H, *H*^{Ar}), 6.64 (s, 0.2H, *H*^{Ar}), 5.80-5.65 (m, 1.4H, *CH*), 5.25-5.15 (m, 0.6H, *CH*), 2.30-2.10 (m, 6H, *CH*₃). ¹³C NMR (101 MHz, CDCl₃): δ = 147.8 (*C*H), 143.6 (*C*), 143.2 (*C*), 141.4 (*C*), 139.4 (*C*), 138.3 (*C*), 134.9 (*C*), 129.7 (*C*H), 129.5 (*C*H), 128.7 (*C*H), 128.5 (*C*H), 126.9 (*C*H), 126.5 (*C*H), 126.1 (*C*H), 125.9 (*C*H), 115.1 (*C*H), 114.8 (*C*H), 51.8 (*C*H), 21.3 (*C*H₃). ¹⁹F NMR (282 MHz, CDCl₃): δ = -125.5 (s, *F*), -126.2 (s, *F*). HRMS (ESI): *m/z*: 593.2763 calcd for: C₄₁H₃₅F₂N₂⁺ [M+H]⁺: found 593.2768. IR (ATR): 3376, 3058, 3025, 2915, 2861, 2325, 1648, 1599, 1580, 1492, 1478, 1447, 1377, 1317, 1294, 1231, 1201, 1154, 1128, 1076, 1030, 1001, 981, 907, 848, 822, 783, 737, 698, 630, 617, 580, 537, 525 cm⁻¹.

N'-(2-benzhydryl-4,6-dimethylphenyl)-N-(2-benzhydryl-4,6-dimethylphenyl) formamidine S2f

According to the general procedure **C**, from 2-benzhydryl-2,6-dimethylaniline (11.7 g, 40 mmol), triethyl orthoformate (3.3 mL, 20 mmol) and acetic acid (115 μ L, 2 mmol) a white solid was obtained (8.42 g, 72%).

Rf = 0.35 (PE/Et₂O 1:1). **Mp** = 241.6-241.8 °C. In CDCl₃ (25 °C), this formamidine exists as a mixture of rotamers. ¹H NMR chemical shifts cannot be denoted. ¹H NMR (400 MHz, CDCl₃): δ = 7.28-7.13 (m, 13H, *H*^{Ar} and N=C*H* and N*H*), 7.04-6.94 (m, 7 H, *H*^{Ar}), 6.92-6.76 (m, 4H, *H*^{Ar}), 6.54 (d, *J*(H,H) = 1.9 Hz, 0.4H, *H*^{Ar}), 6.49 (d, *J*(H,H) = 2.0 Hz, 1.2H, *H*^{Ar}), 6.40 (d, *J*(H,H) = 1.9 Hz, 0.4H, *H*^{Ar}), 5.80-5.65 (m, 1.2H, CH), 5.49 (s, 0.2H, CH), 5.46 (s, 0.2H, CH), 5.28 (s, 0.4H, CH), 2.28-1.90 (m, 12H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ = 146.9 (CH), 144.9 (C), 144.1 (C), 142.6 (C), 142.4 (C), 141.8 (C), 138.4 (C), 135.0 (C), 134.6 (C), 133.4 (C), 132.0 (C), 130.9 (CH), 130.2 (CH), 129.8 (CH), 129.6 (CH), 129.5 (CH), 129.4 (CH), 129.1 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 51.3 (CH), 21.2 (CH₃), 21.1 (CH₃), 19.2 (CH₃), 18.6 (CH₃). HRMS (ESI): *m/z*: 585.3264 calcd for: C₄₃H₄₁N₂⁺ [M+H]⁺: found 585.3264. IR

(ATR): 3023, 2914, 2856, 2522, 2324, 1660, 1599, 1580, 1492, 1466, 1445, 1375, 1307, 1286, 1249, 1228, 1203, 1152, 1138, 1074, 1030, 1001, 968, 918, 895, 850, 823, 780, 742, 700, 631, 616, 599, 570, 558, 533 cm⁻¹.

General Procedure D: Preparation of imidazolium salts from formamidines⁵

To a suspension of formamidine **S2** (1 mmol) in acetonitrile (2 mL), *N*,*N*-Diisopropylethylamine (0.35 mL, 2 mmol, 2.0 equiv.) and 3-bromo-2-butanone (0.21 mL, 2 mmol, 2.0 equiv.) were added and the resulting mixture was stirred at 110 °C for 20 h. The solvent was removed under vacuo. The residue was purified by silica gel flash chromatography (petroleum ether/ethyl acetate = 10:1) to give the intermediate. The intermediate was dissolved in dichloromethane (3 mL). Triethylamine (142 μ L, 1.1 mmol, 1.1 equiv.) was added dropwise at -40 °C. After 5 min, trifluoromethanesulfonic anhydride (188 μ L, 1.1 mmol, 1.1 equiv.) was added dropwise. The mixture was slowly warmed up to room temperature and stirred at room temperature for 4 h. The volatiles were removed under vacuo and the residue was purified by silica gel column chromatography (dichloromethane/acetone = 10:1) to give the imidazolium triflate salt **1·OTf**.

1-(2-*Iso*propylphenyl)-3-(2-*tert*butylphenyl)-4,5-dimethyl-imidazolium trifluoromethylsufonate 1b·OTf

According to the general procedure **D**, from *N*-(2-*iso*propylphenyl)-*N'*-(2-tertbutylphenyl)formimidine **S2b'** (580 mg, 1.97 mmol), *N*,*N*-diisopropylethylamine (0.70 mL, 4 mmol, 2.0 equiv.), 3-bromo-2-butanone (0.42 mL, 4 mmol, 2.0 equiv.), triethylamine (0.45 mL, 2.89 mmol, 1.1 equiv.) the title compound as a white solid (200 mg, 20% yield).

Mp = 137.1-137.5 °C. In CDCl₃ (25 °C) this imidazolium salt exists in two isomeric forms in a 9:1 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (min). ¹H NMR (400 MHz, CDCl₃): δ = 8.94 (s, 0.1H, NCHN, *min*), 8.49 (s, 0.9H, NCHN, *maj*), 7.94 (d, *J*(H,H) = 7.8 Hz, 1H, H^{Ar}), 7.81 (dd, *J*(H,H) = 7.7 and 7.1 Hz, 1H, H^{Ar}), 7.67-7.4 (m, 6H, H^{Ar}), 2.58 (sept, *J*(H,H) = 6.8 Hz, 1H, *CH*(CH₃)₂), 2.17 (m, 3H, *CH*₃), 2.15 (s, 3H, *CH*₃), 1.35-1.25 (m, 12H, *C*(*CH*₃)₃ and *CH*(*CH*₃)₂), 1.18 (d, 3H, *CH*(*CH*₃)₂). ¹³C NMR (101 MHz, CDCl₃): δ = 145.8 (*C*), 145.0 (*C*), 144.4 (*C*), 135.2 (*CH*), 132.0 (*CH*), 131.6 (*CH*), 131.3 (*CH*), 130.8 (*C*), 130.4 (*C*), 130.2 (*C*), 129.0 (*CH*), 128.7 (*CH*), 128.3 (*CH*), 128.1 (*CH*), 126.8 (*CH*), 120.6 (q, *J*(C,F) = 320.3 Hz, *CF*₃), 36.0 (*C*), 31.8 (*CH*), 28.2 (*CH*₃), 27.3 (*CH*₃), 24.9 (*CH*₃), 9.5 (*CH*₃), 9.0 (*CH*₃). ¹⁹F NMR (282 MHz, CDCl₃): δ = -78.4 (s, 3F, *CF*₃). HRMS (ESI): *m/z*: 347.2482 calcd for C₂₄H₃₁N₂⁺ [C]⁺: found 347.2478. IR (ATR): 3034, 2964, 1662, 1623, 1536, 1490, 1445, 1388, 1366, 1262, 1223, 1150, 1086, 1051, 1030, 961, 874, 803, 766, 759, 670, 636, 598, 571, 557, 511 cm⁻¹.

1-(2-Benzhydrylphenyl)-3-(2-benzhydrylphenyl)-4,5-dimethyl-imidazolium trifluoromethylsufonate 1d·OTf

According to the general procedure **D**, from *N*-(2-Benzhydrylphenyl)-*N*'-(2–benzhydrylphenyl)formimidamide **S2d** (1.32 g, 2.5 mmol), *N*,*N*-diisopropylethylamine (0.53 mL, 5 mmol, 2.0 equiv.), 3-bromo-2-butanone (0.88 mL, 5 mmol, 2.0 equiv.), triethylamine (0.35 mL, 2.5 mmol, 1.1 equiv.), trifluoromethanesulfonic anhydride (0.43 mL, 2.5 mmol, 1.1 equiv.) a white solid was obtained (770 mg, 42% yield).

Rf = 0.35 (DCM/acetone 10:1). **Mp** = 288.5-288.8 °C. In CD₃COCD₃ (25 °C), this imidazolium salt exists in two rotamers in a 9:1 ratio (unassigned). ¹H NMR chemical shifts that differ between rotamers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CD₃COCD₃): δ = 9.70 (s, 0.1H, NCHN, *min*), 8.54 (s, 0.9H, NCHN, *min*), 7.75-7.60 (m, 6H, *H*^{Ar}), 7.45-7.05 (m, 22H, *H*^{Ar}), 5.54 (s, 1.8H, C*H*, *maj*), 5.40 (s, 0.2H, *CH*, *min*), 1.88 (s, 5.4H, *CH*₃), 1.69 (s, 0.6H, *CH*₃). ¹³C NMR (101 MHz, CD₃COCD₃): δ = 142.2 (*C*), 142.1 (*C*), 141.7 (*C*), 136.0 (*C*H), 132.9 (*C*H), 132.2 (*C*H), 131.8(*C*H), 130.1 (*C*H), 129.9 (*C*H), 129.6 (*C*H), 129.5 (*C*H), 129.4 (*C*H), 129.3 (*C*H), 127.9 (*C*H), 127.8 (*C*H), 122.3 (q, *J*(*C*,F) = 320.8 Hz, *C*F₃), 52.2 (*C*H), 51.9 (*C*H), 8.7 (*C*H₃), 8.4 (*C*H₃). ¹⁹F NMR (282 MHz, CDCl₃): δ = -78.3 (s, *F*). HRMS (ESI): *m/z*: 581.2951 calcd for C₄₃H₃₇N₂⁺ [C]⁺: found 581.2950. IR (ATR): 3144, 3060, 3026, 2926, 2332, 1719, 1623, 1597, 1586, 1536, 1491, 1448, 1389, 1265, 1216, 1182, 1140, 1093, 1078, 1031, 1002, 965, 920, 868, 848, 818, 773, 748, 730, 699, 663, 654, 635, 619, 605, 571, 516 cm⁻¹.

1-(2-Benzhydryl-6-fluoro-4-methylphenyl)-3-(2-benzhydryl-6-fluoro-4-methylphenyl)-4,5-dimethylimidazolium trifluoromethylsufonate 1e·OTf

According to the general procedure **D**, from *N*-(2-Benzhydryl-6-fluoro-4-methylphenyl)-*N*'-(2-benzhydryl-4-methyl-6-florophenyl)formimidamide **S2e** (4.58 g, 7.7 mmol), *N*,*N*-diisopropylethylamine (2.56 mL, 15.5 mmol, 2.0 equiv.), 3-bromo-2-butanone (1.65 mL, 15.5 mmol, 2.0 equiv.), triethylamine (0.73 mL, 7.2 mmol, 1.1 equiv.), trifluoromethanesulfonic anhydride (1.2 mL, 7.2 mmol, 1.1 equiv.) a white solid was obtained as a 10:1 mixture of diastereomers which could not be separated by silica gel chromatography (3.98 g, 65% yield). A recrystallization from dichloromethane/ethyl acetate allowed to isolate the pure major diastereomer as a white solid (870 mg).

Rf = 0.40 (DCM/acetone = 10:1). **Mp** = 302.4-302.7 °C. ¹**H NMR (400 MHz, CDCl₃)**: δ = 9.81 (s, 0.91H, NCHN), 7.34-7.16 (m, 16H, H^{Ar}), 7.08-7.05 (m, 2H, H^{Ar}), 6.95-6.90 (m, 4H, H^{Ar}), 6.67 (s, 2H, H^{Ar}), 5.52 (s, 2H, CH), 2.36 (s, 6H, CH₃), 1.23 (s, 6H, CH₃). ¹³**C NMR (101 MHz, CDCl₃)**: δ =157.4 (d, ¹*J*(C,F)= 252.6 Hz, C), 144.1 (d, ³*J*(C,F)= 8.6 Hz, C), 143.8 (C), 140.1 (d, ²*J*(C,F)= 35.2 Hz, C), 137.3 (CH), 129.8 (CH), 129.4 (CH), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.5 (C), 127.7 (CH), 127.4 (CH,), 127.3 (CH), 127.2 (d, ⁴*J*(C,F)=

6.2 Hz, *C*H), 120.8 (q, *J*(C,F) = 320.9 Hz, *C*F₃), 117.4 (d, ³*J*(C,F) = 13.1 Hz, *C*), 115.7 (d, ²*J*(C,F) = 19.0 Hz, *C*H), 51.8 (*C*H), 22.0 (*C*H₃), 7.6 (*C*H₃). ¹⁹**F NMR (282 MHz, CDCl₃):** δ = -78.5 (s, *CF*₃), -121.4 (s, *F*). **HRMS** (ESI): *m*/*z*: 645.3076 calcd for C₄₅H₃₉F₂N₂⁺ [C]⁺: found 645.3080. **IR (ATR):** 3029, 2928, 2363, 2324, 2271, 1620, 1588, 1542, 1494, 1450, 1391, 1313, 1286, 1254, 1223, 1190, 1151, 1078, 1028, 987, 918, 847, 819, 786, 745, 722, 701, 636, 604, 584, 572, 539, 517 cm⁻¹.

1-(2-Benzhydryl-4,6-dimethylphenyl)-3-(2-benzhydryl-4,6-dimethylphenyl)-4,5-dimethyl imidazolium trifluoromethylsufonate 1f·OTf

According to the general procedure C, from *N*-(2-Benzhydryl-4,6-dimethylphenyl)-*N*'-(2-Benzhydryl-4,6-dimethylphenyl)formimidamide **S2f** (5.8 g, 9.95 mmol), *N*,*N*-di*iso*propylethylamine (3.3 mL, 19.9 mmol, 2.0 equiv.), 3-bromo-2-butanone (2.12 mL, 19.9 mmol, 2.0 equiv.), triethylamine (1.5 mL, 10.9 mmol, 1.1 equiv.), trifluoromethanesulfonic anhydride (3.7 mL, 10.9 mmol, 1.1 equiv.) a white solid was obtained as a 4:1 mixture of diastereomers. After a meticulous purification by silica gel chromatography (DCM/Acetone 9:1) the pure major diastereomer was isolated as a white solid (5.09 g, 65% - 2 steps). Alternatively, a recrystallization from dichloromethane/ethyl acetate allowed to isolate also the pure major diastereomer.

Rf = 0.45 (DCM/acetone 10:1). **Mp** = 300.0-300.2 °C. ¹**H NMR (400 MHz, CDCl₃):** δ = 8.75 (s, 1H, NCHN), 7.31-7.15 (m, 12H, H^{Ar}), 7.11 (s, 2H, H^{Ar}), 7.05-6.90 (m, 8H, H^{Ar}), 6.74 (s, 2H, H^{Ar}), 5.15 (s, 2H, CH), 2.30 (s, 6H, CH₃), 1.96 (s, 6H, CH₃), 1.55 (s, 6H, CH₃). ¹³**C NMR (101 MHz, CDCl₃):** δ = 141.7 (C), 141.6 (C), 141.2 (C), 140.2 (C), 135.5 (C), 135.2 (C), 130.9 (CH), 130.1 (CH), 129.7 (CH), 129.3 (CH), 129.2 (C), 128.8 (CH), 128.7 (CH), 128.4 (C), 127.4 (CH), 127.1(CH), 120.8 (q, J^{1} (C, F) = 321 Hz, CF₃), 51.6 (CH), 21.5 (CH₃), 17.9 (CH₃), 8.1 (CH₃). ¹⁹**F NMR (282 MHz, CDCl₃):** δ = -78.4 (s, CF₃). **HRMS (ESI**): *m/z*: 637.3577 calcd for C₄₇H₄₅N₂⁺ [C]⁺: found 637.3574. **IR (ATR):** 3089, 3058, 3028, 2926, 2853, 2360, 2324, 1601, 1540, 1493, 1474, 1448, 1279, 1251, 1223, 1152, 1078, 1028, 1002, 856, 781, 744, 732, 697, 673, 637, 606, 571, 549, 516 cm⁻¹.

Isomeric Ratio determined by ¹H NMR spectroscopy

		in CDCl ₃	in Acetone-d ₆	in Methanol-d ₄
Me Me				
	X = OTf	1:1.2	1:9.1	1:4.2
$\left(\begin{array}{c} \\ \end{array}\right)$	X = CI	1:1.2	1:9.0	1:4.2
$PhPh \rightarrow PhPh$ Ph χ^{\ominus} Ph	$X = BF_4$	1:1.2	1:8.7	1:4.2
1d•X				
$Me \xrightarrow{Me}_{Me} F$ $Me \xrightarrow{N}_{\oplus} F$	X = OTf X = CI X = BF ₄	1:8.3 1:9.5 1:9.7	1:10.0 1:10.0 1:10.0	1:10.0 1:8.3 1:10.0
1e•X				
$Me \qquad Me \qquad$	X = OTf X = CI X = BF ₄	1:4.3 1:5.7 1:5.0	1:5.3 1:5.0 1:5.0	1:5.6 1:5.0 1:5.0
1f•X				

Table S1. Ratios of isomers for imidazolium 1d·X, 1e·X and 1f·X as a function of the NMR solvent and the nature of the counter ion X

III Preparation palladium-NHC complexes and their resolution by chiral HPLC

General Procedure E: Synthesis of the NHC-palladium complexes 2, 3 and 4

A mixture of imidazolium tetrafluoroborate **1·BF**₄ or trifluoromethanesulfonate **1·OTf** (2.3 mmol, 2.3 equiv.), $[Pd(allyl)Cl]_2$ (1.0 mmol, 1.0 equiv.) – or $[Pd(cinnamyl)Cl]_2 - K_2CO_3$ (2.3 mmol, 2.3 equiv.) in acetone was stirred at 60 °C for 5 h. The reaction mixture was filtered through a Celite[®] pad and the solvent was removed under vacuum. The crude product was purified by silica gel column (PE/Et₂O = 1:1) to give the expected NHC-palladium complex.

Chloro[(1,2,3-n)-propenyl][(1,3-bis(2-*iso*propylphenyl)-4,5-dimethyl-1H-imidazol-2-yl)] palladium(II) *meso*-2a

According to the general procedure **E**, 1,3-bis(2-*iso*propylphenyl)-4,5-dimethyl-imidazolium tetrafluoroborate **1a-BF**₄ (150 mg, 0.36 mmol, 2.3 equiv.), $[Pd(allyl)Cl]_2$ (59 mg, 0.16 mmol, 1.0 equiv.), K_2CO_3 (100 mg, 0.72 mmol, 4.6 equiv.), afforded a yellow solid (126 mg, 87% yield). Complex **2a** was isolated a single diastereomer.

Rf = 0.54 (PE/Et₂O 1:2). **Mp** = 225.6-226.4 °C (decomposition) ¹**H NMR (400 MHz, CDCl₃):** δ = 8.01 (dd, *J*(H,H) = 7.6 and 1.3 Hz, 1H, *H*^{Ar}), 7.71 (dd, *J*(H,H) = 7.8 and 1.4 Hz, 1H, *H*^{Ar}), 7.46-7.27 (m, 6H, *H*^{Ar}), 4.78-4.62 (m, 1H, *H*^{allyl}), 3.89 (dd, *J*(H,H) = 7.5 and 2.1 Hz, 1H, *H*^{allyl}), 2.98 (dd, *J*(H,H) = 6.6 and 1.2 Hz, 1H, *H*^{allyl}), 2.82-2.62 (m, 3H, *H*^{allyl} and C*H*(CH₃)₂), 2.00 (s, 3H, CH₃), 1.90 (s, 3H, CH₃), 1.46 (dd, *J*(H,H) = 11.9 and 1.1 Hz, 1H, *H*^{allyl}), 1.30 (d, *J*(H,H) = 6.9 Hz, 3H, CH(CH₃)₂), 1.19 (d, *J*(H,H) = 6.9 Hz, 3H, CH(CH₃)₂), 1.11 (d, *J*(H,H) = 6.9 Hz, 3H, CH(CH₃)₂), 1.10 (d, *J*(H,H) = 6.9 Hz, 3H, CH(CH₃)₂). ¹³C **NMR (101 MHz, CDCl₃)**: δ = 181.8 (C), 145.1 (C), 145.1 (C), 145.1 (C), 136.8 (C), 136.0 (C), 130.8 (CH), 130.7 (CH), 129.6 (CH), 129.5 (CH), 127.0 (C), 126.7 (CH), 126.6 (CH), 126.3 (CH), 125.9 (CH), 125.7 (CH), 113.6 (CH), 71.8 (CH₂), 49.0 (CH₂), 27.9 (CH), 27.8 (CH), 24.2 (CH₃), 24.0 (CH₃), 23.4 (CH₃), 23.1 (CH₃), 9.9 (CH₃), 9.8 (CH₃). **HRMS (ESI**): *m/z*: 539.1259 calcd for C₂₆H₃₃ClN₂PdNa⁺ [M+Na]⁺: found 539.1246. **IR (ATR):** 3059, 3029, 2961, 2923, 2867, 2361, 1731, 1652, 1603, 1578, 1491, 1451, 1381, 1347, 1325, 1276, 1235, 1200, 1162, 1094, 1067, 1018, 1006, 955, 928, 919, 895, 799, 784, 759, 733, 691, 659, 627, 572, 552, 512 cm⁻¹.

X-ray diffraction: Crystals of the complex suitable for XRD were grown by slow diffusion of octane into dichloromethane. The crystal structure is shown in Figure S1.

Figure S1. Ball-and-stick representation of palladium complex *meso-***3a** (hydrogen atoms have been omitted for clarity)

Chloro[(1,2,3-n)-propenyl][(1-(2-isopropylphenyl)-3-(2-*tert*butylphenyl)-4,5-dimethyl-1H-imidazol-2-yl)] palladium(II) 2b

1-(2-*iso*propylphenyl)-3-(2-*tert*butylphenyl)-4,5-dimethyl-imidazolium trifluoromethylsufonate **1b-OTf** (140 mg, 0.28 mmol, 2.3 equiv.), [Pd(allyl)Cl]₂ (47 mg, 0.13 mmol, 1.0 equiv.), KOtBu (33 mg, 0.28 mmol, 2.3 equiv.) were dissolved in dry THF (15 mL) and the resulting mixture was stirred at 25 °C for 16 h. The reaction mixture was filtered through a Celite[®] pad and the solvent was removed under vacuum. The crude product was purified by silica gel column (PE/Et₂O = 1:1) to give the expected NHC-palladium complex **2b** as a yellow solid (104 mg, 87% yield). Complex **2b** was isolated as the diastereomer (±)-*cis*-**2b** but trace of diastereomer (±)-*trans*-**2b** cannot be ruled out (see cHPLC chromatogram).

Rf = 0.50 (PE/Et₂O 1:2). **Mp** = 79.5-79.9 °C. ¹**H NMR (400 MHz, CDCl₃):** δ = 7.75-7.05 (m, 8H, *H*^{Ar}), 4.85-4.45 (m, 1H, *H*^{allyl}), 3.95-3.75 (m, 1H, *H*^{allyl}), 3.30-3.00 (m, 1H, *H*^{allyl}), 2.90-2.60 (m, 2H, *H*^{allyl} and C*H*(CH₃)₂), 2.02-1.86 (m, 6H, CH₃), 1.55-1.45 (m, 1H, *H*^{allyl}), 1.35-1.05 (m, 15H, CH(CH₃)₂ and C(CH₃)₃). ¹³**C NMR (101 MHz, CDCl₃):** δ = 181.9 (C), 147.1 (C), 145.9 (C), 145.1 (C), 135.3 (C), 133.8 (C), 133.0 (C), 130.9 (CH), 130.1 (CH), 129.6 (CH), 129.3 (CH), 129.1 (CH), 128.9 (CH), 126.6 (CH), 126.0 (CH), 113.8 (CH), 113.4 (CH), 71.5 (CH₂), 59.7 (CH₂), 50.7 (CH₂), 50.2 (CH₂), 49.3 (CH₂), 38.3(C), 36.8 (C), 36.6 (C), 33.5 (CH₃), 32.8 (CH₃), 32.2 (CH₃), 32.0 (CH₃), 31.4 (CH₃), 29.8 (CH₂), 27.8 (CH), 27.7 (CH), 24.5 (CH₃), 24.3 (CH₃), 24.1 (CH₃), 10.4 (CH₃), 9.8 (CH₃). **HRMS (ESI**): *m/z*: 553.1416 calcd for C₂₇H₃₅ClN₂PdNa⁺ [M+Na]⁺: found 553.1417. **IR (ATR):** 2962, 2921, 2869, 2363, 2340, 1490, 1439, 1381, 1324, 1261, 1222, 1149, 1086, 1050, 1030, 916, 797, 784, 756, 725, 695, 635, 517 cm⁻¹. **Chiral HPLC analysis:** Chiralpak IG column with a UV and CD detector at λ = 254 nm; flow rate 1 mL/min; eluent: heptane/*i*PrOH/DCM 80:10:10; 1st enantiomer: Rt = 11.21 min and 2nd enantiomer: Rt = 13.38 min. (see Figure S2)

Figure S2. cHPLC analysis of palladium complex (±)-cis-2b

The preparative chiral HPLC separation was with a Chiralpak IG column (250 x 10 mm, 5 μ m) with hexane / isopropanol / dichloromethane (85/5/10) as mobile phase, flow-rate = 5 mL/min, UV detection at 280 nm with multiple injections. From 62 mg of racemic mixture, 10 mg of the first eluted enantiomer with ee > 99.5% (Figure S3) and 4 mg of the second eluted enantiomer with ee > 98.5% (Figure S4) were obtained.

	cis- 2b	cis- 2b
λ (nm)	first eluted on Chiralpak IG	second eluted on on Chiralpak IG
	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.54)	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.30)
589	- 6	+ 6
578	- 6	+ 6
546	- 7	+ 7
436	- 13	+ 13
405	- 19	+ 19

Figure S4. cHPLC analysis of the second eluted palladium complex cis-2b

Table S2. Optical rotations of complexes 2b

first eluted enantiomer : green solid line, concentration =0.206 mmol.L⁻¹ in acetonitrile. second eluted enantiomer : red dotted line, concentration = 0.206 mmol.L⁻¹ in acetonitrile. **Figure S5.** Electronic Circular Dichroism of complexes *cis*-**2**c

X-ray diffraction: Crystals of the first enantiomer of *cis*-**2b** suitable for XRD were grown by slow diffusion of octane into dichloromethane. The crystal structure is shown in Figure S6. The Flack parameter was refined to a value of zero, providing confirmation of the absolute configuration as the $(1S_a, 2R_a)$ enantiomer.

Figure S6. Ball-and-stick representation of the first enantiomer of complex $(-)-(1S_a, 2R_a)-cis-2b$ (hydrogen atoms have been omitted for clarity)

Chloro[(1,2,3-n)-propenyl][(1,3-bis(2-phenylphenyl)-4,5-dimethyl-1H-imidazol-2-yl)] palladium(II) 2c

According to the general procedure **E**, from 1,3-bis(2-phenylphenyl)-4,5-dimethyl-imidazolium trifluoromethylsufonate **1c·BF**₄ (350 mg, 0.72 mmol, 2.3 equiv.), $[Pd(allyl)Cl]_2$ (110 mg, 0.30 mmol, 1.0 equiv.), K_2CO_3 (165 mg, 1.2 mmol, 4.6 equiv.), complex **2c** was isolated as two diastereomers after silica gel column (PE/Et₂O = 1:1) 137 mg of *meso-***2c** complex (white solid) and 185 mg of chiral complex (±)-**2c** (white solid) (overall 99% yield).

Data for meso-2c are as follow:

Rf = 0.27 (PE/Et₂O 1:2) (*meso* complex). **Mp** = 221.9-222.3 °C (decomposition). ¹**H NMR (400 MHz, CDCl₃):** δ = 8.24-8.19 (m, 1H, H^{Ar}), 7.78-7.72 (m, 1H, H^{Ar}), 7.55-7.25 (m, 14H, H^{Ar}), 7.12-7.08 (m, 2H, H^{Ar}), 4.81 (tt, *J*(H,H) = 13.3 and 7.1 Hz, 1H, H^{allyl}), 3.94 (dd, *J*(H,H) = 7.6 and 2.2 Hz, 1H, H^{allyl}), 2.82 (d, *J*(H,H) = 13.5 Hz, 1H, H^{allyl}), 2.66 (d, *J*(H,H) = 6.4 Hz, 1H, H^{allyl}), 1.68 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 1.36 (d, *J*(H,H) = 11.8 Hz, 1H, H^{allyl}), 2.66 (d, *J*(H,H) = 6.4 Hz, 1H, H^{allyl}), 1.68 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 1.36 (d, *J*(H,H) = 11.8 Hz, 1H, H^{allyl}), 2.66 (d, *J*(H,H) = 6.4 Hz, 1H, H^{allyl}), 1.68 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 1.36 (d, *J*(H,H) = 11.8 Hz, 1H, H^{allyl}), 2.66 (d, *J*(H,H) = 6.4 Hz, 1H, H^{allyl}), 1.68 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 1.36 (d, *J*(H,H) = 11.8 Hz, 1H, H^{allyl}), 2.66 (d, *J*(H,H) = 6.4 Hz, 1H, H^{allyl}), 1.68 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 1.36 (d, *J*(H,H) = 11.8 Hz, 1H, H^{allyl}), 2.66 (d, *J*(H,H) = 6.4 Hz, 1H, H^{allyl}), 1.68 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 1.36 (d, *J*(H,H) = 11.8 Hz, 1H, H^{allyl}), 2.66 (CH), 130.8 (CH), 130.6 (CH), 129.5 (CH), 129.4 (CH), 129.3 (CH), 129.1 (CH), 128.9 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 127.5 (CH), 127.4 (CH), 127.3 (C), 126.4 (C), 113.8 (CH), 71.4 (CH₂), 46.6 (CH₂), 9.8 (CH₃), 9.5 (CH₃). **HRMS (ESI)**: *m/z*: 607.0947 calcd for C₃₂H₂₉N₂PdClNa⁺ [M+Na]⁺: found 607.0952. **IR (ATR)**: 3058, 2962, 2922, 2359, 2342, 1653, 1582, 1504, 1483, 1455, 1435, 1376, 1327, 1299, 1260, 1158, 1093, 1020, 1011, 935, 874, 863, 848, 801, 784, 746, 701, 668, 612, 555 cm⁻¹.

X-ray diffraction: Crystals of the complex *meso-***2c** suitable for XRD were grown by slow diffusion of octane into dichloromethane. The crystal structure is shown in Figure S7.

Figure S7. Ball-and-stick representation of complex *meso-*2c (most of hydrogen atoms have been omitted for clarity)

Data for (±)-2c are as follow:

Rf = 0.28 (PE/Et₂O 1:2) (chiral complex) Mp = 200.5-200.9 °C (decomposition). In CDCl₃ (25 °C) this complex exists in two conformers in a 3:2 ratio (unassigned). ¹H NMR chemical shifts that differ between rotamers will be denoted by (maj) and (min). ¹H NMR (400 MHz, CDCl₃): δ = 7.68 (d, J(H,H) = 7.6 Hz, 1H, H^{Ar}), 7.58-7.26 (m, 17H, H^{Ar}), 5.06-4.92 (m, 0.4H, H^{allyl}, min), 4.82-4.68 (m, 0.6H, H^{allyl}, maj), 3.96 (d, J(H,H) = 6.7 Hz, 0.4H, H^{allyl}, min), 3.90 (d, J(H,H) = 6.7 Hz, 0.6H, H^{allyl}, maj), 3.32 (d, J(H,H) = 6.6 Hz, 0.4H, H^{allyl}, min), 2.87 (d, J(H,H) = 13.4 Hz, 0.4H, H^{allyl}, min), 2.82 (d, J(H,H) = 13.4 Hz, 0.6H, H^{allyl}, *maj*), 2.51 (d, *J*(H,H) = 6.6 Hz, 0.6H, *H*^{allyl}, *maj*), 1.75 (d, *J*(H,H) = 11.7 Hz, 0.4H, *H*^{allyl}, *min*), 1.69 (d, *J*(H,H) = 12.1 Hz, 0.6H, H^{aliyl} , maj), 1.59 (s, 3H, CH₃), 1.35 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ = 180.8 (C), 180.5 (C), 139.5 (C), 138.7 (C), 138.4 (C), 138.3 (C), 136.5 (C), 136.2 (C), 130.8 (CH), 130.7 (CH), 129.7 (CH), 129.6 (CH), 129.3 (CH), 129.2 (CH), 128.5 (CH), 128.4 (CH), 128.0 (CH), 127.8 (CH), 127.6 (CH), 126.8 (C), 126.7 (C), 114.3 (CH), 113.9 (CH), 72.3 (CH₂), 71.9 (CH₂), 50.6 (CH₂), 50.0 (CH₂), 9.6 (CH₃), 9.3 (CH₃). HRMS (ESI): *m/z*: 607.0947 calcd for C₃₂H₂₉N₂PdClNa⁺ [M+Na]⁺: found 607.0950. IR (ATR): 3057, 3026, 2974, 2945, 2921, 2361, 1734, 1655, 1598, 1582, 1504, 1480, 1453, 1434, 1375, 1321, 1260, 1227, 1202, 1184, 1154, 1106, 1075, 1049, 1008, 930, 882, 848, 799, 783, 744, 718, 701, 626, 559, 534, 513 cm⁻¹. Chiral HPLC analysis: Chiralpak IG column with a UV and CD detector at λ = 254 nm; flow rate 1 mL/min; eluent : heptane/iPrOH/DCM 80:10:10; 1st enantiomer: Rt = 12.25 min and 2nd enantiomer: Rt = 13.08 min (see Figure S8).

	DAI	01 C, Sig=254,4	4 Ref=off				
mAU	250 - 200 - 150 - 100 - 50 - 0 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 0	Ch Heptane / ethai (8 2 3 4	iralpak IG nol / dichloron 0/10/10) 5 6	nethane 7 8 9 10 Time [n		12/14 ⁸ 13.0 ¹¹ 12 13 14 15 16	17 18 19 20
	RT [min]	Area	Area%	Capacity Fact	or	Enantioselectivity	Resolution (USP)
	12.25	6255	46.78	3.15			
	13.08	7116	53.22	3.43		1.09	1.16

Sum	13372	100.00			

Figure S8. cHPLC analysis of palladium complex (±)-2c

The preparative chiral HPLC separation was with a Chiralpak IG column (250 x 10 mm, 5 μ m) with hexane / isopropanol / dichloromethane (80/10/10) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm with multiple injections. From 14 mg of racemic mixture, 4 mg of the first eluted enantiomer with ee > 99.5% (Figure S9) and 3 mg of the second eluted enantiomer with ee > 99.5% (Figure S10) were obtained.

	2	
	20	20
λ (nm)	first eluted on Chiralpak IG	second eluted on on Chiralpak IG
	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.21)	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.095)
589	- 300	+ 300
578	- 315	+ 315
546	- 370	+ 370
436	- 760	+ 760
405	- 1000	+ 1000

Table S3. Optical rotations of enantiomers of complexes 2c

First eluted enantiomer: green solid line, concentration = 0.228 mmol.L⁻¹ in acetonitrile. second eluted enantiomer: red dotted line, concentration = 0.208 mmol.L⁻¹ in acetonitrile. **Figure S11.** Electronic Circular Dichroism of complexes **2c**

X-ray diffraction: Crystals of racemic complex (±)-**2c** suitable for XRD were grown by slow diffusion of octane into dichloromethane. The crystal structure is shown in Figure S12.

Figure S12. Ball-and-stick representation of complex (±)-2c (most of hydrogen atoms have been omitted for clarity)

Chloro(allyl)[(1-(2-benzhydryl)-3-(2-benzhydryl)-4,5-dimethyl-2,3-dihydro-1H-imidazol-2-yl)] palladium(II) 2d

1-(2-benzhydrylphenyl)-3-(2-benzhydrylphenyl)-4,5-dimethyl-imidazolium trifluoromethylsufonate 1d-OTf (546 mg, 0.74 mmol) was suspended in MeOH (40 mL) and Dowex-22 Cl (0.82 g)was added in the mixture which was stirred at 25 °C for 14 h. The solvent was removed under vacuum. The residue was dissolved in dichloromethane (50 mL), dried by Na₂SO₄ and filtered. The solvent was removed under vacuum to give the imidazolium chloride which is directly used without further purification.

A mixture of the imidazolium chloride and KBF₄ (189 mg, 1.5 mmol, 4.6 equiv.), in a 1:1 mixture of DCM/H₂O (50 mL) was stirred at room temperature for 1 h. The aqueous phase was extracted by DCM (20 mL * 4) and the combined organic phase was dried by Na₂SO₄ and filtered. The solvent was removed under vacuum to give the imidazolium tetrafluoroborate **1d·BF**₄ which is directly used without further purification.

According to the general procedure **E**, from imidazolium tetrafluoroborate $1d \cdot BF_4$, [Pd(allyl)Cl]₂ (117 mg, 0.32 mmol), K₂CO₃ (204 mg, 1.48 mmol, 4.6 equiv.), the silica gel chromatography allowed to separate the chiral complex (white solid, 138 mg, 28% yield) from the *meso* complex (white solid, 308 mg, 62% yield).

Data for meso -2d are as follow:

Rf = 0.50 (PE/Et₂O 1:2). **Mp** = 250.3-251.2°C (decomposition). ¹**H NMR (400 MHz, CDCl₃):** δ = 8.07-8.01 (m, 1H, H^{Ar}), 7.74-7.68 (m, 1H, H^{Ar}), 7.45-6.95 (m, 26H, H^{Ar}), 5.64 (s, 1H, CH), 5.56 (s, 1H, CH), 4.68 (tt, J(H, H)= 13.5 and 7.4 Hz, 1H, H^{allyl}), 3.93 (dd, J(H, H)= 7.4 and 2.0 Hz, 1H, H^{allyl}), 2.76 (d, J(H, H)= 13.5 Hz, 1H, H^{allyl}), 2.46 (d, J(H, H)= 6.7 Hz, 1H, H^{allyl}), 1.38 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 1.25-1.15 (m, 1H, H^{allyl}). ¹³C **NMR (101 MHz, CDCl₃**): δ = 182.4 (C), 143.7 (C), 143.2 (C), 142.6 (C), 142.1 (C), 140.9 (C), 140.1 (C), 138.3 (C), 137.5 (C), 132.0 (CH), 131.7 (CH), 130.6 (CH), 130.5 (CH), 129.7 (CH), 129.6 (CH), 129.5 (CH), 129.4 (CH), 129.3 (CH), 129.2 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.2 (CH), 127.7 (C), 127.5 (CH), 127.0 (CH), 126.8 (CH), 126.6 (CH), 113.8 (CH), 72.1 (CH₂), 51.1 (CH), 50.7 (CH), 49.4 (CH₂), 9.4 (CH₃), 9.2 (CH₃). **HRMS (ESI**): *m/z*: 785.1898 calcd for C₄₆H₄₁ClN₂PdNa⁺ [M+Na]⁺: found 785.1896 (0.3 ppm). **IR (ATR):** 3058, 3024, 2923, 2361, 2334, 1698, 1684, 1652, 1597, 1558, 1541, 1507, 1489, 1449, 1378, 1326, 1268, 1237, 1182, 1075, 1030, 1003, 922, 898, 784, 754, 729, 699, 655, 620, 605, 534 cm⁻¹.

Data for (±)-2d are as follow:

Rf = 0.54 (PE/Et₂O 1:2). **Mp** = 224.3-224.6°C (decomposition). In CDCl₃ (25 °C), this complex exists in two isomeric forms in a 2.3:1 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H **NMR (400 MHz, CDCl₃):** δ = 7.45-6.95 (m, 29H, *H*^{Ar} and *CH*), 6.43 (s, 1H, *CH*), 4.95-4.80 (m, 0.7H, *H*^{allyl}, *maj*), 4.70-4.55 (m, 0.3H, *H*^{allyl}, *min*), 4.13-4.05 (m, 1H, *H*^{allyl}), 3.08-2.96 (m, 1.7H, *H*^{allyl}), 2.87 (d, *J*(H,H)= 5.5 Hz, 0.3H, *H*^{allyl}, *min*), 1.85 (d, *J*(H,H)= 11.8 Hz, 0.3H, *H*^{allyl}, *min*), 1.31 (d, *J*(H,H)= 12.0 Hz, 0.7H, *H*^{allyl}, *maj*), 0.98 (s, 1.8H, *CH*₃, *min*), 0.94 (s, 4.2H, *CH*₃, *maj*). ¹³C **NMR (101 MHz, CDCl₃):** δ = 177.1 (*C*), 176.8 (*C*), 143.4 (*C*), 142.4 (*C*), 142.3 (*C*), 142.1 (*C*), 137.9 (*C*), 137.8 (*C*), 130.2 (*C*H), 129.9 (*C*H), 129.8 (*C*H), 129.2 (*C*H), 128.3 (*C*H), 128.2 (*C*H), 126.8 (*C*H), 126.5 (*C*H), 126.4 (*C*H), 114.7 (*C*H), 72.3 (*C*₂), 71.0 (*C*H₂), 51.3 (*C*H₂), 51.1 (*C*H), 50.2 (*C*H₂), 8.7 (*C*H₃), 8.6 (*C*H₃). **HRMS**

(ESI): m/z: 785.1898 calcd for C₄₆H₄₁ClN₂PdNa⁺ [M+Na]⁺: found 785.1896 (0.3 ppm). IR (ATR): 3049, 2953, 2915, 2859, 2358, 2342, 2119, 1868, 1845, 1678, 1600, 1564, 1541, 1507, 1469, 1451, 1438, 1428, 1364, 1353, 1332, 1311, 1280, 1261, 1223, 1199, 1149, 1118, 1089, 1043, 1032, 1018, 980, 967, 945, 912, 874, 835, 813, 779, 755, 733, 678, 658, 647, 613, 594, 572, 526, 512 cm⁻¹. Chiral HPLC analysis: Chiralpak IG column with a UV and CD detector at λ = 254 nm; flow rate 1 mL/min; eluent: Heptane / ethanol / dichloromethane 60:10:30, 1st enantiomer: Rt = 3.69 min and 2nd enantiomer: Rt = 4.89 min. (see Figure S13).

Figure S13. cHPLC analysis of palladium complex (±)-2d

The preparative chiral HPLC separation was with a Chiralpak IG column (250 x 10 mm, 5 μ m) with hexane / ethanol / dichloromethane (60/10/30) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm with multiple injections. From 59 mg of racemic mixture, 20 mg of the first eluted enantiomer with ee > 99.5% (Figure S14) and 20 mg of the second eluted enantiomer with ee > 99.5% were obtained (Figure S15).

Figure S14. cHPLC analysis of the first eluted palladium complex 2d

Figure S15. cHPLC analysis of the second eluted palladium complex 2d

	2d	2d
λ (nm)	first eluted on Chiralpak IG	second eluted on Chiralpak IG
	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.24)	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.22)
589	- 84	+ 84
578	- 88	+ 88
546	- 102	+ 102
436	- 186	+ 186

Table S4. Optical rotations of complexes 2d

First eluted enantiomer: green solid line, concentration = 0.113 mmol.L⁻¹ in acetonitrile. second eluted enantiomer: red dotted line, concentration = 0.105 mmol.L⁻¹ in acetonitrile. **Figure S16.** Electronic Circular Dichroism of complexes **2d**

X-ray diffraction: Crystals of the second enantiomer suitable for XRD were grown by slow diffusion of octane into dichloromethane. The crystal structure is shown in **Figure S17**. The Flack parameter was refined to a value of zero, providing confirmation of the absolute configuration as the (R_a, R_a) enantiomer.

Figure S17. Ball-and-stick representation of the second enantiomer of $(+)-(R_a,R_a)-2d$ (most of hydrogen atoms have been omitted for clarity)

$\label{eq:chloro} Chloro(allyl)[(1-(2-benzhydryl-6-fluoro-4-methylphenyl)-3-(2-benzhydryl-6-fluoro-4-methylphenyl)-4,5-dimethyl-2,3-dihydro-1H-imidazol-2-yl)] palladium(II) (\pm)-2e$

1-(2-benzhydryl-6-fluoro-4-methylphenyl)-3-(2-benzhydryl-6-fluoro-4-methylphenyl)-4,5-dimethylimidazolium trifluoromethylsufonate **1e-OTf** (195 mg, 0.25 mmol), was suspended in MeOH (20 mL) and Dowex-22 Cl (0.28 g) was added in the mixture which was stirred at 25 °C for 14 h. The solvent was removed under vacuum. The residue was dissolved in dichloromethane (50 mL), dried by Na₂SO₄ and filtered. The solvent was removed under vacuum to give the imidazolium chloride which is directly used without further purification.

A mixture of the imidazolium chloride and KBF₄ (63 mg, 0.50 mmol, 4.6 equiv.), in a 1:1 mixture of DCM/H₂O (20 mL) was stirred at room temperature for 1 h. The aqueous phase was extracted by DCM (20 mL * 4) and the combined organic phase was dried by Na₂SO₄ and filtered. The solvent was removed under vacuum to give the imidazolium tetrafluoroborate **1e·BF₄** which is directly used without further purification.

According to the general procedure from imidazolium tetrafluoroborate $1e \cdot BF_4$, [Pd(allyl)Cl]₂ (39 mg, 0.11 mmol), K₂CO₃ (68 mg, 0.50 mmol, 4.6 equiv.) a white solid was obtained (120 mg, 72% yield). Rf = 0.54 (PE/Et₂O 1:2). Mp >280 °C (decomposition). In CDCl₃ (25 °C), this complex exists in two isomeric forms in a 1.1:1 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹**H NMR (400 MHz, CDCI₃):** δ = 7.35-6.90 (m, 23H, H^{Ar} and CH), 6.67 (s, 2H, H^{Ar}), 6.35 (s, 1H, CH), 5.00-4.85 (m, 0.7H, H^{allyl}, maj), 4.78-4.63 (m, 0.3H, H^{allyl}, min), 4.17-4.08 (m, 1H, H^{allyl}), 3.23 (d, J(H,H)= 6.6 Hz, 0.7H, H^{allyl}, maj), 3.14-2.98 (m, 1.3H, H^{allyl}), 2.34 (s, 1.8H, Ar-CH₃, maj), 2.31 (s, 4.2H, Ar-CH₃, min), 1.98 (d, J(H,H)= 11.9 Hz, 0.3H, H^{allyl}, min), 1.43 (d, J(H,H)= 12.0 Hz, 0.7H, H^{allyl}, maj), 0.91 (s, 1.8H, CH₃, min), 0.88 (s, 4.2H, CH₃, maj). ¹³C NMR (101 MHz, CDCl₃): δ = 179.1 (C), 178.4 (C), 141.9 (C), 141.1 (C), 140.9 (C), 140.8 (C), 130.1 (CH), 129.8 (CH), 128.3 (CH), 128.2 (CH), 126.6 (CH), 126.5 (CH), 126.4 (CH), 126.1 (C), 123.7 (C), 123.6 (C), 115.3 (CH), 114.7 (CH), 72.1 (CH₂), 70.6 (CH_2) , 51.4 (CH_2) , 51.2 (CH), 50.0 (CH_2) , 21.9 (CH_3) , 7.6 (CH_3) . ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -117.6$ (s, F), -117.7 (s, F), -121.3 (s, F), -123.3 (s, F). HRMS (ESI): m/z: 849.2024 calcd for C₄₈H₄₃ClF₂N₂PdNa⁺ [M+Na]⁺: found 849.2019 (0.6 ppm). IR (ATR): 3059, 3026, 2924, 2863, 2358, 2333, 1733, 1716, 1698, 1683, 1663, 1653, 1621, 1588, 1558, 1541, 1493, 1451, 1382, 1307, 1232, 1153, 1118, 1078, 1032, 985, 934, 848, 820, 786, 744, 702, 668, 630, 617, 585, 565, 541, 524 cm⁻¹. Chiral HPLC analysis: Chiralpak IG column with a UV and CD detector at λ = 254 nm; flow rate 1 mL/min; eluent: Heptane / ethanol / dichloromethane 60:20:2; 1st enantiomer: Rt = 3.49 min and 2nd enantiomer: Rt = 5.23 min. (see Figure S18).

Figure S18. cHPLC analysis of palladium complex (±)-2e

The preparative chiral HPLC separation was with a Chiralpak IG column (250 x 10 mm, 5 μ m) with hexane / ethanol / dichloromethane (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm with multiple injections. From 104 mg of racemic mixture, 47 mg of the first eluted

enantiomer with ee > 99.0% (Figure S19) and 45 mg of the second eluted enantiomer with ee > 99.0% were obtained (Figure S20).

Figure S20. cHPLC analysis of the second eluted palladium complex 2e

	2e	2e
λ (nm)	first eluted on Chiralpak IG	second eluted on Chiralpak IG
	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.2)	[α] ²⁵ (CH ₂ Cl ₂ , c =0.22)
589	- 110	+ 110
578	- 113	+ 113
546	- 132	+ 132
436	- 240	+ 241

Table S5. Optical rotations of complexes 2e

First eluted enantiomer: green solid line, concentration = 0.249 mmol.L⁻¹ in acetonitrile. second eluted enantiomer: red dotted line, concentration = 0.246 mmol.L⁻¹ in acetonitrile. **Figure S21.** Electronic Circular Dichroism of complexes **2e**

X-ray diffraction: Crystals of the first enantiomer suitable for XRD were grown by slow diffusion of octane into dichloromethane. The crystal structure is shown in Figure S22. The Flack parameter was refined to a value of zero, providing confirmation of the absolute configuration as the (R_a, R_a) enantiomer.

Figure S22. Ball-and-stick representation of the first enantiomer of $(-)-(R_a, R_a)-2e$ (hydrogen atoms have been omitted for clarity)

Chloro(allyl)[(1-(2-benzhydryl-4,6-dimethylphenyl)-3-(2-Benzhydryl-4,6-dimethylphenyl)-4,5-dimethyl-2,3-dihydro-1H-imidazol-2-yl)] palladium(II) 2f

According to the general procedure **E**, from 1-(2-benzhydryl-4,6-dimethylphenyl)-3-(2-benzhydryl-4,6-dimethylphenyl)-4,5-dimethyl-imidazolium trifluoromethylsufonate **1f-OTf** (100 mg, 0.13 mmol, 2.3 equiv.) [Pd(allyl)Cl]₂ (19 mg, 0.053 mmol), K₂CO₃ (36 mg, 0.26 mmol, 4.6 equiv.), two diastereomeric complexes, partially separable by silica gel chromatography were obtained (ratio 5:1) (68 mg, 79% yield, 3 steps).

Chiral HPLC analysis: Chiralpak IG column with a UV and CD detector at $\lambda = 254$ nm; flow rate 1 mL/min; eluent: Heptane/ethanol/dichloromethane 60:10:30; 1st enantiomer: Rt = 4.32 min, meso complex: Rt = 5.21 min, and 2nd enantiomer: Rt = 11.75 min. (see Figure S23).

Figure S23. cHPLC analysis of palladium complexes 2f

According to the general procedure **E**, from diastereomerically pure 1-(2-benzhydryl-4,6dimethylphenyl)-3-(2-benzhydryl-4,6-dimethylphenyl)-4,5-dimethyl-imidazolium tetrafluoroborate **1f·BF**₄ (850 mg, 1.17 mmol, 2.3 equiv.), [Pd(allyl)Cl]₂ (205 mg, 0.56 mmol), K₂CO₃ (324 mg, 2.35 mmol, 4.6 equiv.) complex (±)-**2f** was obtained as single diastereomer and as a white solid (850 mg, 92% yield). Rf = 0.55 (PE/Et₂O 1:2). Mp = 261.3-261.5°C (decomposition). In CDCl₃ (25 °C), this complex exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹**H NMR (400 MHz, CDCI₃):** δ = 7.30-7.10 (m, 17H, H^{Ar} and CH), 7.05-6.95 (m, 6H, H^{Ar}), 6.75-6.71 (m, 2H, H^{Ar}), 6.10 (s, 1H, CH), 4.95-4.80 (m, 0.7H, H^{allyl}, maj), 4.68-4.53 (m, 0.3H, H^{allyl}, min), 4.14 (dd, J(H,H)= 7.6 and 2.2 Hz, 0.7H, H^{allyl}, maj), 4.05 (J(H,H)= 7.6 and 2.2 Hz, 0.3H, H^{allyl}, min), 3.07 (d, J(H,H)= 13.7 Hz, 0.7H, H^{allyl}, maj), 3.00 (d, J(H,H)= 13.7 Hz, 0.3H, H^{allyl}, min), 2.94 (d, J(H,H)= 6.8 Hz, 0.7H, H^{allyl}, maj), 2.62 (d, J(H,H)= 6.8 Hz, 0.3H, H^{allyl}, min), 2.32-2.18 (m, 12H, Ar-CH₃), 1.69 (d, J(H,H)= 11.8 Hz, 0.3H, H^{allyl}, min), 1.34 (dd, J(H,H)= 11.3 and 1.5 Hz, 0.7H, H^{allyl}, maj), 0.99 (s, 2.5H, CH₃, maj), 1.88 (s, 3.5H, CH₃, min). ¹³C NMR (101 MHz, CDCl₃): δ = 178.8 (C), 178.4 (C), 143.6 (C), 142.5 (C), 142.3 (C), 142.2 (C), 138.6 (C), 138.5 (C), 135.0 (C), 134.9 (C), 130.2 (CH), 130.1 (CH), 130.0 (CH), 129.9 (CH), 129.3 (CH), 128.2 (CH), 128.0 (CH), 127.2 (C), 126.6 (CH), 126.2 (CH), 126.1 (CH), 114.8 (CH), 114.7 (CH), 73.6 (CH₂), 71.6 (CH₂), 70.0 (CH₂), 51.1 (CH), 50.9 (CH), 50.0 (CH₂), 48.5 (CH₂), 21.6 (CH₃), 19.2(CH₃), 15.4 (CH₃), 8.3 (CH₃), 8.1 (CH₃). HRMS (ESI): *m/z*: 841.2526 calcd for C₅₀H₄₉ClN₂PdNa⁺ [M+Na]*: found 841.2524 (0.2 ppm). IR (ATR): 3056, 3022, 2922, 2856, 2361, 2341, 2218, 1748, 1716, 1698, 1684, 1654, 1599, 1558, 1541, 1507, 1492, 1475, 1447, 1372, 1313, 1296, 1184, 1156, 1076, 1031, 1002, 910, 886, 854, 821, 778, 744, 733, 699, 626, 565 cm⁻¹. Chiral HPLC analysis: Chiralpak IG column with a UV and CD detector at λ = 254 nm; flow rate 1 mL/min; eluent: Heptane/ethanol/dichloromethane 60:10:30; 1st enantiomer: Rt = 3.35 min and 2nd enantiomer: Rt = 4.72 min. (see Figure S24).

Figure S24. cHPLC analysis of palladium complex 2f

The preparative chiral HPLC separation was with a Chiralpak IG column (250 x 10 mm, 5 μ m) with hexane/ethanol/dichloromethane (60/10/30) as mobile phase, flow-rate = 5 mL/min, UV detection at

254 nm with multiple injections (45 injections every 5 min). From 840 mg of racemic mixture, 420 mg of the first eluted enantiomer with ee > 99.5% (Figure S25) and 401 mg of the second eluted enantiomer with ee > 99.5% were obtained Figure S26).

Figure S25. cHPLC analysis of the first eluted palladium complex 2f

Figure S26. cHPLC analysis of the second eluted palladium complex 2f

	2f	2f
λ (nm)	first eluted on Chiralpak IG	second eluted on Chiralpak IG
	[α] ²⁵ (CH ₂ Cl ₂ , c =0.11)	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.1)
589	- 116	+ 116
578	- 119	+ 119
546	- 140	+ 140
436	- 270	+ 270
405	- 353	+ 353

Table S6. Optical rotations of complexes 2f

First eluted enantiomer: green solid line, concentration = 0.110 mmol.L⁻¹ in acetonitrile. second eluted enantiomer: red dotted line, concentration = 0.110 mmol.L⁻¹ in acetonitrile. **Figure S27.** Electronic Circular Dichroism of complexes **2f**

X-ray diffraction: Crystals of the second enantiomer of complex **2f** suitable for XRD were grown by slow diffusion of octane into dichloromethane. The crystal structure is shown in Figure S28. The Flack parameter was refined to a value of zero, providing confirmation of the absolute configuration as the (R_a, R_a) enantiomer.

Figure S28. Ball-and-stick representation of the second enantiomer of $(+)-(R_a,R_a)-2f$ (hydrogen atoms have been omitted for clarity)

Chloro(cinnamyl)[(1-(2-benzhydrylphenyl)-3-(2-benzhydrylphenyl)-4,5-dimethyl-2,3-dihydro-1Himidazol-2-yl)] palladium(II) *meso*-3d

1-(2-benzhydrylphenyl)-3-(2-benzhydrylphenyl)-4,5-dimethyl-imidazolium trifluoromethylsufonate 1d-OTf (195 mg, 0.25 mmol) was suspended in MeOH (25 mL) and Dowex-22 Cl (0.33 g) was added in the mixture which was stirred at 25 °C for 14 h. The solvent was removed under vacuum. The residue was dissolved in dichloromethane (50 mL), dried by Na₂SO₄ and filtered. The solvent was removed under vacuum to give the imidazolium chloride which is directly used without further purification.

A mixture of the imidazolium chloride and KBF_4 (76 mg, 0.60 mmol, 4.6 equiv.), in a 1:1 mixture of DCM/H₂O (20 mL) was stirred at room temperature for 1 h. The aqueous phase was extracted by DCM (20 mL x 4) and the combined organic phase was dried by Na₂SO₄ and filtered. The solvent was removed under vacuum to give the imidazolium tetrafluoroborate which is directly used without further purification.

According to the general procedure **E**, from imidazolium tetrafluoroborate salt, $[Pd(cinamyl)Cl]_2$ (67 mg, 0.13 mmol), K₂CO₃ (83 mg, 0.60 mmol, 4.6 equiv.) a white solid was isolated (162 mg, 78% yield). ¹H NMR spectroscopy proves that this compound is the *meso* diastereomer, without any traces of the expected chiral complex.

Rf = 0.55 (PE/Et₂O 1:2). **Mp** = 170.9-171.8 °C. ¹**H NMR (400 MHz, CDCl₃):** δ = 8.18-8.06 (m, 1H, H^{Ar}), 7.88-7.75 (m, 1H, H^{Ar}), 7.60-7.05 (m, 26H, H^{Ar}), 5.68 (s, 2H, CH), 5.08-4.92 (m, 1H, $H^{cinamyl}$), 4.34 (d, J(H,H)= 12.5 Hz, 1H, $H^{cinamyl}$), 2.60-2.35 (m, 1H, $H^{cinamyl}$), 1.55-1.25 (m, 7H, CH₃ and $H^{cinamyl}$). ¹³C **NMR (101 MHz, CDCl₃):** δ = 181.6 (C), 143.6 (C), 143.1 (C), 142.5 (C), 142.2 (C), 140.8 (C), 140.4 (C), 138.5(C), 138.2 (C), 137.7 (C), 131.9 (CH), 130.6 (CH), 129.6 (CH), 129.5 (CH), 129.2 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 127.3 (C), 126.9 (CH), 126.7 (CH), 126.6 (CH), 108.9 (CH), 88.9 (CH), 50.9 (CH), 46.8 (CH₂), 29.4(CH), 9.3 (CH₃). **HRMS (ESI**): m/z: 861.2213 calcd for C₅₂H₄₅ClN₂PdNa⁺ [M+Na]⁺: found 861.2205. **IR (ATR):** 3055, 3024, 2963, 2922, 2362, 2332, 1699, 1653, 1597, 1488, 1447, 1374, 1319, 1281, 1250, 1180, 1155, 1090, 1075, 1049, 1030, 1003, 967, 919, 817, 784, 750, 728, 696, 656, 619, 605, 535, 524 cm⁻¹.

Chloro(cinnamyl)[(1-(2-benzhydryl-6-fluoro-4-methylphenyl)-3-(2-benzhydryl-6-fluoro-4-methylphenyl)-4,5-dimethyl-2,3-dihydro-1H-imidazol-2-yl)] palladium(II) (±)-3e

1-(2-benzhydryl-6-fluoro-4-methylphenyl)-3-(2-benzhydryl-6-fluoro-4-methylphenyl)-4,5-dimethylimidazolium trifluoromethylsufonate **1e-OTf** (290 mg, 0.36 mmol, 2.3 equiv.) was suspended in MeOH (25 mL) and Dowex-22 Cl (0.33 g) was added in the mixture which was stirred at 25 °C for 14 h. The solvent was removed under vacuum. The residue was dissolved in dichloromethane (50 mL), dried by Na_2SO_4 and filtered. The solvent was removed under vacuum to give the imidazolium chloride which is directly used without further purification.

A mixture of the imidazolium chloride and KBF₄ (76 mg, 0.60 mmol, 4.6 equiv.), in a 1:1 mixture of DCM/H₂O (20 mL) was stirred at room temperature for 1 h. The aqueous phase was extracted by DCM (20 mL x 4) and the combined organic phase was dried by Na₂SO₄ and filtered. The solvent was removed under vacuum to give the imidazolium tetrafluoroborate which is directly used without further purification.

According to the general procedure **E**, from 1-(2-benzhydryl-6-fluoro-4-methylphenyl)-3-(2-benzhydryl-6-fluoro-4-methylphenyl)-4,5-dimethyl-imidazolium tetrafluoroborate (290 mg, 0.36 mmol, 2.3 equiv.), [Pd(cinamyl)Cl]₂ (82 mg, 0.16 mmol), K_2CO_3 (99 mg, 0.72 mmol, 4.6 equiv.) a white solid was obtained (194 mg, 75% yield).

Rf = 0.55 (PE/Et₂O 1:2). Mp = 270.8-271.4 °C (decomposition). In CDCl₃ (25 °C), this complex exists in two isomeric forms in a 1:1 ratio (unassigned). ¹H NMR (400 MHz, CDCI₃): δ = 7.60-6.80 (m. 30H, H^{Ar} and CH), 6.40 (s, 1H, CH), 5.55-5.40 (m, 0.5H, H^{cinamyl}), 5.25-5.15 (m, 0.5H, H^{cinamyl}), 4.86 (d, J(H,H)= 13.1 Hz, 0.5H, H^{cinamyl}), 4.70 (d, J(H,H)= 12.7 Hz, 0.5H, H^{cinamyl}), 3.24 (d, J(H,H)= 6.7 Hz, 0.5H, H^{cinamyl}), 3.14 (d, J(H,H)= 6.9 Hz, 0.5H, H^{cinamyl}), 2.52-2.41 (m, 6H, Ar-CH₃), 2.13 (d, J(H,H)= 11.5 Hz, 0.5H, H^{cinamyl}), 1.67(d, J(H,H)= 11.5 Hz, 0.5H, H^{cinamyl}), 1.06 (s, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ = 178.3 (C), 177.2 (C), 159.7 (C), 157.2 (C), 140.9 (C), 140.8 (C), 138.2 (C), 137.6 (C), 130.1 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.2 (CH), 127.9 (CH), 127.4 (CH), 127.3 (CH), 127.2 (CH), 126.8 (CH), 125.6 (CH), 123.7 (C), 123.6 (C), 114.8 (CH), 109.2 (CH), 108.9 (CH), 91.6 (CH), 88.5 (CH), 51.1 (CH), 48.3 (CH₂), 46.0 (CH₂), 30.5 (CH₃), 22.0 (CH₃), 7.7 (CH₃). ¹⁹F NMR (282 MHz, CDCI₃): δ = -115.2 (s, F), -116.0 (s, F), -117.7 (s, F), -118.4 (s, F), -118.5 (s, F), -121.6 (s, F), -123.2 (s, F). IR (ATR): 3058, 3025, 2922, 2358, 2222, 1664, 1619, 1583, 1491, 1449, 1381, 1306, 1177, 1152, 1117, 1076, 1031, 984, 908, 848, 820, 786, 728, 700, 643, 629, 617, 584, 566, 556, 541, 522 cm⁻¹. HRMS (ESI): *m/z*: 925.2339 calcd for C₅₄H₄₇ClF₂N₂PdNa⁺ [M+Na]⁺: found 925.2345. Chiral HPLC analysis: Chiralpak IG column with a UV and CD detector at λ = 254 nm; flow rate 1 mL/min; eluent: Heptane / ethanol / dichloromethane 85:5:10; 1st enantiomer: Rt = 8.52min and 2nd enantiomer: Rt = 9.53 min. (see Figure S29).

Figure S29. cHPLC analysis of palladium complex (±)-3e

The preparative chiral HPLC separation was with a Chiralpak IG column (250 x 10 mm, 5 μ m) with hexane / ethanol / dichloromethane (85/5/10) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm with multiple injections. From 160 mg of racemic mixture, 45 mg of the first eluted enantiomer with ee > 99.5% (Figure S30) and 42 mg of the second eluted enantiomer with ee > 97% (Figure S31).

Figure S30. cHPLC analysis of the first eluted palladium complex 3e

Figure S31. cHPLC analysis of the second eluted palladium complex 3e

	Зе	Зе
λ (nm)	first eluted on Chiralpak IG	second eluted on Chiralpak IG
	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.21)	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.22)
589	- 60	+ 60
578	- 63	+ 64
546	- 71	+ 72

Table S7. Optical rotations of complexes 3e

First eluted enantiomer: green solid line, concentration = 0.106 mmol.L⁻¹ in acetonitrile. second eluted enantiomer: red dotted line, concentration = 0.102 mmol.L⁻¹ in acetonitrile. **Figure S32.** Electronic Circular Dichroism of complexes **3e**

Chloro(cinnamyl)[(1-(2-benzhydryl-4,6-dimethylphenyl)-3-(2-Benzhydryl-4,6-dimethylphenyl)-4,5-dimethyl-2,3-dihydro-1H-imidazol-2-yl)] palladium(II) 3f

According to the general procedure **E**, from 1-(2–benzhydryl-4,6-dimethylphenyl)-3-(2–benzhydryl-4,6-dimethylphenyl)-4,5-dimethyl-imidazolium tetrafluoroborate **1f·BF**₄ (270 mg, 0.35 mmol, 2.3 equiv.), [Pd(cinamyl)Cl]₂ (78 mg, 0.15 mmol), K₂CO₃ (95 mg, 0.70 mmol, 4.6 equiv.) the expected complex **3f** was obtained as inseparable mixture of diastereomer (5:1) and as a white solid (220 mg, 82% yield).

Chiral HPLC analysis: Chiralpak IG column with a UV and CD detector at λ = 254 nm; flow rate 1 mL/min; eluent: Heptane / ethanol / dichloromethane 90:5:5; 1st enantiomer and *meso*-complex: Rt = 7.58 min and 2nd enantiomer: Rt = 11.58 min. (see Figure S33)

Figure S33: cHPLC analysis of palladium complex 3f

According to the general procedure **E**, from diastereomerically pure 1-(2–benzhydryl-4,6-dimethylphenyl)-3-(2–benzhydryl-4,6-dimethylphenyl)-4,5-dimethyl-imidazolium tetrafluoroborate **1f·BF**₄ (160 mg, 0.22 mmol, 2.3 equiv.), [Pd(cinamyl)Cl]₂ (52 mg, 0.10 mmol), K₂CO₃ (61 mg, 0.44 mmol, 4.6 equiv.) the expected complex **3f** was obtained as a single diastereomer and as a white solid (160 mg, 90% yield).

Chiral HPLC analysis: Chiralpak IG column with a UV and CD detector at $\lambda = 254$ nm; flow rate 1 mL/min; eluent: Heptane / ethanol / dichloromethane 90:5:5; 1st enantiomer and *meso*-complex: Rt = 7.81 min and 2nd enantiomer: Rt = 12.18 min. (see Figure S34)

Figure S34. cHPLC analysis of palladium complex 3f
The preparative chiral HPLC separation was with a Chiralpak IG column (250 x 10 mm, 5 μ m) with hexane / ethanol / dichloromethane (90/5/5) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm with multiple injections. From 150 mg of racemic mixture, 54 mg of the first eluted enantiomer with ee > 99.5% (

Figure S36).

	3f	3f
λ (nm)	first eluted on Chiralpak IG	second eluted on Chiralpak IG
	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =)	[α] _λ ²⁵ (CH ₂ Cl ₂ , c =0.186)

578	not determined	+ 75
546	not determined	+ 88
436	not determined	+ 177

Table S8. Optical rotations of complexes 3f

First eluted enantiomer: green solid line, concentration = 0.105 mmol.L⁻¹ in acetonitrile. Second eluted enantiomer: red dotted line, concentration = 0.106 mmol.L⁻¹ in acetonitrile. **Figure S37.** Electronic Circular Dichroism of complexes **3f**

Pure meso -3f could not be obtained.

Data for (±)-3f are as follow:

Rf = 0.53 (PE/Et₂O 1:2). **Mp** = 183.8-185.1 °C (decomposition). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CDCl₃): δ = 7.45-6.95 (m, 28H, *H*^{Ar} and CH), 6.80-6.70 (m, 2H, *H*^{Ar}), 6.11 (s, 1H, CH), 5.24-5.10 (m, 0.52H, *H*^{cinamyl}, *maj*), 5.06-4.94 (m, 0.48H, *H*^{cinamyl}, *min*), 4.65 (d, *J*(H,H)= 13.1 Hz, 0.52H, *H*^{cinamyl}, *maj*), 4.53 (d, *J*(H,H)= 13.1 Hz, 0.48H, *H*^{cinamyl}, *min*), 2.78 (d, *J*(H,H)= 6.9 Hz, 0.52H, *H*^{cinamyl}, *maj*), 2.61 (d, *J*(H,H)= 6.9 Hz, 0.48H, *H*^{cinamyl}, *min*), 2.36-2.16 (m, 12H, Ar-CH₃), 1.72 (d, *J*(H,H)= 11.5 Hz, 0.48H, *H*^{cinamyl}, *min*), 1.28 (d, *J*(H,H)= 11.5 Hz, 0.52H, *H*^{cinamyl}, *maj*), 1.02 (s, 1.44H, CH₃, *min*), 0.99 (s, 1.56H, CH₃, *maj*). ¹³C NMR (101 MHz, CDCl₃): δ = 177.6 (C), 142.4 (C), 142.3 (C), 138.6 (C), 137.7 (C), 134.9 (C), 130.1 (CH), 130.0 (CH), 129.3 (CH), 128.7 (CH), 128.5 (CH), 128.0 (CH), 127.4 (CH), 22.7 (CH), 89.6(CH), 68.1 (CH), 50.9 (CH), 46.8 (CH₂), 44.5 (CH₂),

25.8(*C*H₂), 21.7 (*C*H₃), 19.2(*C*H₃), 8.4 (*C*H₃), 8.3 (*C*H₃). **HRMS (ESI)**: m/z: 917.2841 calcd for C₅₆H₅₃ClN₂PdNa⁺ [M+Na]⁺: found 917.2832. **IR(ATR)**: 3056, 3022, 2920, 2855, 2358, 1744, 1654, 1598, 1492, 1475, 1447, 1372, 1315, 1178, 1155, 1117, 1076, 1031, 1002, 969, 932, 855, 822, 780, 744, 734, 699, 629, 618, 577, 566, 523 cm⁻¹.

 $\label{eq:chloro} Chloro(\eta^3-1-{}^tBu-indenyl)[(1-(2-benzhydryl-4,6-dimethylphenyl)-3-(2-Benzhydryl-4,6-dimethylphenyl)-4,5-dimethyl-2,3-dihydro-1H-imidazol-2-yl)] palladium(II) 4f$

A mixture of diastereomerically pure heterochiral imidazolium tetrafluoroborate **1f·BF**₄ (100 mg, 0.14 mmol, 2.3 equiv.), $[Pd(\eta^3-1^tBu-indenyl)]_2$ (41 mg, 1.0 mmol, 1 equiv.), K_2CO_3 (38 mg, 0.28 mmol, 4.6 equiv.) in acetone was stirred at 60 °C for 4 h. The reaction mixture was filtered through a Celite[®] pad and the solvent was removed under vacuum. The crude product was purified by silica gel column (PE/Et₂O = 2:1) give the NHC-palladium complex **4f** as orange solid. (71 mg, 57% yield). The product was obtained as a diastereomerically pure complex.

Rf = 0.78 (PE/Et₂O 1:1). **Mp** = 264.2-267.5 °C (decomposition). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.36 (d, J = 7.6 Hz, 3H, *H*^{Ar} and *H*^{Ind}), 7.11 (s, 14H, *H*^{Ar}), 6.97 (s, 6H, *H*^{Ar} and *H*^{Ind}), 6.71 (td, J = 7.6, 1.1 Hz, 1H, *H*^{Ind}), 6.59 (s, 2H, *H*^{Ar}), 6.50 (s, 1H, *CH*), 6.33 (d, J = 2.8 Hz, 1H, *H*^{Ar}), 6.18 (td, J = 7.5, 0.9 Hz, 1H, *H*^{Ind}), 5.89 – 5.82 (m, 1H, *H*^{Ind}), 5.64 (s, 1H, *CH*), 4.94 (d, J = 2.7 Hz, 1H, *H*^{Ind}), 2.35 (s, 6H, *CH*₃), 2.23 (s, 6H, *CH*₃), 1.45 (s, 9H, C(*CH*₃)₃), 0.78 (s, 6H, *CH*₃). ¹³C **NMR (101 MHz, CDCl₃):** δ = 169.0(*C*^{carbene}), 141.3 (*C*), 139.9 (*C*), 135.3 (*C*), 130.2 (*C*H), 128.0 (*C*H), 124.5 (*C*H), 123.6 (*C*H), 119.3 (*C*H), 118.6 (*C*), 117.2 (*C*H), 109.6 (*C*H), 62.2 (*C*H), 34.4 (*C*), 29.6 (*C*H₃), 21.6 (*C*H₃): 3054, 2968, 1706, 1601, 1494, 1449, 1367, 1264, 1199, 1078, 1032, 896, 858, 731, 701, 632, 566, 527 cm⁻¹. **Chiral HPLC analysis:** Lux-i-Amylose-3 column with an UV detector at λ = 230 nm and a circular dichroism detector at λ = 254 nm; flow rate 1 mL/min; eluent: Heptane/ethanol/dichloromethane 80:10:10; 1st enantiomer: Rt = 4.65 min and 2nd enantiomer: Rt = 5.61 min (see Figure S38).

Figure S38. Analysis of complex 4f by cHPLC

The preparative chiral HPLC separation was done on a Lux-i-Amylose-3 (250 x 10 mm) with hexane / EtOH / dichloromethane (80/10/10) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm with multiple injections. From 65 mg of complex, 23 mg of the first eluted enantiomer with ee > 99.5% (Figure S39), 20 mg of the second eluted enantiomer with ee > 99.5% (Figure S40) were obtained.

Sum	2057	100	0.00	

Figure S40. cH	PLC analysis of	the second eluted	palladium	complex 4f
----------------	-----------------	-------------------	-----------	------------

	4f	4f	
λ (nm)	first eluted on Lux-i-Amylose-3	second eluted on Lux-i-Amylose-3	
	[α] _λ ²⁵ (CH ₂ Cl ₂ , c = 0.074)	$[\alpha]_{\lambda}^{25}$ (CH ₂ Cl ₂ , c = 0.083)	
589	- 740	+ 740	
578	- 830	+ 830	
546	- 1050	+ 1050	

Table S9. Optical rotations of complexes 4f

first eluted enantiomer : green solid line, concentration = 0.960 mmol.L⁻¹ in acetonitrile. second eluted enantiomer : red dotted line, concentration = 0.957 mmol.L⁻¹ in acetonitrile. **Figure S41.** Electronic Circular Dichroism of chiral complexes **4f**

IV Substrates syntheses

Scheme S3. Preparation of functionalized bromoanilines

General procedure F: Preparation of functionalized bromoanilines

To a solution of aniline (1 mmol) in dry THF (2 mL), *n*BuLi (0.5 mmol, 0.5 equiv., 1.6 M in hexane) was added dropwise at -40 °C under argon atmosphere. The reaction was stirred at -40 °C for 20 minutes before to add dropwise alkylhalide (0.5 mmol, 0.5 equiv.) at -60 °C. The reaction was slowly warmed up to room temperature and stirred for another 16 hours. The reaction was quenched with water (5 mL) and the mixture was extracted by ethyl acetate (3 x 5 mL). The combined organic phases were washed with NaHCO₃ (2 x 5 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column (petroleum ether/ether = 20: 1)

2-Chloro-N-methylaniline S3⁶

According to the general procedure F, from 2-chloroaniline (2.54 g, 20 mmol), *n*BuLi (6.25 mL, 1.6 M in hexane, 10 mmol, 0.5 equiv.), MeI (0.62 mL, 10 mmol, 0.5 equiv.) the product was obtained as a light yellow liquid. (1.37 g, 97% yield).

Rf = 0.82 (PE/Et₂O 9:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.28-7.12 (m, 2H, *H*^{Ar}), 6.68-6.59 (m, 2H, *H*^{Ar}), 4.34 (br, 1H, N*H*), 2.91 (d, *J*(H,H) = 5.1 Hz, 3H, C*H*₃). ¹³**C NMR (101 MHz, CDCl₃):** δ =145.1 (*C*), 129.0 (*C*H), 127.9 (*C*H), 119.1 (*C*), 117.1 (*C*H), 127.5 (*C*H), 110.7 (*C*H), 30.4 (*C*H₃).

2-Bromo- N-methylaniline⁶

According to the general procedure F, from 2-bromoaniline (10.0 g, 58.2 mmol), *n*BuLi (18.2 mL, 1.6 M in hexane, 29.1 mmol, 0.5 equiv.), MeI (1.82 mL, 29.1 mmol, 0.5 equiv.) the product was obtained as a yellow liquid. (3.6 g, 66% yield).

Rf = 0.80 (PE/Et₂O 9:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.44 (dd, *J*(H,H) = 7.9 and 1.5 Hz, 1H, *H*^{Ar}), 7.25-7.20 (m, 1H, *H*^{Ar}), 6.65 (dd, *J*(H,H) = 8.2 and 1.5 Hz, 1H, *H*^{Ar}), 6.62-6.57 (m, 1H, *H*^{Ar}), 4.37 (br, 1H, NH), 2.92 (d, *J*(H,H) = 5.2 Hz, 3H, CH₃). ¹³**C NMR (101 MHz, CDCl₃):** δ =146.1 (*C*), 132.4 (CH), 128.7 (CH), 117.7 (CH), 110.8(CH), 109.7 (C), 30.7 (CH₃).

2-Bromo-N-methyl-4-(trifluoromethoxy)aniline⁷

According to the general procedure F, from 2-bromo-5-trifluoromethoxyaniline (5.0 g, 19.7 mmol), *n*BuLi (6.15 mL, 1.6 M in hexane, 9.85 mmol, 0.5 equiv.), MeI (0.61 mL, 9.85 mmol, 0.5 equiv.) the product was obtained as a yellow liquid. (2.04 g, 77% yield).

Rf = 0.45 (PE/Et₂O 4:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.34 (dd, *J*(H,H) = 2.6 and 1.0 Hz, 1H, *H*^{Ar}), 7.13-7.07 (m, 1H, *H*^{Ar}), 6.58 (d, *J*(H,H) = 8.9 Hz, 1H, *H*^{Ar}), 4.46 (br, 1H, NH), 2.89 (s, 3H, CH₃). ¹³**C NMR (101 MHz, CDCl₃):** δ =145.2 (*C*), 139.5 (*C*), 125.8 (CH), 121.9 (CH), 120.8 (q, *J*¹(C,F) = 256.1 Hz, *C*F₃), 110.2 (CH), 108.7 (*C*), 30.8 (CH₃). ¹⁹**F NMR (282 MHz, CDCl₃):** -58.7 (s, 3F, CF₃).

General procedure G: Synthesis of substrates 5 with acyl chloride reagent

A mixture of the carbonyl acid (1.5 mmol, 1.5 equiv.) in SOCl₂ (3.0 mmol, 3.0 equiv.) was stirred at 85 °C for 2 hours. The excess SOCl₂ was removed under vacuum to give the carbonyl chloride which was used without further treatment.

To a solution of the carbonyl chloride in dry dichloromethane, a solution of triethylamine or pyridine (1.5 mmol, 1.5 equiv.) in dry dichloromethane was added dropwise at 0 °C under argon atmosphere followed a solution of the *N*-methylaniline (1 mmol) in dry dichloromethane (4 mL). The resulting mixture was slowly warmed up to room temperature and stirred for 16 hours. The reaction mixture was diluted with ether (10 mL) and quenched with NH₄Cl (aq. 10 mL). The aqueous phase was extracted by ether (2 x 10 mL). The organic phase was washed with NaHCO₃ (3 x 10 mL), brine (10 mL) and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by silica gel column (petroleum ether/ether = 2: 1).

Scheme S5. Synthesis of substrates 5 from carboxylic acid

General procedure H: Synthesis of substrates 5 from carboxylic acid

To a solution of the carboxylic acid (1.0 mmol) and aniline (1.0 mmol 1.0 equiv.) in dry dichloromethane, *N*,*N*-dimethylaminopyridine (DMAP) (0.5 mmol, 0.5 equiv.) was added in one portion at 0 °C under argon atmosphere. Then *N*-(3-dimethylaminopropyl)-*N'* -ethylcarbodiimide hydrochloride (EDCI) (2.0 mmol, 2.0 equiv.) was added in one portion. The reaction was slowly warmed up to room temperature and stirred for 16 hours. The mixture was quenched by water (20 mL). The aqueous phase was extracted by dichloromethane (2 x 30 mL). The combined organic phases were dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column (petroleum ether/dichloromethane = 1: 2) to give the amide.

To suspension of NaH (1.1 mmol, 60% in mineral, 1.1 equiv.) in dry THF (30 mL), a solution of the amide in dry THF was added dropwise at 0 °C under argon atmosphere and the reaction was then stirred at room temperature for 1 hour. Mel (1.1 mmol, 1.1 equiv.) was added dropwise and the reaction was stirred for another 16 hours. The mixture was filtered through a silica/celite[®] plug and the solvent was removed under vacuum. The residue was purified by silica gel column (petroleum ether/ether = 1: 1).

N-(2-Bromophenyl)-N-methyl-2-phenylpropanamide⁶5a

According to the general procedure G, from 2-phenylpropanoic acid (1.95 g, 13.0 mmol, 1.5 equiv.), SOCl₂ (1.88 mL, 26.0 mmol, 3.0 equiv.), 2-bromo-*N*-methylaniline (1.6 g, 8.65 mmol, 1.0 equiv.), triethylamine (1.77 mL, 13 mmol, 1.5 equiv.) the product was obtained as a yellow oil. (1.94 g, 71% yield).

Rf = 0.43 (PE/Et₂O 2:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CDCl₃): δ = 7.72 (dd, *J*(H,H) = 7.9 and 1.6 Hz, 0.7H, *H*^{Ar}, *maj*), 7.59 (dd, *J*(H,H) = 8.1 and 1.4 Hz, 0.3H, *H*^{Ar}, *min*), 7.46-7.34 (m, 0.7H, *H*^{Ar}, *maj*), 7.28-7.14 (m, 4.6H, *H*^{Ar}), 7.04-6.94 (m, 2H, *H*^{Ar}), 6.71(dd, *J*(H,H) = 7.7 and 1.7 Hz, 0.7H, *H*^{Ar}, *maj*), 3.53 (q, *J*(H,H) = 6.9 Hz, 0.3H, *CH*, *min*), 3.35 (q, *J*(H,H) = 6.9 Hz, 0.7H, *CH*, *maj*), 3.20 (s, 0.9H, NCH₃, *min*), 3.18 (s, 2.1H, NCH₃, *maj*), 1.44 (d, *J*(H,H) = 6.8 Hz, 2.1H, *CH*₃, *maj*), 1.42 (d, *J*(H,H) = 6.8 Hz, 0.7H, *CH*₃, *min*). ¹³C NMR (101 MHz, CDCl₃): δ =174.0 (*C*), 173.8 (*C*), 142.6 (*C*), 142.4 (*C*), 141.8 (*C*), 140.8 (*C*), 134.1(CH), 133.6 (CH), 131.0 (CH), 130.2 (CH), 129.8 (CH), 129.7 (CH), 128.8 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 127.6 (CH), 126.8 (CH), 126.7 (CH), 124.3 (*C*), 123.8 (*C*), 44.2 (CH), 43.4 (CH), 36.3 (CH₃), 36.2 (CH₃), 20.7 (CH₃), 20.2 (CH₃).

N-(2-Chlorophenyl)-*N*-methyl-2-phenylpropanamide⁶ 5a(Cl)

According to the general procedure G, from 2-phenylpropanoic acid (1.13 g, 7.5 mmol, 1.5 equiv.), SOCl₂ (1.1 mL, 15.0 mmol, 3.0 equiv.), 2-chloro-*N*-methylaniline (0.71 g, 5 mmol, 1.0 equiv.), triethylamine (1.04 mL, 7.5 mmol, 1.5 equiv.) the product was obtained as a yellow oil. (1.0 g, 73% yield).

Rf = 0.45 (PE/Et₂O 2:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CDCl₃): δ = 7.53 (d, J(H,H) = 8.0 Hz, 0.7H, H^{Ar}, *maj*), 7.39-7.27 (m, 2H, H^{Ar}), 7.22-7.09 (m, 3.6H, H^{Ar}), 7.02-6.92 (m, 2H, H^{Ar}), 6.72 (dd, J(H,H) = 7.8 and 1.6 Hz, 0.7H, H^{Ar}, *maj*), 3.55 (q, J(H,H) = 6.9 Hz, 0.3H, CH, *min*), 3.35 (q, J(H,H) = 6.9 Hz, 0.7H, CH, *maj*), 3.19 (s, 3H, NCH₃), 1.42 (d, J(H,H) = 6.9 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =174.2 (C), 174.1 (C), 141.9 (C), 141.1 (C), 140.9 (C), 140.8 (C), 134.1 (C), 133.2 (C), 130.9 (CH), 130.5 (CH), 130.2 (CH), 129.7 (CH), 129.6 (CH), 128.5 (CH), 128.3 (CH₃), 20.7 (CH₃), 20.1 (CH₃).

N-(2-Bromo-5-methoxyphenyl)-N-methyl-2-phenylpropanamide⁸ 5b

According to the general procedure G, from 2-phenylpropanoic acid (0.30 g, 2.0 mmol, 1.0 equiv.), 2-bromo-5-methoxylaniline (0.40 g, 2.0 mmol, 1.0 equiv.), EDCI (0.77 g, 4.0 mmol, 2.0 equiv.), DMAP (0.12 g, 1.0 mmol, 0.5 equiv.), NaH (0.55 g, 60% in mineral oil, 1.1 mmol, 1.1 equiv.), MeI (95 μ L, 1.1 mmol, 1.1 equiv.) the product was obtained as a light yellow oil. (340 mg, 49% yield).

Rf = 0.47 (PE/Et₂O 1:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 4:1 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CDCl₃): δ = 7.62 (d, J(H,H) = 8.9 Hz, 0.8H, *H*^{Ar}, *maj*), 7.58 (d, J(H,H) = 8.9 Hz, 0.2H, *H*^{Ar}, *min*), 7.36-7.20 (m, 2H, *H*^{Ar}), 7.17-7.12 (m, 0.4H, *H*^{Ar}, *min*), 7.09-7.02 (m, 1.6H, *H*^{Ar}, *maj*), 6.98-6.83 (m, 1.2H, *H*^{Ar}), 6.21 (d, J(H,H) = 3.0 Hz, 0.8H, *H*^{Ar}, *maj*), 3.93 (s, 0.9H, OCH₃, *min*), 3.65 (q, J(H,H) = 7.0 Hz, 0.2H, CH, *min*), 3.44 (q, J(H,H) = 6.9 Hz, 0.8H, CH, *maj*), 3.47 (s, 2.1H, OCH₃, *maj*), 3.25 (s, 3H, NCH₃), 1.50 (d, J(H,H) = 7.0 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =174.0 (*C*), 173.6 (*C*), 159.9 (*C*), 159.5 (*C*), 143.3 (*C*), 142.8 (*C*), 142.2 (*C*), 140.8 (*C*), 134.3 (CH), 133.7 (CH), 128.5 (CH), 128.3 (CH), 128.2 (CH), 127.6 (CH), 126.8 (CH), 126.7 (CH), 117.0 (*C*), 115.9 (CH), 115.5 (CH), 115.4 (CH), 114.4 (*C*), 113.6 (*C*), 55.9 (CH₃), 55.4 (CH₃), 44.4 (CH), 43.3 (CH), 36.2 (CH₃), 36.1 (CH₃), 20.8 (CH₃), 20.3 (CH₃).

N-(2-Bromo-4-methoxyphenyl)-N-methyl-2-phenylpropanamide 5c

According to the general procedure H, from 2-phenylpropanoic acid (0.30 g, 2.0 mmol, 1.0 equiv.), 2-bromo-4-methoxylaniline (0.40 g, 2.0 mmol, 1.0 equiv.), EDCI (0.77 g, 4.0 mmol, 2.0 equiv.), DMAP (0.12 g, 1.0 mmol, 0.5 equiv.), NaH (0.55 g, 60% in mineral oil, 1.1 mmol, 1.1 equiv.), MeI (95 μ L, 1.1 mmol, 1.1 equiv.) the product was obtained as a light yellow oil. (560 mg, 80% yield).

Rf = 0.47 (PE/Et₂O 1:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.36-6.98 (m, 6.6H, *H*^{Ar}), 6.78-6.72 (m, 0.7H, *H*^{Ar}, *maj*), 6.69-6.64 (m, 0.7H, *H*^{Ar}, *maj*), 3.93 (s, 0.9H, OCH₃, *min*), 3.91 (s, 2.1H, OCH₃, *maj*), 3.62 (q, *J*(H,H) = 6.9 Hz, 0.3H, *CH*, *min*), 3.46 (q, *J*(H,H) = 6.9 Hz, 0.7H, *CH*, *maj*), 3.24 (s, 0.9H, NCH₃, *min*), 3.21 (s, 2.1H, NCH₃, *maj*), 1.50 (d, *J*(H,H) = 7.0 Hz, 2.1H, *CH₃*, *maj*), 1.48 (d, *J*(H,H) = 7.2 Hz, 0.7H, *CH₃*, *min*). ¹³C NMR (101 MHz, CDCl₃):

δ =174.5 (*C*), 174.3 (*C*), 159.8 (*C*), 159.7 (*C*), 142.0 (*C*), 140.9 (*C*), 135.5 (*C*), 135.2 (*C*), 131.2 (*C*H), 130.4 (*C*H), 128.5 (*C*H), 128.3 (*C*H), 128.2 (*C*H), 127.6 (*C*H), 126.8 (*C*H), 126.7 (*C*H), 124.7 (*C*), 124.1 (*C*), 118.8 (*C*H), 118.5 (*C*H), 114.6 (*C*H), 114.2 (*C*H), 55.9 (*C*H₃), 44.0 (*C*H), 43.2 (*C*H), 36.5 (*C*H₃), 20.7 (*C*H₃), 20.3 (*C*H₃). **HRMS (ESI)**: *m/z*: 348.0594 calcd for: C₁₇H₁₉NO₂Br⁺ [M+H]⁺: found 348.0589. **IR (ATR):** 3058, 3027, 2969, 2931, 2839, 2358, 2117, 1892, 1657, 1599, 1562, 1492, 1453, 1439, 1419, 1375, 1319, 1284, 1256, 1222, 1181, 1127, 1066, 1031, 910, 846, 820, 776, 732, 697, 676, 602, 578, 525, 508 cm⁻¹.

N-(2-Bromo-4-(trifluoromethoxy)phenyl)-N-methyl-2-phenylpropanamide 5d

According to the general procedure G, from 2-phenylpropanoic acid (0.45 g, 3.0 mmol, 1.5 equiv.), SOCl₂ (0.44 mL, 6.0 mmol, 3.0 equiv.), 2-Bromo-*N*-methyl-4-(trifluoromethoxy)aniline (0.54 g, 2.0 mmol, 1.0 equiv.), pyridine (0.25 mL, 3 mmol, 1.5 equiv.) the product was obtained as a light yellow oil. (700 mg, 87% yield).

Rf = 0.35 (PE/Et₂O 2:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CDCl₃): δ = 7.58 (d, J(H,H) = 2.6 Hz, 0.7H, *H*^{Ar}, *maj*), 7.43-7.36 (m, 0.7H, *H*^{Ar}, *maj*), 7.32-7.14 (m, 3.3H, *H*^{Ar}), 7.00-6.86 (m, 2.6H, *H*^{Ar}), 6.63 (d, J(H,H) = 8.7 Hz, 0.7H, *H*^{Ar}, *maj*), 3.50 (q, J(H,H) = 6.9 Hz, 0.3H, *CH*, *min*), 3.30 (q, J(H,H) = 6.9 Hz, 0.7H, *CH*, *maj*), 3.18 (s, 0.9H, NCH₃, *min*), 3.16 (s, 2.1H, NCH₃, *maj*), 1.43 (d, J(H,H) = 6.8 Hz, 2.1H, CH₃, *maj*), 1.42 (d, J(H,H) = 6.8 Hz, 0.7H, *CH*₃, *min*). ¹³C NMR (101 MHz, CDCl₃): δ =173.8 (*C*), 173.6 (*C*), 148.8 (*C*), 148.7 (*C*), 141.7 (*C*), 141.4 (*C*), 141.1 (*C*), 140.4 (*C*), 131.9 (*C*H), 131.1 (*C*H), 128.7 (*C*H), 128.5 (*C*H), 128.0 (*C*H), 127.4 (*C*H), 127.1 (*C*H), 127.0 (*C*H), 126.5 (*C*H), 126.0 (*C*H), 125.4 (*C*), 124.5 (*C*), 121.1 (*C*H), 120.8 (*C*H), 120.4 (q, J¹(C,F) = 259.0 Hz, *C*F₃), 44.7 (*C*H), 43.9 (*C*H), 38.4 (*C*H₃), 36.3 (*C*H₃), 20.8 (*C*H₃), 20.4 (*C*H₃). ¹⁹F NMR (282 MHz, CDCl₃): δ = -58.0 (s, 3F, *CF*₃). HRMS (ESI): *m/z*: 402.0311 calcd for: C₁₇H₁₆BrF₃NO₂⁺ [M+H]⁺: found 402.0310. IR (ATR): 3373, 3063, 3028, 2974, 2933, 2361, 1667, 1599, 1573, 1488, 1453, 1420, 1375, 1248, 1213, 1165, 1124, 1067, 1043, 1018, 942, 906, 879, 827, 806, 778, 749, 698, 678, 649, 594, 569, 545, 506 cm⁻¹.

N-(2-Bromophenyl)-2-(4-*iso*butylphenyl)-*N*-methylpropanamide⁹ 5e

According to the general procedure G, from 2-(4-*iso*butylphenyl)propanoic acid (0.5 g, 2.43 mmol, 1.5 equiv.), SOCl₂ (0.35 mL, 4.86 mmol, 3.0 equiv.), 2-bromo-*N*-methylaniline (0.30 g, 1.62 mmol, 1.0 equiv.), pyridine (0.20 mL, 2.43 mmol, 1.5 equiv.) the product was obtained as a light yellow oil. (600 mg, 98% yield).

Rf = 0.55 (PE/Et₂O 2:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.70 (dd, *J*(H,H) = 7.9 and 1.6 Hz, 0.7H, *H*^{Ar}, *maj*), 7.55 (dd, *J*(H,H) = 8.0 and 1.5 Hz, 0.3H, *H*^{Ar}, *min*), 7.45-7.39 (m, 0.3H, *H*^{Ar}, *min*), 7.36-7.32 (m, 0.3H, *H*^{Ar}, *min*), 7.26-7.10 (m, 1.7H, *H*^{Ar}), 6.98-6.93 (m, 2H, *H*^{Ar}), 6.89-6.81 (m, 2H, *H*^{Ar}), 6.69 (dd, *J*(H,H) = 7.7 and 1.8 Hz, 0.7H, *H*^{Ar},

maj), 3.50 (q, J(H,H) = 7.0 Hz, 0.3H, CH, *min*), 3.31 (q, J(H,H) = 6.9 Hz, 0.7H, CH, *maj*), 3.18 (s, 0.9H, NCH₃, *min*), 3.16 (s, 2.1H, NCH₃, *maj*), 2.44-2.36 (m, 2H, CH₂), 1.88-1.74 (m, 1H, CH₂CH), 1.41 (d, J(H,H) = 6.8 Hz, 2.1H, CH₃, *maj*), 1.39 (d, J(H,H) = 6.8 Hz, 0.7H, NCH₃, *min*), 0.89 (d, J(H,H) = 6.7 Hz, 3H, CH(CH₃)₂), 0.88 (d, J(H,H) = 6.7 Hz, 3H, CH(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃): δ =174.2 (C), 174.1 (C), 142.7 (C), 142.5 (C), 140.2 (C), 140.1 (C), 139.1 (C), 138.0 (C), 134.1 (CH), 133.6 (CH), 131.1 (CH), 130.3 (CH), 129.7 (CH), 129.2 (CH), 129.1 (CH), 128.7 (CH), 128.5 (CH), 127.8 (CH), 127.3 (CH), 124.4 (C), 123.8 (CH), 45.2 (CH₂), 45.1 (CH₂), 43.9 (CH), 43.1 (CH), 36.3 (CH₃), 36.2 (CH₃), 30.3 (CH), 25.5 (CH₃), 25.4 (CH₃), 20.7 (CH₃), 20.3 (CH₃).

2-(3-Benzoylphenyl)-N-(2-bromophenyl)-N-methylpropanamide 5f

According to the general procedure G, from ketoprofen (0.62 g, 2.43 mmol, 1.5 equiv.), SOCl₂ (0.35 mL, 4.86 mmol, 3.0 equiv.), 2-bromo-N-methylaniline (0.30 g, 1.62 mmol, 1.0 equiv.), pyridine (0.20 mL, 2.43 mmol, 1.5 equiv.) the product was obtained as a light yellow oil. (663 mg, 97% yield).

Rf = 0.25 (PE/Et₂O 1:2). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CDCl₃): δ = 7.75-7.05 (m, 12.3H, *H*^{Ar}), 6.69 (dd, *J*(H,H) = 7.4 and 2.1 Hz, 0.7H, *H*^{Ar}, *maj*), 3.54 (q, *J*(H,H) = 7.0 Hz, 0.3H, *CH*, *min*), 3.38 (q, *J*(H,H) = 6.9 Hz, 0.7H, *CH*, *maj*), 3.12 (s, 0.9H, NCH₃, *min*), 3.11 (s, 2.1H, NCH₃, *maj*), 1.40 (d, *J*(H,H) = 6.9 Hz, 2.1H, CH₃, *maj*), 1.36 (d, *J*(H,H) = 6.8 Hz, 0.7H, CH₃, *min*). ¹³C NMR (101 MHz, CDCl₃): δ = 196.7 (*C*), 196.5 (*C*), 173.6 (*C*), 173.4 (*C*), 142.4 (*C*), 142.3 (*C*), 142.1 (*C*), 141.1 (*C*), 137.8 (*C*), 137.7 (*C*), 137.6 (*C*), 134.2 (CH), 133.9 (CH), 132.6 (CH), 132.4 (CH), 132.2 (CH), 131.4 (CH), 130.8 (CH), 130.2 (CH), 130.1 (CH), 130.0 (CH), 129.4 (CH), 129.0 (CH), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 124.2 (*C*), 123.8(*C*), 44.0 (CH), 43.3 (CH), 36.4 (CH₃), 36.3 (CH₃), 20.5 (CH₃), 20.1 (CH₃). HRMS (ESI): *m/z*: 424.0733 calcd for: C₂₃H₂₁NO₂Br⁺ [M+H]⁺: found 424.0723. IR (ATR): 3058, 2974, 2931, 2361, 1966, 1813, 1654, 1596, 1580, 1475, 1445, 1434, 1376, 1316, 1278, 1243, 1196, 1177, 1130, 1072, 1046, 1027, 998, 953, 927, 904, 821, 790, 764, 717, 698, 643, 606, 576, 561, 512 cm⁻¹.

N-(2-Bromophenyl)-2-(6-methoxynaphthalen-2-yl)-N-methylpropanamide 5g

According to the general procedure H, from 2-(6-methoxynaphthalen-2-yl)propanoic acid (0.25 g, 1.5 mmol, 1.0 equiv.), 2-bromo-5-methoxylaniline (0.35 g, 1.5 mmol, 1.0 equiv.), EDCI (0.57 g, 3.0 mmol, 2.0 equiv.), DMAP (0.09 g, 0.75 mmol, 0.5 equiv.), NaH (0.58 g, 60% in mineral oil, 1.65 mmol, 1.1 equiv.), MeI (129 μ L, 1.65 mmol, 1.1 equiv.) afforded a light yellow oil. (340 mg, 49% yield). **Rf** = 0.23 (PE/Et₂O 2:1). **Mp** = 119.9-112.0 ^BC. In CDCl₃ (25 °C), this f amide exists in two isomeric forms

in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CDCl₃): δ = 7.91 (dd, *J*(H,H) = 8.0 and 1.5 Hz, 0.7H, *H*^{Ar}, *maj*), 7.79-7.71 (m, 2H, *H*^{Ar}), 7.70-7.55 (m, 0.7H, *H*^{Ar}, *maj*), 7.48-7.34 (m, 2.5H, *H*^{Ar}), 7.30-7.22 (m, 3.4H, *H*^{Ar}), 6.81 (dd, *J*(H,H) = 7.8 and 1.7 Hz, 0.7H, *H*^{Ar}, *maj*), 4.08 (s, 2.1H, OCH₃, *maj*), 4.07 (s, 0.9H, OCH₃, *min*), 3.85

(q, J(H,H) = 7.0 Hz, 0.3H, CH, min), 3.65 (q, J(H,H) = 6.9 Hz, 0.7H, CH, maj), 3.37 (s, 0.9H, NCH₃, min), 3.36 (s, 2.1H, NCH₃, maj), 1.67 (d, J(H,H) = 6.9 Hz, 2.1H, CH₃, maj), 1.66 (d, J(H,H) = 6.9 Hz, 0.9H, CH₃, min). ¹³C NMR (101 MHz, CDCl₃): δ =174.1 (C), 173.9 (C), 157.6 (C), 157.4 (C), 142.7 (C), 142.4 (C), 136.9 (C), 135.8 (C), 134.0 (CH), 133.4 (CH), 133.6 (CH), 133.5 (C), 131.1 (CH), 130.2 (CH), 129.8 (CH), 129.7 (CH), 129.3 (CH), 129.2 (CH), 129.0 (C), 128.8 (CH), 128.4 (CH), 127.0 (CH), 126.8 (CH), 126.7 (CH), 126.4 (CH), 126.0 (CH), 124.5 (C), 123.8 (C), 118.8 (CH), 118.6 (CH), 105.7 (CH), 105.6 (CH), 55.4 (CH₃), 55.3 (CH₃), 44.2 (CH), 43.3 (CH), 36.3 (CH₃), 36.2 (CH₃), 20.7 (CH₃), 20.2 (CH₃). HRMS (ESI): m/z: 400.0732 calcd for: C₂₁H₂₁NO₂Br⁺ [M+H]⁺: found 400.0728. IR (ATR): 3305, 3053, 3004, 2966, 2924, 2841, 2361, 2333, 2117, 1657, 1603, 1581, 1504, 1475, 1453, 1434, 1415, 1388, 1374, 1315, 1280, 1265, 1227, 1198, 1172, 1154, 1130, 1119, 1102, 1073, 1047, 1027, 956, 926, 878, 853, 831, 810, 792, 774, 733, 679, 658, 637, 603, 575, 519 cm⁻¹.

N-Benzyl-N-(2-bromophenyl)-2-phenylpropanamide¹⁰ 5h

A mixture of 2-phenylpropanoic acid (0.45 g, 3.0 mmol, 1.5 equiv.) in $SOCl_2$ (0.44 mL, 6.0 mmol, 3.0 equiv.) was stirred at 85 °C for 2 hours. The excess $SOCl_2$ was removed under vacuum to give the carbonyl chloride which was used without further treatment.

To a solution of the carbonyl chloride in dry dichloromethane (10 mL), a solution of pyridine (0.25 mL, 3.0 mmol, 1.5 equiv.) in dry dichloromethane (5 mL) was added dropwise at 0 °C under argon atmosphere followed by a solution of 2-bromoaniline (0.35 g, 2.0 mmol, 1.0 equiv.) in dry dichloromethane (5 mL). The resulting mixture was slowly warmed up to room temperature and stirred for 16 hours.

The reaction mixture was diluted with ether (10 mL) and quenched with NH_4Cl (aq. 10 mL). The aqueous phase was extracted by diethyl ether (2 x 10 mL). The organic phase was washed with $NaHCO_3$ (3 x 10 mL), brine (10 mL) and dried over Na_2SO_4 . The solvent was removed under vacuum and the residue was purified by silica gel column (petroleum ether/ether = 9: 1) to give the amide.

To suspension of NaH (0.09 g, 60% in mineral, 2.2 mmol, 1.1 equiv.) in dry THF (30 mL), a solution of the amide in dry THF (10 mL) was added dropwise at 0 °C under argon atmosphere and the reaction was then stirred at room temperature for 1 hour. Benzyl bromide (0.38 g, 2.2 mmol, 1.1 equiv.) was added dropwise and the reaction was stirred for another 16 hours. The mixture was filtered through silica/celite[®] plug and the volatiles were removed under vacuum. The residue was purified by silica gel column (petroleum ether/ether = 9: 1) to give a light yellow oil. (676 mg, 86% yield).

Rf = 0.25 (PE/Et₂O 9:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (dd, *J*(H,H) = 8.1 and 1.3 Hz, 0.7H, *H*^{Ar}, *maj*), 7.62-7.56 (m, 0.3H, *H*^{Ar}, *min*), 7.30-7.00 (m, 10H, *H*^{Ar}), 6.97-6.88 (m, 2H, *H*^{Ar}), 6.84-6.80 (m, 0.3H, *H*^{Ar}, *min*), 6.15 (dd, *J*(H,H) = 7.9 and 1.6 Hz, 0.7H, *H*^{Ar}, *maj*), 5.71 (d, *J*(H,H) = 14.4 Hz, 0.3H, *CH*₂, *min*), 5.60 (d, *J*(H,H) = 14.4 Hz, 0.7H, *CH*₂, *maj*), 4.02 (d, *J*(H,H) = 14.4 Hz, 0.7H, *CH*₂, *maj*), 3.92 (d, *J*(H,H) = 14.4 Hz, 0.3H, *CH*₂, *min*), 3.47 (q, *J*(H,H) = 7.0 Hz, 0.3H, *CH*, *min*), 3.34 (q, *J*(H,H) = 6.8 Hz, 0.7H, *CH*, *maj*), 1.46 (d, *J*(H,H) = 6.8 Hz, 2.1H, *CH*₃, *maj*), 1.41 (d, *J*(H,H) = 7.0 Hz, 0.9H, *CH*₃, *min*). ¹³C NMR (101 MHz, CDCl₃): δ =173.9 (*C*), 173.7 (*C*), 141.8 (*C*), 140.6 (*C*), 140.5 (*C*), 140.4 (*C*), 137.3 (*C*), 137.1 (*C*), 134.0 (*C*), 133.5 (*C*H), 132.3 (*C*H), 132.0 (*C*), 129.8 (*C*H), 129.7 (*C*H), 129.4 (*C*H), 129.1 (*C*H), 128.5 (*C*H), 128.4 (*C*H), 128.3 (*C*), 128.2 (*C*H), 128.0

(CH), 127.8 (CH), 127.6 (CH), 127.5 (CH), 127.4 (CH), 126.9 (CH), 126.8 (CH), 124.6 (C), 124.2 (C), 51.8 (CH₂), 51.5 (CH₂), 44.6 (CH), 43.6 (CH), 20.8 (CH₃), 20.4 (CH₃).

N-(2-Bromophenyl)-N-methyl-2-phenylbutanamide⁸ 5i

According to the general procedure G, from 2-phenylbutanoic acid (0.50 g, 3.0 mmol, 1.5 equiv.), SOCl₂ (0.44 mL, 6.0 mmol, 3.0 equiv.), 2-bromo-*N*-methylaniline (0.37 g, 2.0 mmol, 1.0 equiv.), pyridine (0.25 mL, 3.0 mmol, 1.5 equiv.) the product was obtained as a light yellow oil. (550 mg, 82% yield). **Rf** = 0.53 (PE/Et₂O 2:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H **NMR (400 MHz, CDCl₃):** δ = 7.64 (dd, *J*(H,H) = 7.9 and 1.5 Hz, 0.7H, *H*^{Ar}, *maj*), 7.50 (dd, *J*(H,H) = 8.0 and 1.4 Hz, 0.3H, *H*^{Ar}, *min*), 7.40-7.00 (m, 4.6H, *H*^{Ar}), 6.95-6.80 (m, 1.7H, *H*^{Ar}), 6.53 (d, *J*(H,H) = 7.9 Hz, 0.7H, *H*^{Ar}, *maj*), 3.17 (t, *J*(H,H) = 7.5 Hz, 0.3H, *CH*, *min*), 3.12 (s, 0.9H, NCH₃, *min*), 3.09 (s, 2.1H, NCH₃, *maj*), 2.95 (t, *J*(H,H) = 7.5 Hz, 0.7H, *CH*, *maj*), 2.10-1.95 (m, 1H, CH₂), 1.70-1.50 (m, 1H, CH₂),0.90-0.66 (m, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ = 173.3 (*C*), 173.1 (*C*), 142.7 (*C*), 142.3 (*C*), 140.4 (*C*), 139.3 (*C*), 134.1(CH), 133.7 (CH), 131.3 (CH), 130.6 (CH), 129.8 (CH), 128.7 (CH), 128.6 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 126.9 (CH), 126.4 (CH), 124.6 (C), 123.6 (C), 52.2 (CH), 51.2 (CH), 36.2 (CH₃), 36.1 (CH₃), 28.6 (CH₂), 28.3 (CH₂), 12.7 (CH₃), 12.5 (CH₃).

N-(2-Bromophenyl)-2-cyclopentyl-N-methyl-2-phenylacetamide¹¹ 5j

According to the general procedure G, from 2-cyclopentyl-2-phenylacetic acid (0.50 g, 2.43 mmol, 1.5 equiv.), SOCl₂ (0.35 mL, 4.86 mmol, 3.0 equiv.), 2-bromo-*N*-methylaniline (0.30 g, 1.62 mmol, 1.0 equiv.), pyridine (0.20 mL, 2.43 mmol, 1.5 equiv.) the product was obtained as a light yellow oil. (480 mg, 80% yield).

Rf = 0.40 (PE/Et₂O 2:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 7:3 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.71 (dd, *J*(H,H) = 7.9 and 1.4 Hz, 0.7H, *H*^{Ar}, *maj*), 7.56 (dd, *J*(H,H) = 7.9 and 1.4 Hz, 0.3H, *H*^{Ar}, *min*), 7.48-7.39 (m, 0.3H, *H*^{Ar}, *min*), 7.35-7.28 (m, 0.3H, *H*^{Ar}, *min*), 7.26-7.06 (m, 4.7H, *H*^{Ar}), 6.96-6.88 (m, 2H, *H*^{Ar}), 6.50 (dd, *J*(H,H) = 7.8 and 1.6 Hz, 0.7H, *H*^{Ar}, *maj*), 3.19 (s, 0.9H, NC*H*₃, *min*), 3.15 (s, 2.1H, NC*H*₃, *maj*), 3.05 (d, *J*(H,H) = 10.7 Hz, 0.3H, COC*H*, *min*), 2.81 (d, *J*(H,H) = 10.5 Hz, 0.7H, COC*H*, *maj*), 2.70-2.48 (m, 1H, CH), 2.06-1.92 (m, 1H, CH₂), 1.65-1.10 (m, 6H, CH₂), 0.95-0.70 (m, 1H, CH₂). ¹³C NMR (101 MHz, CDCl₃): δ =173.2 C), 173.1 (C), 142.7 (C), 142.1 (C), 140.1 (C), 139.2 (C), 134.1 (C), 133.7 (CH), 131.7 (CH), 130.9 (CH), 129.8 (CH), 129.7 (CH), 129.6 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 126.8 (CH), 126.7 (CH), 124.8 (C), 24.7 (CH₂).

N-(2-Bromophenyl)-N-2-dimethylpent-4-enamide 5k

According to the general procedure H, from 2-methylpent-4-enoic acid (0.28 g, 2.43 mmol, 1.5 equiv.), SOCl₂ (0.20 mL, 4.86 mmol, 3.0 equiv.), 2-bromo-*N*-methylaniline (0.30 g, 1.62 mmol, 1.0 equiv.), pyridine (0.20 mL, 2.43 mmol, 1.5 equiv.) the product was obtained as a brown oil. (663 mg, 97% yield). **Rf** = 0.31 (PE/Et₂O 2:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 1.3:1 ratio (unassigned). ¹H NMR chemical shifts that differ between isomers will be denoted by (*maj*) and (*min*). ¹H **NMR (400 MHz, CDCl₃):** δ = 7.72-7.65 (m, 1H, *H*^{Ar}), 7.41-7.34 (m, 2H, *H*^{Ar}), 7.27-7.20 (m, 2H, *H*^{Ar}), 5.75-5.50 (m, 1H, *CH*=CH₂), 5.05-4.90 (m, 2H, CH=CH₂) 3.19 (s, 3H, NCH₃), 2.50-1.95 (m, 3H, CH and CH₂), 1.09 (d, *J*(H,H) = 6.5 Hz, 1.7H, CH₃, *maj*), 1.01 (d, *J*(H,H) = 6.5 Hz, 1.3H, CH₃, *min*). ¹³C **NMR (101 MHz, CDCl₃):** δ = 176.4 (*C*), 176.1 (*C*), 142.9 (*C*), 136.5 (CH), 136.1 (CH), 134.1 (CH), 134.0 (CH), 130.6 (CH₂), 39.0 (CH₂), 38.2 (CH₂), 37.3 (CH), 37.2 (CH₂), 36.1 (CH₃), 36.0 (CH₃), 17.5 (CH₃). **HRMS (ESI**): *m/z*: 282.0488 calcd for: C₁₃H₁₇NOBr⁺ [M+H]⁺: found 282.0486. **IR (ATR):** 3074, 2973, 2933, 2361, 1657, 1583, 1475, 1460, 1434, 1419, 1382, 1328, 1280, 1248, 1225, 1116, 1048, 1026, 993, 912, 764, 728, 681, 662, 643, 572 cm⁻¹.

N-(2-Bromophenyl)-*N*-methyl-1,2,3,4-tetrahydronaphthalene-1-carboxamide⁸ 5I

According to the general procedure G, from 1,2,3,4-tetrahydronaphthalene-1-carboxylic acid (0.43 g, 2.43 mmol, 1.5 equiv.), SOCl₂ (0.35 mL, 4.86 mmol, 3.0 equiv.), 2-bromo-N-methylaniline (0.30 g, 1.62 mmol, 1.0 equiv.) pyridine (0.20 mL, 2.43 mmol, 1.5 equiv.) the product was obtained as a light yellow oil. (480 mg, 80% yield).

Rf = 0.35 (PE/Et₂O 2:1). In CDCl₃ (25 °C), this amide exists in two isomeric forms in a 1:1 ratio (unassigned). ¹**H NMR (400 MHz, CDCl₃)**: δ = 7.72 (d, *J*(H,H) = 7.9 Hz, 1H, *H*^{Ar}), 7.52-7.20 (m, 4H, *H*^{Ar}), 7.14-7.00 (m, 3H, *H*^{Ar}), 3.60-3.50 (m, 1H, CH), 3.32 (s, 1.5H, NCH₃), 3.28 (s, 1.5H, NCH₃,), 2.95-2.75 (m, 1H, CH₂), 2.70-2.60 (m, 1H, CH₂), 2.10-1.80 (m, 3H, CH₂), 1.60-1.40 (m, 1H, CH₂). ¹³**C NMR (101 MHz, CDCl₃)**: δ = 175.9 (C), 175.6 (C), 143.2 (C), 142.9 (C), 137.8 (C), 137.5 (C), 135.7 (C), 135.1 (C), 134.3 (CH), 130.1 (CH), 130.0 (CH), 129.9 (CH), 129.6 (CH), 129.5 (CH), 129.3 (CH), 129.2 (CH), 128.9 (CH), 127.8 (CH), 126.5 (CH), 126.4 (CH), 125.9 (CH), 125.8 (CH), 21.5 (C), 21.5 (C), 43.5 (CH), 43.3 (CH), 36.3 (CH), 29.4 (CH₂), 29.2 (CH₂), 28.1 (CH₂), 27.6 (CH₂), 21.5 (CH₂), 21.4 (CH₂).

V Asymmetric catalysis

Procedure I : intermolecular α -arylation of amides

A mixture of the amide or ketone substrate (0.1 mmol, 1.0 equiv.), catalyst (0.005 mmol, 5 mol%) and potassium tert-butoxide (*t*BuOK) (0.15 mmol, 1.5 equiv.) in dry 1,2-Dimethoxyethane (DME) (2 mL) was stirred at 40 °C for 20 hours under argon. The solvent was removed under reduced pressure and the residue was purified by silica gel column (petroleum ether/ether = 2: 1)

(-)-(S)-1,3-Dimethyl-3-phenylindolin-2-one¹⁰ (-)-(S)-6a

According to the general procedure I, *N*-(2-bromophenyl)-*N*-methyl-2-phenylpropanamide **5a** (63 mg, 0.2 mmol, 1.0 equiv.), (+)-(R_a , R_a)-**2f** (8.2 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.3 mmol, 1.5 equiv.) were stirred at 40 °C for 20 hours to afford a light yellow oil. (39.4 mg, 84% yield).

Rf = 0.44 (PE/Et₂O 2:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.35-7.26 (m, 5H, H^{Ar}), 7.26-7.17 (m, 2H, H^{Ar}), 7.12-7.07 (m, 1H, H^{Ar}), 6.92 (d, J(H,H) = 7.8 Hz, 1H, H^{Ar}), 3.25 (s, 3H, NCH₃), 1.79 (s, 3H, CH₃). ¹³**C NMR (101 MHz, CDCl₃):** δ = 179.5 (C), 143.3 (C), 140.1 (C), 134.9 (C), 128.6 (CH), 128.2 (CH), 127.3 (CH), 126.7 (CH), 124.3 (CH), 122.8 (CH), 108.4 (CH), 52.2 (C), 26.6 (CH₃), 23.9 (CH₃). **Specific rotations at 25 °C:** $[\alpha]_{589} = -75$, $[\alpha]_{578} = -79$, $[\alpha]_{546} = -93$ (c = 1.71 in CH₂Cl₂), 95% *ee.* **cHPLC analysis:** [Chiracel IE column, n-heptane/*iso*propanol = 90:10, 1.0 mL/min, 254 nm; Rt = 9.92 min (major) and 10.77 min];

off
ļ

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
10.02	12223	50.47	2.40		
10.91	11995	49.53	2.70	1.13	2.58
Sum	24218	100.00			

Signal:	DAD1 E, Sig				
RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
9.92	17789	97.48	2.36		
10.77	461	2.52	2.65	1.12	2.41
Sum	18250	100.00			

(-)-(S)-1,3-Dimethyl-3-phenylindolin-2-one ¹⁰ (-)-(S)-6a(Cl)

According to the general procedure I, *N*-(2-chlorophenyl)-*N*-methyl-2-phenylpropanamide **5a(Cl)** (55 mg, 0.2 mmol, 1.0 equiv.), (+)-(R_a , R_a)-**2f** (8.2 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.3 mmol, 1.5 equiv.) were stirred at 40 °C for 20 hours to afford a light yellow oil. (40.3 mg, 86% yield).

Rf = 0.44 (PE/Et₂O 2:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.35-7.26 (m, 5H, H^{Ar}), 7.26-7.17 (m, 2H, H^{Ar}), 7.12-7.07 (m, 1H, H^{Ar}), 6.92 (d, J(H,H) = 7.8 Hz, 1H, H^{Ar}), 3.25 (s, 3H, NCH₃), 1.79 (s, 3H, CH₃). ¹³**C NMR (101 MHz, CDCl₃):** δ = 179.5 (C), 143.3 (C), 140.1 (C), 134.9 (C), 128.6 (CH), 128.2 (CH), 127.3 (CH), 126.7 (CH), 124.3 (CH), 122.8 (CH), 108.4 (CH), 52.2 (C), 26.6 (CH₃), 23.9 (CH₃). **Specific rotations at 25 °C:** $[\alpha]_{589} = -75$, $[\alpha]_{578} = -79$, $[\alpha]_{546} = -93$ (c = 1.71 in CH₂Cl₂), 95% *ee*. **cHPLC analysis:** [Chiracel IE column, n-heptane/*iso*propanol = 90:10, 1.0 mL/min, 254 nm; Rt = 9.95 min (major) and 10.83 min].

Signal:	DAD1 D, Sig=254,4 Ref=of	f
---------	--------------------------	---

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
10.02	12223	50.47	2.40		
10.91	11995	49.53	2.70	1.13	2.58
Sum	24218	100.00			

Signal:	DAD1 E, Sig=254,4 Ret=off						
RT [min]	Area	Resolution (USP)					
9.95	21877	97.23	2.37				
10.83	622	2.77	2.67	1.13	2.54		
Sum	22499	100.00					

(+)-(R)-6-Methoxy-1,3-dimethyl-3-phenylindolin-2-one⁸ (+)-(R)-6b

According to the general procedure I, *N*-(2-bromo-5-methoxyphenyl)-*N*-methyl-2-phenylpropanamide **5b** (35 mg, 0.1 mmol, 1.0 equiv.), (-)-(S_a , S_a)-**2f** (4.1 mg, 0.005 mmol, 5 mol%), *t*BuOK (17 mg, 0.15 mmol, 1.5 equiv.) were stirred at 40 °C for 20 hours to afford a light yellow oil. (25.0 mg, 91% yield).

Rf = 0.46 (PE/Et₂O 1:1). ¹**H** NMR (400 MHz, CDCl₃): δ = 7.30-7.15 (m, 5H, H^{Ar}), 7.04 (d, J(H,H) = 8.2 Hz, 1H, H^{Ar}), 6.56 (dd, J(H,H) = 8.2 and 2.3 Hz, 1H, H^{Ar}), 6.46 (d, J(H,H) = 2.3 Hz, 1H, H^{Ar}), 3.81 (s, 3H, OCH₃), 3.17 (s, 3H, NCH₃), 1.72 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ = 180.1 (C), 160.3 (C), 144.6 (C), 141.3 (C), 128.6 (CH), 127.3 (CH), 126.9 (C), 124.7 (CH), 106.7 (CH), 96.4 (CH), 55.7 (CH₃), 51.8 (C), 26.6 (CH₃), 24.2 (CH₃). **Specific rotations at 25 °C:** $[\alpha]_{589}$ = +86, $[\alpha]_{578}$ = +90, $[\alpha]_{546}$ = +106, $[\alpha]_{436}$ = +204 (*c* = 0.84 in CH₂Cl₂), 97% *ee.* **cHPLC analysis:** [Chiracel IG column, n-heptane/*iso*propanol = 80:20, 1.0 mL/min, 254 nm; Rt = 8.89 min and 11.80 min (major)].

Signal:	DAD1	E, Sig=2	254,4 F	Ref=off
---------	------	----------	---------	---------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
8.91	4745	49.92	2.02		
11.90	4760	50.08	3.04	1.50	4.71
Sum	9504	100.00			

Signal:	DAD1 E, Sig=254,4 Ref=off					
RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)	
8.89	54	1.94	2.01			
11.80	2712	98.06	3.00	1.49	4.73	
Sum	2765	100.00				

(+)-(R)-5-Methoxy-1,3-dimethyl-3-phenylindolin-2-one (+)-(R)-6c

According to the general procedure I, N-(2-bromo-4-methoxyphenyl)-N-methyl-2-phenylpropanamide **5c** (35 mg, 0.1 mmol, 1.0 equiv.), (-)-(S_a , S_a)-**2f** (4.1 mg, 0.005 mmol, 5 mol%), *t*BuOK (17 mg, 0.15 mmol, 1.5 equiv.) were stirred at 40 °C for 60 hours to afford a light yellow oil. (23.0 mg, 86% yield).

Rf = 0.46 (PE/Et₂O 1:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.32-7.28 (m, 4H, H^{Ar}), 7.24-7.18 (m, 1H, H^{Ar}), 6.85-6.79 (m, 3H, H^{Ar}), 3.78 (s, 3H, OCH₃), 3.22 (s, 3H, NCH₃), 1.79 (s, 3H, CH₃). ¹³**C NMR (101 MHz, CDCl₃):** δ =179.3 (*C*), 156.3 (*C*), 140.9 (*C*), 136.9 (*C*), 136.3 (*C*), 128.7 (CH), 127.4 (CH), 126.8 (CH), 112.5 (CH), 111.8 (CH), 108.7 (CH), 56.0 (CH₃), 52.7 (*C*), 26.6 (CH₃), 23.9 (CH₃). **HRMS (ESI**): *m/z*: 268.1332 calcd for: $C_{17}H_{18}NO_2^+$ [M+H]⁺: found 268.1333. **IR (ATR):** 3057, 3025, 2932, 2833, 2360, 1703, 1653, 1598, 1495, 1467, 1432, 1371, 1349, 1286, 1241, 1166, 1148, 1107, 1076, 1030, 914, 894, 872, 838, 802, 722, 697, 641, 619, 574, 556, 508 cm⁻¹. **Specific rotations at 25 °C:** [α]₅₈₉ = +108, [α]₅₇₈ = +114, [α]₅₄₆ = +133 (*c* = 0.57 in CH₂Cl₂), 91% *ee.* **cHPLC analysis:** [Chiracel IG column, n-heptane/*iso*propanol = 80:20, 1.0 mL/min, 254 nm; Rt = 8.89 min and 11.80 min (major)].

Signal: DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
8.91	4745	49.92	2.02		
11.90	4760	50.08	3.04	1.50	4.71
Sum	9504	100.00			

Signal: DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
8.89	54	1.94	2.01		
11.80	2712	98.06	3.00	1.49	4.73
Sum	2765	100.00			

(-)-(S)-1,3-Dimethyl-3-phenyl-5-(trifluoromethoxy)indolin-2-one (-)-(S)-6d

According to the general procedure I, *N*-(2-Bromo-4-(trifluoromethoxy)phenyl)-*N*-methyl-2-phenylpropanamide **5d** (81 mg, 0.2 mmol, 1.0 equiv.), (+)-(R_a , R_a)-**2f** (8.2 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.3 mmol, 1.5 equiv.) were stirred at 60 °C for 20 hours to afford a light yellow oil. (57.0 mg, 89% yield).

Rf = 0.34 (PE/Et₂O 2:1). ¹**H** NMR (400 MHz, CDCl₃): δ = 7.35-7.17 (m, 6H, *H*^{Ar}), 7.08 (s, 1H, *H*^{Ar}), 6.90 (d, *J*(H,H) = 8.5 Hz, 1H, *H*^{Ar}), 3.25 (s, 3H, NCH₃), 1.80 (s, 3H, CH₃). ¹³**C** NMR (101 MHz, CDCl₃): δ = 179.2 (*C*), 145.1 (q, *J*³(C,F) = 2.0 Hz, *C*), 142.0 (*C*), 140.1 (*C*), 136.4 (*C*), 128.8 (CH), 127.7 (CH), 126.6 (CH), 112.3 (CH), 118.3 (CH), 120.7 (q, *J*¹(C,F) = 256.6 Hz, *C*F₃), 108.8 (CH), 52.7 (*C*), 26.7 (CH₃), 23.8 (CH₃). ¹⁹**F** NMR (282 MHz, CDCl₃): δ = -58.4 (s, 3F, *CF*₃). HRMS (ESI): *m/z*: 322.1049 calcd for: C₁₇H₁₅NO₂F₃⁺ [M+H]⁺: found 322.1050. IR (ATR): 3056, 2983, 2937, 2475, 2359, 2341, 2117, 1715, 1669, 1618, 1558, 1491, 1454, 1371, 1290, 1247, 1206, 1158, 1101, 1077, 1047, 1027, 1020, 973, 953, 893, 878, 848, 829, 810, 791, 765, 730, 698, 657, 635, 617, 597, 570, 548, 507 cm⁻¹. Specific rotations at 25 °C: [α]₅₈₉ = -82, [α]₅₇₈ = -86, [α]₅₄₆ = -100, [α]₄₃₆ = -188 (*c* = 0.97 in CH₂Cl₂), 95% *ee.* cHPLC analysis: [Chiracel OD-3 column, n-heptane/*iso*propanol = 90:10, 1.0 mL/min, 254 nm; Rt = 6.65 min (major) and 7.91 min].

Signal: DAD1 E, Sig=254,4 Ref=off						
RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)	
6.68	9803	50.31	1.26			
7.87	9683	49.69	1.67	1.32	3.47	
Sum	19485	100.00				

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.65	14708	97.42	1.26		
7.91	390	2.58	1.68	1.34	3.95
Sum	15097	100.00			

(+)-(R)-3-(4-Isobutylphenyl)-1,3-dimethylindolin-2-one⁹ (+)-(R)-6e

According to the general procedure I, *N*-(2-bromophenyl)-2-(4-*iso*butylphenyl)-*N*-methylpropanamide **5e** (38 mg, 0.1 mmol, 1.0 equiv.), (-)-(S_a , S_a)-**2f** (4.1 mg, 0.005 mmol, 5 mol%), *t*BuOK (17 mg, 0.15 mmol, 1.5 equiv.) were stirred at 40 °C for 20 hours to afford a light yellow oil. (27.0 mg, 93% yield).

Rf = 0.54 (PE/Et₂O 2:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.35-7.28 (m, 1H, H^{Ar}), 7.24-7.17 (m, 3H, H^{Ar}), 7.13-7.03 (m, 3H, H^{Ar}), 6.91 (d, J(H,H) = 7.1 Hz, 1H, H^{Ar}), 3.24 (s, 3H, NCH₃), 2.41 (d, J(H,H) = 7.2 Hz, 2H, CH₂), 1.87-1.75 (m, 4H, CH₃ and CH), 0.87 (s, 6H, CH(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃): δ = 179.8 (C), 143.4 (C), 140.8 (C), 138.2 (C), 135.2 (C), 129.4 (CH), 128.1 (CH), 126.5 (CH), 124.3 (CH), 122.8 (CH), 108.3 (CH), 52.0 (C), 45.1 (CH₂), 30.2 (CH), 26.6 (CH₃), 24.0 (CH₃), 22.5 (CH₃). Specific rotations at 25 °C: $[\alpha]_{589} = +12$, $[\alpha]_{578} = +13$, $[\alpha]_{546} = +15$, $[\alpha]_{436} = +30$ (c = 1.66 in CH₂Cl₂), 98% *ee.* cHPLC analysis: [Chiracel

Lux-Cellulose-2 column, n-heptane/isopropanol = 90:10, 1.0 mL/min, 230 nm; Rt = 7.42 min and 8.40 min (major)].

2 3 5 6 8 9 10 11 12 13 14 4 Time [min] DAD1 D, Sig=230,4 Ref=off

15

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
7.42	176	1.10	1.51		
8.40	15802	98.90	1.85	1.22	2.82
Sum	15978	100.00			

7

(+)-(R)-3-(3-Benzoylphenyl)-1,3-dimethylindolin-2-one (+)-(R)-6f

Ó

Signal:

1

According to the general procedure I, 2-(3-benzoylphenyl)-N-(2-bromophenyl)-N-methylpropanamide **5f** (86 mg, 0.2 mmol, 1.0 equiv.), (-)-(*s*_a,*s*_a)-**2f** (8.2 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.30 mmol, 1.5 equiv.) were stirred at 40 °C for 20 hours to afford a light yellow oil. (66.0 mg, 95% yield).

Rf = 0.23 (PE/Et₂O 1:1). ¹**H** NMR (400 MHz, CDCI₃): δ = 7.82-7.75 (m, 3H, H^{Ar}), 7.70-7.25 (m, 7H, H^{Ar}), 7.22-7.17 (m, 1H, H^{Ar}), 7.13-7.06 (m, 1H, H^{Ar}), 6.92 (d, J(H,H) = 7.8 Hz, 1H, H^{Ar}), 3.25 (s, 3H, NCH₃), 1.82 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ = 196.4 (C), 179.1 (C), 143.3 (C), 141.4 (C), 137.8 (C), 137.5 (C), 134.4 (C), 132.5 (CH), 130.9 (CH), 130.2 (CH), 129.2 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 124.2 (CH), 123.1 (CH), 108.6 (CH), 52.2 (C), 26.6 (CH₃), 23.9 (CH₃). **HRMS (ESI)**: m/z: 342.1489 calcd for: C₂₃H₂₀NO₂⁺ [M+H]⁺: found 342.1489. **IR (ATR)**: 3056, 2968, 2928, 1708, 1655, 1609, 1595, 1577, 1491, 1469, 1446, 1421, 1372, 1343, 1315, 1277, 1237, 1176, 1157, 1137, 1115, 1101, 1073, 1055, 1023, 999, 969, 955, 929, 899, 812, 783, 754, 743, 730, 712, 692, 664, 641, 627, 572, 541, 510 cm⁻¹. **Specific rotations at 25 °C:**[α]₅₈₉ = +49, [α]₅₇₈ = +51, [α]₅₄₆ = +60 (c = 2.13 in CH₂Cl₂), 88% *ee*. **cHPLC analysis:** [Chiracel Lux-Cellulose-4 column, n-heptane/*iso*propanol = 70:30, 1.0 mL/min, 260 nm; Rt = 11.16 min (major) and 13.41 min].

Signal: D.	AD1 F, Sig=260,4 Ref=off
------------	--------------------------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
11.16	14357	49.93	2.78		
13.41	14396	50.07	3.55	1.27	4.32
Sum	28753	100.00			

Signal:	DAD1 F, Sig=260,4 Ref=off
---------	---------------------------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
11.13	43985	93.88	2.77		
13.46	2865	6.12	3.56	1.29	4.43
Sum	46850	100.00			

(+)-(R)-3-(6-Methoxynaphthalen-2-yl)-1,3-dimethylindolin-2-one (+)-(R)-6g

According to the general procedure I, N-(2-bromophenyl)-2-(6-methoxynaphthalen-2-yl)-N-methylpropanamide **5g** (80 mg, 0.2 mmol, 1.0 equiv.), (-)-(S_a , S_a)-**2f** (8.2 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.30 mmol, 1.5 equiv.) were stirred at 40 °C for 20 hours to afford a white solid. (61.0 mg, 96% yield).

Rf = 0.23 (PE/Et₂O 1:1). **Mp**: 201.6-202.3 °C. ¹**H NMR (400 MHz, CDCl₃)**: δ = 7.82-7.75 (m, 3H, *H*^{Ar}), 7.38-7.70 (m, 2H, *H*^{Ar}), 7.24-7.20 (m, 1H, *H*^{Ar}), 7.14-7.06 (m, 3H, *H*^{Ar}), 6.95 (d, *J*(H,H) = 7.8 Hz, 1H, *H*^{Ar}), 3.90 (s, 3H, OCH₃), 3.27 (s, 3H, NCH₃), 1.88 (s, 3H, CH₃). ¹³**C NMR (101 MHz, CDCl₃)**: δ = 179.9 (C), 157.9 (C), 136.0 (C), 135.1 (C), 133.8 (C), 129.7 (CH), 128.8 (C), 128.3 (CH), 127.3 (CH), 125.5 (CH), 125.2 (CH), 124.4 (CH), 122.9 (CH), 119.0 (CH), 108.5 (CH), 105.6 (CH), 55.4 (CH₃), 52.3 (C), 26.6 (CH₃), 23.8 (CH₃). **HRMS (ESI)**: *m/z*: 318.1489 calcd for: C₂₁H₂₀NO₂⁺ [M+H]⁺: found 318.1487. **IR (ATR)**: 3055, 3028, 2960, 2930, 2361, 2341, 1706, 1628, 1602, 1558, 1541, 1502, 1489, 1468, 1419, 1389, 1374, 1345, 1302, 1260, 1235, 1220, 1194, 1182, 1159, 1133, 1117, 1098, 1053, 1024, 958, 930, 906, 895, 852, 837, 827, 807, 764, 751, 738, 701, 685, 674, 650, 629, 586, 541, 531, 522 cm⁻¹. **Specific rotations at 25 °C**: [α]₅₈₉ = +62, [α]₅₇₈ = +65, [α]₅₄₆ = +78 (*c* = 2.22 in CH₂Cl₂), 92% *ee.* **cHPLC analysis:** [Chiracel Lux-Cellulose-4 column, n-heptane/*iso*propanol = 90:10, 1.0 mL/min, 254 nm; Rt = 18.22 min and 22.23 min (major)].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time [min]

Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)		
7119	49.70	5.18				
7204	50.30	6.54	1.26	4.72		
14324	100.00					
	Area 7119 7204 14324	AreaArea%711949.70720450.3014324100.00	AreaArea%Capacity Factor711949.705.18720450.306.5414324100.00	Area Area% Capacity Factor Enantioselectivity 7119 49.70 5.18 7204 50.30 6.54 1.26 14324 100.00		

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time [min]

orginar.	DADTE, OIG-204,4 Hei-OII						
RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)		
18.22	117	4.05	5.18				
22.23	2766	95.95	6.54	1.26	4.84		
Sum	2883	100.00					

Signal: DAD1 E, Sig=254,4 Ref=off

(+)-(R)-1-Benzyl-3-methyl-3-phenylindolin-2-one¹⁰ (+)-(R)-6h

According to the general procedure I, *N*-benzyl-*N*-(2-bromophenyl)-2-phenylpropanamide **5h** (80 mg, 0.2 mmol, 1.0 equiv.), (-)-(S_a , S_a)-**2f** (8.2 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.30 mmol, 1.5 equiv.) were stirred at 40 °C for 60 hours to afford a light yellow oil. (60.0 mg, 95% yield).

Rf = 0.23 (PE/Et₂O 9:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.34-7.12 (m, 12H, *H*^{Ar}), 7.08-6.96 (m, 1H, *H*^{Ar}), 6.77 (d, *J*(H,H) = 7.5 Hz, 1H, *H*^{Ar}), 5.00-4.85 (m, 2H, CH₂), 1.83 (s, 3H, CH₃). ¹³**C NMR (101 MHz, CDCl₃):** δ = 179.7 (C), 142.4 (C), 140.9 (C), 136.1 (C), 135.1 (C), 128.9 (CH), 128.7 (CH), 128.1 (CH), 127.7 (CH), 127.4 (CH), 127.3 (CH), 126.8 (CH), 124.3 (CH), 122.9 (CH), 109.5 (CH), 52.3 (C), 44.0 (CH₂), 23.9 (CH₃). **Specific rotations at 25** °**C**: [α]₅₈₉ = +56, [α]₅₇₈ = +59, [α]₅₄₆ = +70 (*c* = 1.36 in CH₂Cl₂), 98% *ee.* **cHPLC analysis:** [Chiracel IF column, n-heptane/*iso*propanol = 90:10, 1.0 mL/min, 254 nm; Rt = 11.63 min and 14.87 min (major)].

Signal: DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
11.63	1347	50.11	2.94		
14.94	1342	49.89	4.06	1.38	5.12
Sum	2689	100.00			

Signal:	DAD1 E, Sig=254,4 Ref=off
---------	---------------------------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
11.63	45	1.24	2.94		
14.87	3578	98.76	4.04	1.37	5.04
Sum	3623	100.00			

(-)-(S)-3-Ethyl-1-methyl-3-phenylindolin-2-one⁸ (-)-(S)-6i

According to the general procedure I, *N*-(2-bromophenyl)-*N*-methyl-2-phenylbutanamide **5i** (67 mg, 0.2 mmol, 1.0 equiv.), (+)-(R_a , R_a)-**2f** (8.2 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.30 mmol, 1.5 equiv.) were stirred at 60 °C for 20 hours to afford a brown oil. (48.0 mg, 96% yield).

Rf = 0.51 (PE/Et₂O 2:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.40-7.20 (m, 7H, *H*^{Ar}), 7.16-7.08 (m, 1H, *H*^{Ar}), 6.91(d, *J*(H,H) = 7.8 Hz, 1H, *H*^{Ar}), 3.23 (s, 3H, NCH₃), 2.50-2.36 (m, 1H, CH₂), 2.30-2.14 (m, 1H, CH₂), 0.63 (t, *J*(H,H) = 7.3 Hz, 3H, CH₃). ¹³**C NMR (101 MHz, CDCl₃):** δ = 178.7 (C), 144.3 (C), 140.4 (C), 132.2 (C), 128.6 (CH), 128.2 (CH), 127.1 (CH), 124.9 (CH), 122.7 (CH), 108.3 (CH), 57.5 (C), 31.0 (CH₂), 26.5 (CH₃), 9.2 (CH₃). **Specific rotations at 25** °**C**: $[\alpha]_{589}$ = -98, $[\alpha]_{578}$ = -102, $[\alpha]_{546}$ = -120 (*c* = 1.62 in CH₂Cl₂), 87% *ee.* **cHPLC analysis:** [Chiracel OD-3 column, n-heptane/*iso*propanol = 90:10, 1.0 mL/min, 254 nm; Rt = 6.33 min and 7.49 min (major)].

Signal: DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.32	7544	49.96	1.14		
7.50	7557	50.04	1.54	1.35	4.13
Sum	15101	100.00			

Signal:	DAD1 E, Sig=254,4 Ref=off
---------	---------------------------

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.33	1079	6.71	1.15		
7.49	14986	93.29	1.54	1.34	4.06
Sum	16065	100.00			

(+)-3-Cyclopentyl-1-methyl-3-phenylindolin-2-one¹¹ (+)-6j

According to the general procedure I, *N*-(2-bromophenyl)-2-cyclopentyl-*N*-methyl-2-phenylacetamide **5j** (78 mg, 0.2 mmol, 1.0 equiv.), (-)-(R_a , R_a)-**2e** (8.2 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.30 mmol, 1.5 equiv.) were stirred at 80 °C for 20 hours to afford a brown oil. (60.0 mg, 90% yield).

Rf = 0.38 (PE/Et₂O 2:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.48-7.42 (m, 2H, H^{Ar}), 7.37-7.17 (m, 5H, H^{Ar}), 7.15-7.07 (m, 1H, H^{Ar}), 6.90 (d, J(H,H) = 7.7 Hz, 1H, H^{Ar}), 3.20 (s, 3H, CH₃), 3.15-3.05 (m, 1H, CH), 1.65-1.35 (m, 7H, CH₂), 0.95-0.80 (m, 1H, CH₂). ¹³**C NMR (101 MHz, CDCl₃):** δ = 178.5 (*C*), 144.5 (*C*), 139.9 (*C*), 131.1 (*C*), 128.5 (CH), 128.3 (CH), 127.6 (CH), 127.2 (CH), 126.0 (CH), 122.3 (CH), 108.2 (CH), 58.9 (C), 47.5 (CH), 28.1 (CH₂), 27.5 (CH₂), 26.4 (CH₃), 25.5 (CH₂), 25.4 (CH₂). **Specific rotations at 25 °C:** [α]₅₈₉ = +132, [α]₅₇₈ = +139, [α]₅₄₆ = +163, [α]₄₃₆ = +314, [α]₄₀₅ = +408 (*c* = 0.90 in CH₂Cl₂), 72% *ee*. **cHPLC analysis:** [Chiracel Lux-Cellulose-3 column, n-heptane/*iso*propanol = 90:10, 1.0 mL/min, 254 nm; Rt = 5.61 min and 7.71 min (major)].

Signal: DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
5.64	8525	49.93	0.91		
8.02	8549	50.07	1.72	1.89	3.32
Sum	17074	100.00			

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
5.61	1434	14.43	0.90		
7.71	8503	85.57	1.61	1.79	2.76
Sum	9937	100.00			

According to the general procedure I, *N*-(2-bromophenyl)-*N*-2-dimethylpent-4-enamide **5k** (57 mg, 0.2 mmol, 1.0 equiv.), (+)-(R_a , R_a)-**2f** (8.1 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.30 mmol, 1.5 equiv.) were stirred at 60 °C for 20 hour ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.23 (m, 1H, H^{Ar}), 7.21-7.18 (m, 1H, H^{Ar}), 7.08-7.04 (m, 1H, H^{Ar}), 6.83 (d, *J*(H,H) = 7.7 Hz, 1H, H^{Ar}), 5.55-5.40 (m, 1H, CH₂=CH), 5.00-4.85 (m, 2H, CH₂=CH), 3.20(s, 3H, NCH₃), 2.52 (ddt, *J*(H,H) = 7.1, 3.8 and 1.1 Hz, 2H, CH₂), 1.37 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ = 180.3 (*C*), 143.3 (*C*), 133.8 (*C*), 132.7 (*C*H), 127.9 (*C*H), 124.0 (*C*H), 122.5 (*C*H), 118.7 (*C*H₂), 108.0 (*C*H), 48.4 (*C*), 42.6 (*C*H₂), 26.3 (*C*H₃), 22.9 (*C*H₃).s to afford a brown oil. (30.0 mg, 75% yield). Rf = 0.35 (PE/Et₂O 2:1). HRMS (ESI): *m*/*z*: 202.1226 calcd for: C₁₃H₁₆NO⁺ [M+H]⁺: found 202.1225. IR (ATR): 3056, 2968, 2927, 2359, 1707, 1660, 1612, 1492, 1469, 1450, 1418, 1375, 1348, 1317, 1306, 1248, 1158, 1121, 1083, 1051, 1026, 994, 964, 915, 874, 752, 740, 700, 688, 655, 629, 567, 541 cm⁻¹. cHPLC analysis: [Chiracel Lux-Amylose-2 column, n-heptane/*iso*propanol = 90:10, 1.0 mL/min, 254 nm; Rt = 6.95 min and 7.93 min (major)]: 24% *ee*.

Signal:		DAD1 E, Sig=254,4 Ref=off				

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
7.03	3597	49.85	1.38		
8.12	3619	50.15	1.75	1.27	4.58
Sum	7216	100.00			

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.95	12958	38.33	1.36		
7.93	20849	61.67	1.69	1.24	4.00
Sum	33806	100.00			

Signal: DAD1 E, Sig=254,4 Ref=off

(-)-(S)-1-Methyl-3',4'-dihydro-2'*H*-spiro[indoline-3,1'-naphthalen]-2-one⁸ (-)-(S)-6l

According to the general procedure I, *N*-(2-bromophenyl)-*N*-methyl-1,2,3,4-tetrahydronaphthalene-1carboxamide **5I** (69 mg, 0.2 mmol, 1.0 equiv.), (+)-(R_a , R_a)-**2f** (8.2 mg, 0.01 mmol, 5 mol%), *t*BuOK (34 mg, 0.30 mmol, 1.5 equiv.) were stirred at 40 °C for 20 hours to afford a light yellow oil. (50.0 mg, 93% yield).

Rf = 0.40 (PE/Et₂O 2:1). ¹**H NMR (400 MHz, CDCl₃):** δ = 7.34-7.24 (m, 1H, H^{Ar}), 7.20-6.88 (m, 6H, H^{Ar}), 6.47 (d, *J*(H,H) = 7.8 Hz, 1H, H^{Ar}), 3.29 (s, 3H, CH₃), 3.00 (q, *J*(H,H) = 6.6 Hz, 2H, Ar- CH₂), 2.45-2.35 (m, 1H, CCH₂), 2.25-2.10 (m, 1H, CCH₂), 2.10-1.90 (m, 2H, CH₂). ¹³C **NMR (101 MHz, CDCl₃):** δ = 180.5 (*C*), 145.2 (*C*), 137.9 (*C*), 137.5 (*C*), 135.3 (*C*), 129.7 (*C*H), 128.1 (*C*H), 127.9 (*C*H), 127.1 (*C*H), 126.4 (*C*H), 124.1 (*C*H), 122.9 (*C*H), 108.1 (*C*H), 52.3 (*C*), 34.2 (*C*H₂), 29.4 (*C*H₂), 26.6 (*C*H₂), 18.9 (*C*H₂). **Specific rotations at 25 °C:** $[\alpha]_{589}$ = +8.2, $[\alpha]_{578}$ = +7.7, $[\alpha]_{546}$ = +7.1 (*c* = 1.93 in CH₂Cl₂), 92% *ee*. **cHPLC analysis:** [Chiracel IE column, n-heptane/*iso*propanol = 90:10, 1.0 mL/min, 220 nm; Rt = 11.31 min and 14.86 min (major)].

Signal:	DAD1 C, Sig=220,4 Ref=off

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
11.30	13571	49.80	2.83		
14.77	13679	50.20	4.01	1.42	7.47
Sum	27250	100.00			

Signal:	DAD1 C, Sig	g=220,4 Ref=	off		
RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
11.31	26788	96.06	2.83		
14.86	1099	3.94	4.04	1.42	7.59
Sum	27888	100.00			

VI Theoretical calculations

Computations were all done with Gaussian G09RevD.01.¹²⁻¹⁵ PBE0 calculations were done in gaussian at the dual level : RPBE1PBE/Def2SVP // PBE1PBE/Def2TZVP. PBE1PBE/**Def2TZVP** are noted LB

Thermal corrections to Gibbs Free Energy were evaluated in the small basis set (Def2SVP) computation (Corr^{SB}), and added to the Large basis set electronic energy : $\Delta G^{LB} = \Delta E^{LB} + Corr^{SB}$

transition states for a rotation on backbone side are noted BB transition states for a rotation on Hydrogen side noted H

There are two BackBone side transition states (**BB1** and **BB2**) of similar energies, depending on the orientation of the other N-substituent :

The same notation is used for the Hydrogen side transition states (H1 and H2).

system	G ^{SB}	ESB	Corr ^{SB}	ELB	G ^{LB} = E ^{LB} + Corr ^{SB}	ΔG ^{LB}
1d·X	-1766.32334	-1766.93927	0.6159	-1768.760542	-1768.1446	0.0
BB1	-1766.26953	-1766.88877	0.6192	-1768.711844	-1768.0926	136.5
BB2	-1766.27211	-1766.88959	0.6175	-1768.713597	-1768.0961	127.3
H1	-1766.29026	-1766.91158	0.6213	-1768.733587	-1768.1123	84.9
H2	-1766.29558	-1766.91330	0.6177	-1768.735797	-1768.1181	69.7
1e·X	-2042.92124	-2043.56736	0.6461	-2045.711753	-2045.0656	0.0
BB1	-2042.86313	-2043.51119	0.6481	-2045.656429	-2045.0084	150.3
BB2	-2042.86584	-2043.51277	0.6469	-2045.658394	-2045.0115	142.2
H1	-2042.87387	-2043.52523	0.6514	-2045.66897	-2045.0176	126.1
H2	-2042.87988	-2043.52761	0.6477	-2045.671964	-2045.0242	108.7
1f·X	-1923.20357	-1923.92067	0.7171	-1925.903453	-1925.1864	0.0
BB1	-1923.13130	-1923.85138	0.7201	-1925.836564	-1925.1165	183.5
BB2	-1923.13296	-1923.85154	0.7186	-1925.836809	-1925.1182	178.9
H1	-1923.13830	-1923.85959	0.7213	-1925.843934	-1925.1226	167.3
H2	-1923.14274	-1923.86296	0.7202	-1925.8472	-1925.1270	155.9

Scheme S6. DFT Calculations on symmetric imidazolium salts 1·X

Same template than previously when multiple with |

filename E1 |E2 | zpc | entro | G

1a•X

1a H2 x GB.log -1768.7605421 H2.log -1766.9392748 | | 0.687408 |230.622 -1766.323341 State 1-A NImag 0 PG C01 [X(C43H37N2)] HF -1766.9392748 Low frequencies --- -4.7689 -0.0007 С -0.034687 -1.784912 -1.209313 С -0.850589 -2.788462 0.597214 С 0.518922 -2.820123 0.679837 С -1.902212 -3.285518 1.515996 С 1.419427 -3.374744 1.716654 С -2.494941 -1.937105 -1.086683 С 2.382327 -2.027317 -0.803824 С -3.092155 -2.978648 -1.795985 С -4.395148 -2.829848 -2.259730 С -5.082640 -1.645712 -1.997574 С -4.473062 -0.616772 -1.283306 С -3.161778 -0.734967 -0.811684 С -2.455601 0.398048 -0.090924 -2.582951 -2.472859 1.812665 Н 2.028938 -2.579159 2.171254 Н н -1.447926 -3.703419 2.422229 0.832345 -3.854345 2.508621 н -2.515318 -4.066722 1.041939 н 2.104427 -4.123066 1.291529 Н Н -2.531099 -3.898049 -1.978311 н -4.871502 -3.637501 -2.818970 Н -6.108452 -1.520975 -2.351358 -5.024685 0.302720 -1.077015 Н -1.161202 -2.140091 -0.592852 Ν Ν 0.995049 -2.185444 -0.462510 С -3.407139 1.228070 0.753214 н -1.754163 -0.073134 0.619590 С -1.605627 1.240709 -1.035080 С -3.730787 0.799255 2.045090 С -4.633294 1.514018 2.829240 С -5.226092 2.672520 2.327651 С -4.000699 2.395184 0.261509 С -4.906461 3.111073 1.043682 Н -3.265639 -0.107527 2.445385 н -4.871910 1.168639 3.837923 н -5.932162 3.237051 2.940870 н -3.742735 2.754315 -0.738221 н -5.361524 4.021960 0.647603 С -1.624865 1.078142 -2.423632 С -0.824786 1.878022 -3.245263 С 0.000341 2.850466 -2.688787 С -0.775778 2.231285 -0.487954 С 0.021333 3.027121 -1.303766 н -2.282974 0.333438 -2.878031 Н -0.860406 1.743293 -4.329166 Н 0.627797 3.475108 -3.328177 H -0.771492 2.394245 0.593279

Н	0.672706	3.782105	-0.857449	
С	3.034316	-3.127070	-1.361066	
С	4.389881	-3.043903	-1.660011	
С	5.073608	-1.858970	-1.394413	
С	4.406149	-0.765467	-0.848042	
С	3.041277	-0.816448	-0.540262	
С	2.314553	0.349434	0.112356	
Н	2.471474	-4.043028	-1.555173	
н	4.907059	-3.899727	-2.098120	
Н	6.139732	-1.781369	-1.619041	
Н	4.951335	0.162117	-0.661289	
С	2.912563	1.709684	-0.219354	
Н	1.293195	0.383112	-0.304910	
С	2.160764	0.084013	1.600699	
С	3.170927	2.038121	-1.557729	
С	3.640035	3.300392	-1.906532	
С	3.848413	4.267237	-0.921067	
С	3.125889	2.683379	0.759269	
С	3.588023	3.954378	0.410483	
Н	2.995049	1.295555	-2.340688	
Н	3.839372	3.534613	-2.955172	
Н	4.214868	5.259892	-1.192533	
н	2.923652	2.454667	1.807498	
н	3.747475	4.702455	1.190634	
С	3.267751	-0.243004	2.394234	
С	3.116238	-0.495149	3.756448	
Č	1.852721	-0.431075	4.346970	
С	0.903416	0.157911	2.206384	
Č	0.745239	-0.100954	3.567831	
Ĥ	4.260001	-0.304968	1.940095	
н	3,990585	-0.746065	4.361608	
н	1,735009	-0.631737	5,414323	
н	0.035443	0.429582	1.601363	
н	-0.247190	-0.035299	4.020930	
н	0.030077	-1.250953	-2.154858	
	1	1.200000	2.101000	
BB	1			
H1	2Bdn_x_GB	.log -1/68.	/118443	
H1	2Bdn.log -1	766.888769	98 0.688614	223.280
-17	66.269532			
Sta	ate 1-A			
NI	mag 1			
PC	G C01 [X(C4	3H37N2)]		
HF	-1766.8887	7698		
Lo	w frequencie	es95.08	397 -4.2765	
С	-0.752948	-1.755382	0.429922	
С	0.508148	-1.166905	-1.277814	
С	-0.733359	-1.524752	-1.748669	
С	1.553843	-0.709858	-2.228317	
С	-1.254299	-1.564482	-3.138855	
С	1.422766	-1.083143	1.257548	
С	-2.899914	-2.170647	-0.642069	
С	0.877564	-1.325396	2.537613	
С	1.604666	-1.215716	3.710831	
С	2.941923	-0.848260	3.653434	
С	3.484907	-0.576591	2.411783	
С	2.773775	-0.662521	1.199831	
С	3.546367	-0.159009	-0.006579	
Н	1.916940	0.300178	-2.006031	
Н	-2.346452	-1.667438	-3.134372	
Н	1.089135	-0.664538	-3.219835	
Н	-1.013754	-0.634887	-3.670670	
Н	2.398400	-1.408349	-2.314096	

	0 004007	0 444000	0 704445
н	-0.831827	-2.411828	-3.701145
н	-0.159023	-1.607551	2.680059
ы	1 112672	1 / 23077	1 663111
	1.112072	-1.423077	4.000111
н	3.548365	-0.761047	4.556803
Н	4.528710	-0.266127	2.349469
М	0 /83016	-1 300116	0 133100
11	0.403010	-1.309110	0.155100
Ν	-1.494465	-1.875346	-0.657507
С	5.026895	-0.520640	0.053574
ц	3 18/075	0 680786	0 883672
	5.104075	-0.009700	-0.003072
С	3.302754	1.325583	-0.248105
С	5.397369	-1.854676	-0.157730
Ċ	6 732535	2 2/2073	0 006062
č	0.752555	-2.242975	-0.090002
С	7.722065	-1.298139	0.178626
С	6.025182	0.419375	0.325166
Ċ	7 36//10	0 031580	0 388363
	1.004413	0.001000	0.000000
Н	4.625454	-2.602828	-0.364228
Н	7.003987	-3.287626	-0.265709
ы	8 771011	1 500/65	0 225600
	0.771011	-1.399403	0.223009
н	5.757016	1.465914	0.487977
н	8.132934	0.778254	0.601883
C	2 680006	2 161156	0 600504
0	2.009990	2.101130	0.090394
С	2.506400	3.520522	0.425238
С	2.920971	4.062905	-0.788207
Ċ	3 725103	1 887080	1 /63888
č	5.725195	1.007009	-1.403000
С	3.531845	3.238206	-1.735298
Н	2.355443	1.756422	1.647819
н	2 033382	4 157213	1 176749
	2.000002	4.107210	1.170745
н	2.775864	5.125588	-0.995345
Н	4.231810	1.255426	-2.199706
н	3 870639	3 653853	-2 687283
	0.070000	0.000000	-2.007200
C	-3.321453	-3.395666	-1.152682
С	-4.681675	-3.687942	-1.196784
С	-5 595144	-2 747424	-0 727921
č	5.000144	4.500000	0.727021
C	-5.156780	-1.529260	-0.209096
С	-3.798539	-1.204377	-0.149898
С	-3 302979	0 128089	0 41 14 63
ŭ	2 570052	4 110114	1 512270
п	-2.579955	-4.112114	-1.515279
Н	-5.022212	-4.645711	-1.594956
н	-6.665544	-2,962399	-0.760892
ц	E 001021	0.005474	0 162752
П	-5.004034	-0.605471	0.103755
С	-4.398598	0.923372	1.105856
Н	-2.581213	-0.113980	1.209274
C	2 531038	0.010077	0 628807
0	-2.551050	0.919977	-0.020097
С	-4.773983	0.553624	2.404090
С	-5.793202	1.225295	3.073120
ĉ	6 151012	2 295206	2 451462
0	-0.434043	2.203200	2.431403
С	-5.061610	1.990883	0.494833
С	-6.083605	2.665793	1.163957
н	_1 263013	-0 270/3/	2 807136
	-4.200010	-0.270404	2.007100
н	-6.070430	0.923721	4.085980
Н	-7.252154	2.817318	2.974146
ы	1 77/007	2 212221	0 508150
	-4.114221	2.512251	-0.000100
н	-6.589247	3.500854	0.673388
С	-3.003476	1.046294	-1.940548
С	-2 288526	1 781572	-2 885608
č	-2.200020	0.000700	2.0000000
C	-1.078210	2.380769	-2.53/822
С	-1.326035	1.543213	-0.286047
С	-0 596176	2 258660	-1 234075
	0.000170	2.200009	0.005005
н	-3.941419	0.561167	-2.225965
Н	-2.678130	1.881981	-3.901918
н	-0.511913	2,949922	-3.278834
	0.047040	1 462002	0 727070
п	-0.947349	1.403893	U.IJ/8/8

H 0.351087 2.724104 -0.951526 H -1.138819 -2.025629 1.399948 BB2 H12Bup x GB.log -1768.7135973 H12Bup.log -1766.88959 | | 0.687961 |226.319| -1766.272114 State 1-A NImag 1 PG C01 [X(C43H37N2)] HF -1766.88959 Low frequencies --- -65.0503 -4.5266 -0.0009 C -0.676867 1.075241 1.181769 C 0.358401 1.278047 -0.754161 C -0.908288 1.798505 -0.874500 C 1.314206 1.366112 -1.888714 C -1.574091 2.451169 -2.032755 C 1.536435 0.122905 1.371396 C -2.883673 1.968992 0.683795 С 1.125495 -0.273480 2.663232 C 2.001794 -0.760453 3.616093 С 3.351574 -0.884181 3.305496 С 3.745417 -0.601913 2.011990 С 2.875000 -0.140604 1.005807 С 3.505093 -0.071136 -0.375611 H 2.268969 1.828185 -1.610318 H -1.078144 3.397901 -2.297117 H 0.859598 2.011921 -2.649800 H -1.562628 1.803782 -2.921481 н 1.506416 0.397549 -2.373011 H -2.620609 2.681598 -1.791043 H 0.081359 -0.258422 2.956729 н 1.617054 -1.048147 4.596539 H 4.074931 -1.238138 4.042335 н 4.784394 -0.774336 1.726670 0.490096 0.797174 0.573362 Ν N -1.522629 1.658105 0.348484 4.280021 -1.354986 -0.662966 С 2.691687 -0.098213 -1.100704 н С 4.293510 1.201593 -0.633771 С 3.554765 -2.518524 -0.947423 С 4.204315 -3.725560 -1.188864 С 5.597621 -3.787051 -1.148763 С 5.675721 -1.425775 -0.628800 С 6.329288 -2.634965 -0.868987 Н 2.460858 -2.476800 -0.971708 Н 3.622532 -4.622906 -1.413044 Н 6.111604 -4.731770 -1.340067 Н 6.260396 -0.526176 -0.420879 Н 7.420808 -2.673383 -0.839735 4.436585 2.209452 0.323928 С С 5.133456 3.382865 0.026058 С 5.694574 3.565263 -1.234234 С 4.862885 1.397792 -1.902429 С 5.555825 2.566271 -2.200374 4.003928 2.080589 1.318620 Н Н 5.239019 4.156600 0.790260 6.241946 4.481755 -1.466063 Н H 4.767846 0.615420 -2.660753 H 5.994823 2.698335 -3.192175 C -3.144818 3.129180 1.406582 C -4.457936 3.428666 1.762281 C -5.482209 2.565030 1.382806

```
C -5.203734 1.409927 0.651334
С
  -3.896969 1.079750 0.284439
С
  -3.551517 -0.184021 -0.493535
H -2.320733 3.791036 1.682316
H -4.676247 4.335452 2.329711
H -6.515295 2.791361 1.655918
  -6.016341 0.744194 0.353657
Н
С
  -4.773090 -0.859415 -1.095970
Н
  -2.936941 0.135047 -1.352125
С
  -2.680363 -1.122911 0.323570
С
  -5.320381 -0.332640 -2.272860
С
  -6.461121 -0.891518 -2.842261
С
  -7.072681 -1.992080 -2.241024
С
  -5.389450 -1.965066 -0.504059
С
  -6.533046 -2.526670 -1.073453
H -4.847219 0.531911 -2.749095
H -6.872716 -0.469736 -3.762246
  -7.965733 -2.435552 -2.687220
Н
  -4.971028 -2.403560 0.404500
н
  -7.001108 -3.393414 -0.600913
н
С
  -2.894580 -1.314513 1.694295
  -2.089248 -2.190008 2.424048
С
С
  -1.053173 -2.880247 1.794621
  -1.643648 -1.826881 -0.299027
С
С
  -0.833184 -2.696370 0.429811
H -3.701435 -0.772519 2.195857
H -2.277097 -2.337953 3.490579
H -0.418202 -3.561068 2.365793
H -1.473759 -1.694841 -1.371651
H -0.026449 -3.237903 -0.070489
H -0.946210 0.870487 2.206377
H1
H12Fdn_x_GB.log -1768.7335865
H12Fdn.log -1766.9115809 || 0.688856 |218.965|
-1766.290255
State 1-A
NImag 1
PG C01 [X(C43H37N2)]
HF -1766.9115809
Low frequencies --- -63.2232 -0.0008
C -0.367306 1.100809 0.956205
   1.086826 2.756165 1.046476
С
С
   0.002279 3.191387 0.331658
С
   2.356315 3.460332 1.358162
С
   -0.034809 4.528046 -0.323144
С
   1.728077 0.619666 2.166858
С
   -2.247887 2.111627 -0.312618
С
   -2.683459 3.302260 -0.909628
С
   -3.898450 3.405371 -1.572714
С
   -4.725146 2.295768 -1.651926
С
   -4.325871 1.123756 -1.024706
   -3.114651 0.982841 -0.332427
С
   -2.863651 -0.377220 0.319507
С
С
  -1.841649 -1.217574 -0.433049
   -4.148815 -1.157961 0.573815
С
   2.176398 4.357404 1.968912
Н
   2.862392 3.760155 0.429195
Н
Н
   3.041268 2.803134 1.907172
H -0.191719 4.456237 -1.408645
Н
   0.943781 5.000003 -0.172355
H -0.788397 5.205717 0.104564
H -2.075249 4.192350 -0.861012
```

Н	-4.184493	4.359103	-2.020446			
Н	-5.681089	2.337946	-2.177453			
Н	-4.992396	0.261492	-1.054339			
Н	-2.481623	-0.186154	1.336967			
Ν	0.826321	1.453296	1.420099			
Ν	-0.928425	2.128108	0.295217			
Н	-0.774121	0.108814	1.080569			
С	2.524387	-0.332992	1.506763			
С	3.495774	-0.974073	2.284058			
С	3.636758	-0.714579	3.646175			
С	1.844996	0.876834	3.532013			
С	2.798876	0.197396	4.282771			
С	2.339598	-0.610842	0.018624			
Н	4.153917	-1.701712	1.806561			
Н	4.409181	-1.237118	4.214902			
Н	2.894369	0.391938	5.352752			
Н	1.194378	1.623548	3.993060			
С	2.973743	-1.910488	-0.465343			
Н	1.255857	-0.753470	-0.144824			
С	2.747023	0.599534	-0.803044			
С	-4.576939	-2.185851	-0.272197			
С	-5.773574	-2.856807	-0.019532			
С	-6.553370	-2.512045	1.082676			
С	-4.937099	-0.821427	1.680335			
С	-6.130681	-1.491637	1.934803			
Н	-3.970151	-2.467852	-1.136037			
Н	-6.095320	-3.657835	-0.689205			
Н	-7.488117	-3.041271	1.281355			
Н	-4.614916	-0.018014	2.349978			
Н	-6.732462	-1.219068	2.804961			
С	-1.450918	-0.927480	-1.742848			
С	-0.551418	-1.758268	-2.417721			
С	-0.040611	-2.892576	-1.794366			
С	-1.318203	-2.361938	0.188002			
С	-0.434523	-3.195502	-0.489169			
Н	-1.861892	-0.050909	-2.249887			
Н	-0.254198	-1.516418	-3.440894			
Н	0.670232	-3.538234	-2.314708			
Н	-1.637156	-2.615766	1.203501			
Н	-0.046931	-4.090427	0.000870			
С	4.001176	1.195836	-0.626498			
С	4.384039	2.287397	-1.403888			
С	3.509778	2.809060	-2.359014			
С	1.882419	1.121617	-1.769927			
С	2.256815	2.223138	-2.539641			
Н	4.688948	0.793041	0.122281			
Н	5.371133	2.734589	-1.263310			
Н	3.810363	3.664222	-2.969065			
Н	0.907094	0.650384	-1.922370			
Н	1.571537	2.617219	-3.294580			
С	2.713388	-3.107850	0.217694			
С	3.208818	-4.322071	-0.246639			
С	3.968335	-4.367022	-1.417257			
С	3.734730	-1.968800	-1.635689			
С	4.226502	-3.187183	-2.108809			
Н	2.107537	-3.088948	1.126965			
Н	2.997960	-5.241176	0.305777			
Н	4.357698	-5.319147	-1.784948			
Н	3.942518	-1.055392	-2.195578			
Н	4.818678	-3.208151	-3.026721			
Н2						
H1:	H12Fup x GB.log -1768.7357967					

H12Fup.log -1766.9133046 0.688176 226.199			
-17	66.295582		
St	ate 1-A		
NI	mag 1		
PC	G C01 [X(C4	3H37N2)]	
HF	-1766.9133	3046	
Lo	w frequencie	es63.12	234 -5.3100
С	-0.113237	-1.225283	-0.105832
С	1.335241	-2.757453	-0.750531
С	0.229781	-2.863930	-1.555753
С	2.611202	-3.512859	-0.704364
С	0.093953	-3.866047	-2.648409
С	1.948646	-1.299661	1.201768
С	-2.057490	-1.642780	-1.564986
С	-2.523919	-2.421611	-2.631774
С	-3.842122	-2.379971	-3.065080
С	-4.742588	-1.546191	-2.420429
С	-4.276914	-0.725476	-1.402273
С	-2.946264	-0.708694	-0.959472
С	-2.602353	0.333061	0.109574
С	-2.413590	-0.264599	1.496549
С	-3.578208	1.505569	0.116358
Н	3.470530	-2.844951	-0.870419
Н	2.638098	-4.298733	-1.467115
Н	2.750798	-3.983269	0.280642
Н	-0.738507	-4.564675	-2.483157
Н	1.013206	-4.462908	-2.679092
Н	-0.019694	-3.404027	-3.639807
Н	-1.855256	-3.088691	-3.154643
Н	-4.151650	-3.011265	-3.900289
Н	-5.793047	-1.511349	-2.715614
Н	-4.973688	-0.034823	-0.926051
Н	-1.647913	0.802429	-0.192028
Ν	1.083403	-1.734639	0.142690
Ν	-0.694210	-1.876551	-1.121990
Н	-0.532147	-0.429831	0.489249
С	2.920314	-0.325837	0.931584
С	3.755032	0.048214	1.987948
С	3.610391	-0.515152	3.255564
С	1.785067	-1.867441	2.462709
С	2.623066	-1.467693	3.500227
С	2.974782	0.336371	-0.434432
Н	4.528870	0.797338	1.806599
Н	4.276636	-0.201344	4.062327
Н	2.505166	-1.902749	4.494615
Н	0.999378	-2.608975	2.623536
С	4.326210	0.971887	-0.723905
Н	2.842857	-0.457538	-1.189305
С	1.808344	1.295354	-0.615618
С	-4.475536	1.732727	1.162399
С	-5.354515	2.817258	1.119019
С	-5.346627	3.685933	0.031219
С	-3.581509	2.383305	-0.976381
С	-4.456168	3.463943	-1.021129
Н	-4.491662	1.059800	2.022404
Н	-6.049744	2.980834	1.945769
Н	-6.033629	4.534675	-0.000073
Н	-2.897001	2.203098	-1.809481
Н	-4.445869	4.137493	-1.881589
С	-2.931694	-1.514005	1.847275
С	-2.718477	-2.037579	3.124348
С	-1.980834	-1.319747	4.063385

С	-1.682929	0.455883	2.453301
С	-1.463567	-0.067854	3.724017
Н	-3.509914	-2.084910	1.116500
Н	-3.136456	-3.012782	3.385481
Н	-1.814589	-1.730325	5.062115
Н	-1.281117	1.438107	2.189166
Н	-0.888520	0.504848	4.455447
С	1.303728	2.050132	0.450202
С	0.282432	2.978163	0.243376
С	-0.254409	3.159179	-1.030231
С	1.250931	1.473234	-1.887560
С	0.226289	2.395296	-2.094575
Н	1.719891	1.919199	1.452334
Н	-0.090999	3.572381	1.081114
Н	-1.048079	3.891637	-1.188742
Н	1.639556	0.894129	-2.730403
Н	-0.190274	2.527209	-3.096310
С	5.412692	0.138066	-1.017871
С	6.676126	0.669315	-1.258238
С	6.872590	2.050299	-1.209034
С	4.531531	2.353036	-0.680509
С	5.798278	2.888074	-0.921000
Н	5.267007	-0.946202	-1.054652
Н	7.511587	0.004265	-1.489281
Н	7.862370	2.471004	-1.400441
Н	3.695405	3.022063	-0.465641
Н	5.941998	3.970573	-0.886701

1e∙X 1e

F2_x_GB.log -2045.7117533 F2.log -2043.5673648 | | 0.725713 |259.614 | -2042.921244 State 1-A NImag 0 PG C01 [X(C45H39F2N2)] HF -2043.5673648 Low frequencies --- -5.1327 -2.1409 C -0.039339 -1.616740 -0.715800 С -0.784459 -2.392200 1.230220 0.584981 -2.400040 1.271190 С -1.801409 -2.808230 2.223720 С С 1.530501 -2.818770 2.329720 С -2.482149 -1.782610 -0.493300 С 2.383211 -1.783990 -0.353680 С -3.102249 -2.945100 -0.952300 С -4.408719 -2.933550 -1.407770 С -5.128029 -1.733110 -1.394970 С -4.501509 -0.572490 -0.920260 С -3.184269 -0.569910 -0.461580 С -2.492650 0.694750 0.012200 -2.546939 -2.014720 2.384490 Н 2.189251 -1.984880 2.615980 Н Н -1.323469 -3.033700 3.184550 0.980741 -3.145930 3.220070 Н -2.338489 -3.708110 1.885830 Н 2.157131 -3.655480 1.985830 н -2.405929 -4.076440 -0.934390 F H -4.850539 -3.866520 -1.763320 -6.556889 -1.697340 -1.845740 С
Н	-5.061850	0.364430	-0.897070
Ν	-1.140479	-1.892200	-0.018050
Ν	1.016731	-1.905570	0.044400
С	-3.457730	1.661760	0.675920
н	-1.783500	0.383610	0.799640
С	-1 655050	1 342680	-1 083330
č	-3 707800	1 474660	2 020180
č	4 712700	2 215010	2.020100
č	-4.713790	2.315910	2.047230
C	-5.304090	3.358770	1.933300
С	-4.049100	2.713750	-0.030420
С	-4.968790	3.555520	0.594740
Н	-3.337490	0.657480	2.585010
Н	-4.965460	2.160460	3.698990
Н	-6.020590	4.022130	2.423090
н	-3.778840	2.882710	-1.076010
н	-5 421900	4 374940	0.031750
C	-1 703540	0 032120	-2 / 18070
č	-1.700040	1 559020	2 2 9 5 4 2 0
	-0.910300	1.000000	-3.365420
C	-0.063680	2.603180	-3.028000
С	-0.805970	2.405620	-0.738880
С	-0.015930	3.029210	-1.698930
Н	-2.376980	0.125020	-2.718040
Н	-0.967090	1.228910	-4.425940
Н	0.558890	3.092160	-3.780430
Н	-0.779050	2.761750	0.294720
н	0.650610	3 844910	-1 409220
C	3 054831	-2 955070	-0 708060
č	4 201051	2.000070	1 060620
Č	4.391931	-2.944330	1.000020
C	5.090361	-1.731589	-1.053660
C	4.409711	-0.560110	-0.697430
С	3.059291	-0.555020	-0.341970
С	2.342900	0.701420	0.126470
F	2.375751	-4.097230	-0.687110
Н	4.872011	-3.885490	-1.335920
С	6.549131	-1.697909	-1.396690
н	4.949430	0.389080	-0.701330
С	2,932830	1 993970	-0.417350
н	1 316330	0.670000	-0 277450
Ċ	2 206700	0.650880	1 630620
Č	2.200700	0.003000	1.039020
C	3.160360	2.117800	-1.795560
C	3.614760	3.314420	-2.340450
С	3.839730	4.418670	-1.516100
С	3.162950	3.103780	0.399090
С	3.611000	4.308610	-0.147150
Н	2.969750	1.265760	-2.453610
н	3.788950	3.389090	-3.416700
н	4 194080	5 360280	-1.941740
н	2 983770	3 035290	1 473880
ц	3 783/00	5 165770	0.507060
	2.20070	0.440420	0.307900
C	3.322070	0.449430	2.460210
C	3.185090	0.402870	3.846280
С	1.928370	0.558740	4.434120
С	0.955810	0.824260	2.240370
С	0.812560	0.772090	3.626760
Н	4.308250	0.317770	2.007490
Н	4.065520	0.241990	4.472910
н	1.822320	0.519930	5.520690
н	0.081810	1 002730	1 609450
н	_0 17/370	0 007/30	4 076360
ц	0.114070	1 211000	1 705 100
П	-0.012949 6 076004	-1.211090	1 670000
п	0.0/0931	-0.000489	-1.0/2080
н	7.153251	-2.020919	-0.532910

Н	6.782051	-2.378619	-2.228050
Н	-6.822139	-0.716910	-2.264880
Н	-6.764899	-2.468640	-2.600060
Н	-7.229239	-1.881041	-0.991370

BB1

F12Bdn x GB.log -2045.6564286 F12Bdn.log -2043.5111861 || 0.726166 |253.956| -2042.863127 State 1-A NImag 1 PG C01 [X(C45H39F2N2)] HF -2043.5111861 Low frequencies --- -43.8959 -4.1897 C -0.741917 0.772545 -1.063974 С -0.714071 2.040486 0.727152 С 0.551287 1.538728 0.556014 С -1.242646 2.973203 1.752522 С 1.673538 2.028803 1.398108 С -2.895270 1.718513 -0.471366 С 1.479077 -0.176856 -1.265690 С 1.014018 -0.997248 -2.331375 С 1.833559 -1.636698 -3.236849 С 3.218858 -1.551852 -3.115347 3.686115 -0.912394 -1.975080 С 2.873211 -0.283558 -1.021321 С С 3.607959 0.045875 0.272595 С 4.510018 1.265105 0.206389 С 4.310850 -1.220723 0.763190 н -2.326416 2.837276 1.864926 -1.061599 4.022036 1.469509 н н -0.782381 2.780911 2.729364 н 1.973607 1.324761 2.187619 н 1.328119 2.940270 1.900819 н 2.555300 2.311544 0.812409 F -0.297904 -1.244304 -2.515261 1.349437 -2.217740 -4.024337 Н 4.756453 -0.944974 -1.762867 Н Н 2.854707 0.234207 1.039226 -1.490762 1.545558 -0.296924 Ν 0.511428 0.678037 -0.575973 Ν -1.118337 0.313639 -1.963804 н С -3.792692 0.643588 -0.312842 С -5.149804 0.917799 -0.465425 С -5.633881 2.202904 -0.759401 С -3.369365 2.995702 -0.761878 С -4.723266 3.251293 -0.907120 С -3.274405 -0.756262 0.012928 н -5.860923 0.098104 -0.346036 С -7.104656 2.430526 -0.934333 н -5.045611 4.269250 -1.134089 F -2.486403 3.981284 -0.887598 С -4.371244 -1.809527 0.016060 Н -2.604475 -1.044494 -0.813745 С -2.425720 -0.767363 1.272689 5.692736 -1.409543 С 0.670260 С 6.274174 -2.602188 1.102117 С 5.483973 -3.619637 1.632468 С 3.526508 -2.249282 1.298533 С 4.103826 -3.439534 1.730734 6.325025 -0.614911 Н 0.266584 7.356197 -2.733192 1.025568 н

Н	5.942234	-4.551062	1.972626
Н	2.442768	-2.113906	1.367134
Н	3.476044	-4.230513	2.148176
С	4.663636	2.034250	-0.950476
С	5.468652	3.175822	-0.946947
С	6.129650	3.564481	0.214138
С	5.180467	1.668456	1.371981
С	5.981471	2.805320	1.376994
Н	4.148725	1.745789	-1.869435
н	5.577622	3.762142	-1.862396
н	6.760534	4.456247	0.216561
н	5.076075	1.074571	2.284350
н	6.496628	3.101350	2.293905
С	-2.789703	-0.032484	2,406726
Ĉ	-2.003852	-0.063172	3.558604
Ċ	-0.837031	-0 825476	3 589848
ĉ	-1 258703	-1 538239	1 317969
c	-0.469087	-1 566100	2 466174
й	-3 700150	0 573623	2 3871/2
ц	2 307608	0.500823	1 138181
н Ц	-2.307090	0.009020	4.400201
п	-0.221092	-0.0000097	4.492301
	-0.907770	-2.120295	0.442040
П	0.433717	-2.181315	2.491020
C	-4.733581	-2.409287	-1.196109
	-5.758942	-3.350335	-1.249130
C	-6.437945	-3.707748	-0.084506
C	-5.053436	-2.178984	1.179068
C	-6.080677	-3.121129	1.128069
н	-4.205522	-2.133156	-2.114035
н	-6.025581	-3.810769	-2.203380
Н	-7.239868	-4.448631	-0.121508
н	-4.775345	-1.739845	2.139374
Н	-6.600795	-3.402799	2.046668
С	4.139256	-2.163904	-4.122783
Н	3.732842	-3.104611	-4.520986
Н	4.279228	-1.481184	-4.977156
Н	5.129763	-2.365679	-3.692936
Н	-7.365258	3.495450	-0.870544
Н	-7.432385	2.063892	-1.920900
Н	-7.684589	1.882549	-0.177632
BB	2		
F1	- 2Bun v CB	log _2045 6	3583030
F1	$2Bup_{a} = 2$	2043.00	2 0 726293 256 791
-20	20002.10g -2 142 865842	.040.012771	2 0.720200 200.70
-20 St	$1_{-\Delta}$		
	111ag 1 2 C01 [V(C/	543052812)1	
	5 COT [A(C4	3F139F2N2)] 7719	
	2043.3121	62 62 62	20 2 0200
			0.020656
C	0.005002	-1.456902	-0.039050
	0.905726	-0.504658	-1.990892
C	-0.400140	-0.294390	-1.625441
C	1.643072	-0.08/4/4	-3.212309
C	-1.2/8483	0.542163	-2.483464
C	2.8/1933	-1.600622	-0.861519
C	-1.700006	-1.032841	0.597804
C	-1.497818	-1.805906	1.776410
C	-2.331297	-1.790332	2.874679
C	-3.490168	-1.019877	2.872598
C	-3.783840	-0.380349	1.676965
С	-2.968007	-0.396909	0.535940
С	-3.650797	0.204599	-0.685797

С	-3.660092	1.723757	-0.712882
С	-5.036325	-0.418582	-0.856345
н	2.668809	-0.480182	-3.187272
Н	1.701777	1.008607	-3.296464
Н	1.158595	-0.470823	-4.122066
н	-2.054406	-0.029205	-3.013264
н	-0.642377	0.990645	-3.256096
н	-1 745658	1 371330	-1 939862
F	-0 465742	-2 655706	1 906056
н	-2 045751	-2 418722	3 720653
н	-1 739077	0 130052	1 580305
ц	3 108078	0.135182	1.567132
N	1 500805	-0.100102	-0.070652
N	0.505715	0.029447	0.269462
ы	-0.393713	1 063540	0.877767
C	2 940002	-1.903340	0.077707
	3.849903	-0.674021	-0.454316
	5.157580	-1.133393	-0.329479
C	5.513862	-2.466985	-0.593673
C	3.216243	-2.923344	-1.125130
C	4.524693	-3.365/13	-0.997167
С	3.447970	0.768824	-0.1/14/5
Н	5.929853	-0.427936	-0.015841
С	6.941250	-2.901542	-0.452568
Н	4.749493	-4.411467	-1.214937
F	2.259040	-3.762976	-1.499273
С	4.639970	1.686289	0.045397
Н	2.956152	1.132413	-1.089518
С	2.402323	0.856001	0.926736
С	-6.217295	0.266253	-0.554803
С	-7.455862	-0.358379	-0.704365
С	-7.530345	-1.673114	-1.158929
С	-5.122443	-1.738593	-1.314744
С	-6.357204	-2.363231	-1.465635
н	-6.172871	1.301907	-0.208611
н	-8.369608	0.191521	-0.466656
н	-8.501167	-2.159312	-1.278953
Н	-4.206269	-2.289025	-1.551389
Н	-6.405220	-3.392915	-1.827822
С	-3.153108	2.505025	0.328655
С	-3.147859	3.899195	0.241029
С	-3.649963	4.532310	-0.891957
С	-4.168497	2.374585	-1.848426
С	-4.162711	3.762608	-1.938562
н	-2.759690	2.020534	1.224134
Н	-2.751556	4.491767	1.069466
Н	-3.648029	5.622486	-0.960759
Н	-4.581631	1.780087	-2.668248
н	-4.564837	4.249223	-2.830305
С	2.469247	0.054627	2.073429
С	1.477817	0.130738	3.052205
С	0.407574	1.012566	2.899233
С	1.332586	1.746714	0.791030
С	0.341790	1.825466	1.767916
н	3.297902	-0.649568	2.192220
н	1.541376	-0.504760	3.938829
Н	-0.372105	1.067748	3.662447
н	1.273053	2.387288	-0.093643
н	-0.484991	2.527101	1.639621
С	5.313361	2.193714	-1.072818
С	6.434737	3.005479	-0.923417
Ċ	6.899534	3.324292	0.352712
С	5.109736	2.015999	1.319753

С 6.233383 2.828897 1.471608 Н 4.955476 1.945959 -2.077041 6.945544 3.395762 -1.806852 Н 7.776582 3.964219 0.473645 н н 4.589893 1.646901 2.206289 6.585644 3.081061 2.474594 Н С -4.382325 -0.931609 4.070047 н -4.513573 -1.915256 4.544287 -3.945693 -0.261377 4.828527 н н -5.373252 -0.538409 3.806359 н 7.055379 -3.986011 -0.579945 н 7.571848 -2.401967 -1.205126 7.339990 -2.624672 0.535037 н H1F12Fdn_x_GB.log -2045.6689696 F12Fdn.log -2043.5252257 || 0.726790 |247.401| -2042.873868 State 1-A NImag 1 PG C01 [X(C45H39F2N2)] HF -2043.5252257 0.317113 0.841322 -0.849934 С С -0.852803 2.680923 -1.153406 0.336461 3.043609 -0.573939 С -1.999676 3.503398 -1.609384 С С 0.573598 4.436668 -0.102816 С -1.936600 0.534093 -1.779479 С 2.434941 1.602221 0.097005 С 3.255042 2.658260 0.541850 С 4.426282 2.484782 1.257958 С 4.904448 1.208236 1.522309 С 4.205495 0.157299 0.930954 С 3.027509 0.303876 0.192416 С 2.560155 -0.975417 -0.514392 С 1.540541 -1.777702 0.278188 С 3.742551 -1.837518 -0.951934 -2.936768 2.937599 -1.531032 Н -1.867850 3.804816 -2.660363 Н н -2.104124 4.407578 -0.998549 0.907945 4.468069 0.939695 Н -0.389532 4.957325 -0.150044 Н 1.289310 4.993988 -0.718293 н F 2.961665 3.918489 0.248277 н 4.956604 3.386790 1.569844 4.625234 -0.846886 1.004608 н 2.100550 -0.675419 -1.470261 н -0.838652 1.308677 -1.295955 Ν Ν 1.102194 1.850604 -0.428994 Н 0.517625 -0.216105 -0.761007 С -2.771171 -0.218362 -0.929482 С -3.909414 -0.784772 -1.503865 С -4.223083 -0.655846 -2.865269 С -2.241629 0.661544 -3.134348 С -3.362541 0.070707 -3.690964 -2.419014 -0.388589 0.548703 С Н -4.587509 -1.350638 -0.863470 С -5.447209 -1.314684 -3.425426 -3.555785 0.203694 -4.757085 Н F -1.435361 1.401711 -3.889390 С -3.329240 -1.354994 1.299545 H -1.421404 -0.864031 0.571485 C -2.278865 0.957016 1.236121

С	4.081597	-3.029625	-0.305385
С	5.184935	-3.773185	-0.726205
С	5.958305	-3.336633	-1.799085
С	4.523618	-1.408661	-2.032300
С	5.623015	-2.150475	-2.453765
н	3.480528	-3.385076	0.534711
н	5.437496	-4.702989	-0.211127
н	0.019489	-3.921519	-2.130116
п	4.270302	-0.475675	-2.545404
C	1 357321	-1.603836	1 653215
c C	0 457428	-2 405975	2 358973
č	-0.264933	-3.395385	1.698395
Ċ	0.797838	-2.769142	-0.380708
С	-0.090984	-3.574680	0.324327
н	1.932659	-0.841057	2.183239
Н	0.324464	-2.256743	3.432918
Н	-0.971187	-4.019962	2.248691
Н	0.944656	-2.927873	-1.453189
Н	-0.648501	-4.353879	-0.200854
С	-3.265202	1.940064	1.098156
С	-3.135470	3.172567	1.736825
С	-2.011345	3.441992	2.517657
C	-1.166019	1.229021	2.037793
С	-1.02/6/9	2.464665	2.669022
н	-4.149298	1.733479	0.487850
п	-3.918758	3.920012	1.020300
п	-1.908392	4.408076	3.017502
н	-0.400249	2 661876	3 200106
C	-3 393048	-2 694662	0.886725
c	-4 183678	-3 618766	1 561976
č	-4.923936	-3.222866	2.677405
Ċ	-4.071568	-0.972727	2.419634
С	-4.862440	-1.899455	3.102526
Н	-2.816124	-3.014349	0.015874
Н	-4.221472	-4.655489	1.218130
Н	-5.544172	-3.946007	3.211922
Н	-4.030805	0.057649	2.776523
Н	-5.432947	-1.577775	3.976992
С	6.127497	0.972759	2.351078
н	6.826273	1.818824	2.292071
н	5.852142	0.848053	3.411538
н	6.654702	0.060497	2.038911
н	-5.227854	-2.300988	-3.695442
н	-0.204179	-1.332720	-2.690418
п	-5.603420	-0.000092	-4.332794
H2			
F12	2Fup_x_GB.	log -2045.6	6719636
F12	2⊢up.log -2	043.527605	2 0.726060
204	12.879879		
Sta			
	111ay 1 2 C01 IV/C4	543052012/1	
HP	-2043 5276	S052	
	w frequencia	69 8F	64 -1 9770
c	0.198938	1.013729	0.534400
ć	-1.125780	2.763810	0.636946
Ĉ	0.002470	2 106052	0 100000

|254.753| -0.093479 3.196952 0.180023 C -2.377302 3.517046 0.912561 C 0.341169 4.642463 -0.080242 C -2.007096 0.526441 1.391316

С	2.353458	1.870325	-0.185970
С	3.153354	2.956371	-0.583144
С	4.536039	2.924501	-0.641529
С	5.220891	1.755056	-0.341268
С	4.438024	0.625446	-0.102338
С	3.041050	0.619711	-0.065021
С	2.409243	-0.778999	0.006916
С	2.003686	-1.205160	1.410344
č	3 276389	-1 822513	-0.692436
н	-3 144255	2 842045	1 316458
н	-2 778186	3 082022	-0.000056
н	-2.770100	1 312727	1 653652
н	1 180803	5 0/1/1/	0.500740
ц Ц	0.561606	5 194042	0.300740
	-0.501090	1 964500	1 129607
	0.521317	4.004390	-1.130097
F	2.598710	4.101203	-0.964716
Н	5.044474	3.842894	-0.941481
C	6.715541	1.691187	-0.314234
н	4.941982	-0.334926	0.01/919
н	1.497006	-0.754897	-0.615813
Ν	-1.023796	1.404934	0.848482
Ν	0.938867	2.048529	0.109630
Н	0.524373	0.000779	0.709339
С	-3.023895	-0.009617	0.587349
С	-3.937867	-0.872186	1.187547
С	-3.854259	-1.219928	2.545556
С	-1.913006	0.184377	2.738242
С	-2.822195	-0.684671	3.321170
С	-3.039639	0.312410	-0.898000
Н	-4.740325	-1.290067	0.575381
С	-4.874792	-2.134446	3.153069
н	-2.710454	-0.929068	4.379127
F	-0.924727	0.702815	3.455754
С	-4.395444	0.056697	-1.536998
н	-2.858793	1.396039	-0.994770
С	-1.886756	-0.378013	-1.608455
С	3.881164	-2.880436	-0.010371
С	4.666360	-3.809679	-0.697011
Ĉ	4.855156	-3.691858	-2.070964
Ĉ	3 474535	-1 711063	-2 075776
č	4 255973	-2 635309	-2 760600
н	3 741465	-2 984229	1 067721
н	5 132781	-4 631117	-0 148059
н	5 468602	-4 419853	-2 606711
ц	3 018/61	0.877078	2 616184
	4 400077	-0.077070	2 0 2 0 0 0 0
\hat{c}	2 5 4 1 2 4 4	-2.332703	2 557100
Č	2.041044	-0.014012	2.007199
C	2.114307	-1.010245	3.823347
	1.143540	-1.999557	3.902392
C	1.034994	-2.208920	1.559320
С 	0.605311	-2.601367	2.823915
н	3.296241	0.169910	2.459364
н	2.541946	-0.536590	4.712011
Н	0.806723	-2.303506	4.956139
Н	0.613612	-2.679537	0.667278
Н	-0.153514	-3.381379	2.921291
С	-1.498999	-1.682158	-1.277188
С	-0.481774	-2.322663	-1.984868
С	0.170631	-1.663740	-3.026426
С	-1.216421	0.278857	-2.646572
С	-0.193200	-0.356298	-3.349033
н	-2.005239	-2.205095	-0.461359

Н	-0.198101	-3.346276	-1.727429
Н	0.962201	-2.170976	-3.581227
Н	-1.511770	1.296499	-2.918548
Н	0.313687	0.169024	-4.162269
С	-5.436290	0.958526	-1.279607
С	-6.706407	0.753054	-1.809480
С	-6.955711	-0.362186	-2.610800
С	-4.652589	-1.053588	-2.344666
С	-5.926252	-1.261243	-2.877336
Н	-5.248411	1.834137	-0.650212
Н	-7.505550	1.468349	-1.600961
Н	-7.950710	-0.524815	-3.031346
Н	-3.852029	-1.760951	-2.571508
Н	-6.110373	-2.132408	-3.510478
Н	7.081750	0.727021	-0.694727
Н	7.167857	2.497023	-0.908244
Н	7.083087	1.795875	0.719993
Н	-4.526122	-2.565839	4.101040
Н	-5.805969	-1.582011	3.360245
Н	-5.132654	-2.955555	2.468789

1f∙X

1f			
M2	x GB.log	-1925.9034	525
M2	.log -1923.	9206662	0.797152 263.881 -
192	23.203572		
Sta	ite 1-A		
NI	mag 0		
PC	GC01 [X(C4	7H45N2)]	
HF	-1923.9206	662	
Lo	w frequencie	es4.24	39 -0.0008
С	0.035527	1.697882	-0.635931
С	0.790220	2.211298	1.387814
С	-0.581037	2.221876	1.434742
С	1.811805	2.447907	2.434992
С	-1.515011	2.494427	2.551550
С	2.490467	1.838243	-0.406027
С	-2.396017	1.827048	-0.249028
С	3.068426	3.041112	-0.836875
С	4.395416	2.996261	-1.267081
С	5.134013	1.808357	-1.264285
С	4.509705	0.633413	-0.831319
С	3.184637	0.621001	-0.397682
С	2.477492	-0.664615	-0.007197
Н	2.447978	1.559710	2.570591
Н	-2.038855	1.576591	2.857924
Н	1.329397	2.675374	3.393045
Н	-0.966574	2.885698	3.416797
Н	2.476732	3.284024	2.170261
Н	-2.278124	3.231274	2.261187
С	2.283195	4.320692	-0.847830
Н	4.867522	3.920060	-1.612295
С	6.571862	1.794196	-1.688894
Н	5.071139	-0.303488	-0.827284
Ν	1.141210	1.883006	0.083728
Ν	-1.019082	1.893484	0.156234
С	3.418472	-1.685403	0.608296
Н	1.756573	-0.400207	0.786138
С	1.654016	-1.237012	-1.156173
С	3.708489	-1.619492	1.975341

С	4.597618	-2.517970	2.560832
С	5.211327	-3,498390	1.781682
Ċ	4.032951	-2.676957	-0.163391
Ĉ	4 925721	-3 575715	0 419452
н	3 227676	-0.854212	2 503253
ц	4 800164	2 156285	3 630073
п	4.009104 5.006501	-2.400200	3.030973
п	5.906591	-4.206529	2.238291
н	3.800492	-2.753407	-1.228761
н	5.396753	-4.346213	-0.195530
С	1.718233	-0.734717	-2.459615
С	0.938470	-1.293027	-3.477030
С	0.089365	-2.361406	-3.204419
С	0.803997	-2.323294	-0.898605
С	0.026781	-2.879482	-1.909247
Н	2.394299	0.091564	-2.692978
н	1.007950	-0.892520	-4.491503
н	-0 523271	-2 797065	-3 996701
н	0.766322	-2 751663	0 106799
ц Ц	0.700322	2 712615	1 694607
	-0.042129	-3.713013	-1.004007
C	-3.029120	3.032285	-0.590906
C	-4.385520	2.978742	-0.910959
С	-5.101093	1.776605	-0.893767
С	-4.419330	0.599038	-0.573689
С	-3.060495	0.592369	-0.251889
С	-2.330838	-0.689827	0.120270
С	-2.266798	4.325325	-0.630547
Н	-4.898535	3.904522	-1.185258
С	-6.569335	1.753661	-1.197511
H	-4.956681	-0.351993	-0.591069
С	-2 894159	-1 934481	-0 552370
й	-1 300608	-0.608518	-0.267092
Ċ	2 207602	0.806746	1 620613
č	-2.207002	-0.000740	1.029013
Č	-3.136293	-1.919/09	-1.955107
C	-3.564885	-3.065831	-2.596268
C	-3.744327	-4.257608	-1.891501
С	-3.079167	-3.131265	0.144049
С	-3.498735	-4.285427	-0.521218
Н	-2.983960	-0.997459	-2.499192
Н	-3.752850	-3.031732	-3.672280
н	-4.077119	-5.159505	-2.410365
Н	-2.886991	-3.170421	1.218085
Н	-3.636178	-5.211705	0.041655
С	-3.329104	-0.690852	2.460357
С	-3.201522	-0.793515	3.844542
Ċ	-1 948449	-1 008822	4 421288
č	-0.960560	-1 03/617	2 218/87
č	0.926591	1 1 2 2 0 4 5	2.210407
Ц	4 212507	-1.132043	2.003209
п	-4.312597	-0.512323	2.018403
н	-4.086619	-0.702407	4.478589
н	-1.849806	-1.086574	5.506477
н	-0.081096	-1.140861	1.579181
Н	0.157784	-1.313327	4.042201
Н	0.003626	1.416026	-1.686061
Н	-6.884679	0.779835	-1.597231
н	-7.154330	1.938462	-0.281227
Н	-6.845019	2.532804	-1.922192
Н	-2.925064	5.160981	-0.900110
Н	-1.802851	4.563361	0.339792
Н	-1.453296	4.289318	-1.373437
н	2 903552	5 150036	-1 187068
н	1 414601	4 254260	-1 523186
ц	1 802550	1 572701	0 150904
	1.092009	7.0/0/24	0.100004

6.835910 0.850287 -2.186435 н Н 6.803713 2.623995 -2.370823 7.230785 1.894201 -0.810485 Н BB1 M12Bdn x GB.log -1925.8365635 M12Bdn.log -1923.851383 | | 0.798097 |256.159 -1923.131301 State 1-A NImag 1 PG C01 [X(C47H45N2)] HF -1923.851383 Low frequencies --- -37.2376 -3.4350 C -0.531936 -1.625900 -0.262420 C 0.590848 -0.442418 -1.743561 C -0.727427 -0.494768 -2.128434 С 1.604828 0.145986 -2.655403 C -1.405473 0.102814 -3.305210 С 1.777612 -1.469765 0.424033 C -2.805652 -1.506170 -1.119050 1.434541 -2.160761 1.624408 С 2.433468 -2.868087 2.301084 С С 3.764630 -2.855871 1.907310 С 4.094807 -1.916290 0.932558 С 3.156553 -1.159341 0.228324 С 3.689348 0.091007 -0.476522 н 2.030894 1.084313 -2.281356 H -2.476253 -0.137536 -3.288110 Н 1.092261 0.384251 -3.594806 H -1.312245 1.199010 -3.289760 Н 2.403458 -0.565161 -2.904407 н -0.982296 -0.273996 -4.248673 С 0.125349 -2.083856 2.389326 Н 2.145397 -3.425207 3.197087 4.803949 -3.711107 2.559951 С н 5.149549 -1.716099 0.742221 Ν 0.694827 -1.127687 -0.504094 Ν -1.397086 -1.237598 -1.185311 5.207919 0.202157 -0.455779 С Н 3.443641 0.042376 -1.536071 3.061325 1.371613 0.068909 С С 5.952759 -0.346156 -1.505498 С 7.344787 -0.273640 -1.507540 С 8.011330 0.352468 -0.455270 С 5.886340 0.835716 0.591678 С 7.277897 0.907351 0.593264 н 5.436899 -0.843179 -2.332946 н 7.910756 -0.703625 -2.337306 Н 9.102026 0.414269 -0.455790 Н 5.318675 1.280907 1.412497 7.793260 1.406326 1.417406 Н С 2.412108 1.451386 1.305008 С 1.902168 2.667039 1.768041 2.039057 3.824534 1.006565 С 3.211281 2.550165 -0.677986 С 2.704136 3.762265 -0.219648 С Н 2.314332 0.561538 1.929456 Н 1.403838 2.707890 2.739779 Н 1.641598 4.774455 1.371191 Н 3.762712 2.519915 -1.622946 Н 2.838184 4.666791 -0.818042 C -3.332159 -2.537044 -1.906609 C -4.709652 -2.759491 -1.832638

С	-5.538924	-1.995166	-1.007526
ĉ	4 063486	0.078860	0.234227
0	-4.903400	-0.970009	-0.234227
C	-3.596824	-0.710875	-0.272330
С	-2.976194	0.433368	0.520052
С	-2.453601	-3.359484	-2.803312
Н	-5.145363	-3.559218	-2.437462
С	-7.010661	-2.268705	-0.921113
н	-5 595949	-0.378599	0 424528
Ĉ	3 806677	0.827766	1 731060
ň	-3.000077	0.027700	0.021707
П	-2.022033	0.004404	0.931797
С	-2.613888	1.587253	-0.398857
С	-3.898262	-0.078013	2.798238
С	-4.651268	0.221448	3.928791
С	-5.327304	1.440092	4.013716
С	-4.480415	2.046764	1.829533
С	-5 237524	2 349265	2 963498
й	-3 377806	_1 030118	2 73/657
	4 710041	-1.003110	4 740922
п	-4.710941	-0.497083	4.749832
н	-5.918788	1.679580	4.900364
Н	-4.410280	2.774800	1.018878
Н	-5.757352	3.308368	3.023788
С	-3.512634	2.055599	-1.365150
С	-3.173307	3.124689	-2.193104
Ĉ	_1 021141	3 729468	-2 078870
ĉ	1 36/825	2 206708	0.286757
0	-1.304023	2.200790	-0.200737
с 	-1.015689	3.265125	-1.124311
н	-4.489330	1.575936	-1.471804
Н	-3.889520	3.483700	-2.936124
Н	-1.653070	4.563958	-2.731187
Н	-0.646043	1.860447	0.462284
н	-0.030766	3.725746	-1.020639
н	-0.806029	-2 303528	0.529012
 	2 002257	4 226541	2 194240
	-2.992337	-4.230341	-3.104243
п	-2.113137	-2.776505	-3.074908
н	-1.551930	-3.715326	-2.281/57
Н	-7.245165	-2.820814	0.003759
Н	-7.590089	-1.334370	-0.893840
Н	-7.364959	-2.872085	-1.767901
Н	0.361926	-2.109958	3.461517
н	-0.422816	-1.147291	2,211310
н	-0 562482	-2 929282	2 213462
ц	5 767606	3 197323	2 635382
	4 400007	-3.107.323	2.033302
п	4.498037	-4.029084	3.500540
н	4.975577	-4.623216	1.964373
BB.	2		
М1	2 Bun x GB	log -1925	8368089
MA1		1022 051520.	SZ LLO ZOZZOZ 1250 0411
	2Bup.log -	1923.031550	57 0.797707 259.04
-19	23.132957		
Sta	ite 1-A		
NI	mag 1		
PC	G C01 [X(C4	7H45N2)]	
HF	-1923.8515	5367	
Lo	w frequencie	es41.45	75 -3.5759
C.	-0.574352	0.685396	0.779230
č	0 408262	0 011077	-1 179556
č	0.400202	1 450000	1 264706
	-0.0000000	1.450000	-1.204790
C	1.208311	0.718339	-2.416085
С	-1.570942	2.072142	-2.398430
С	1.655817	-0.232589	0.884068
С	-2.794720	1.588870	0.345682
С	1.454355	-0.491438	2.270206
С	2.190138	-1.513807	2.877816
			-

С	3.166828	-2.237550	2.208685
С	3.542728	-1.734012	0.964160
С	2.877473	-0.696030	0.308708
С	3.656386	0.008689	-0.807694
Н	2.102372	1.349948	-2.466440
Н	-2.509512	2.526371	-2.051893
Н	0.569982	0.996949	-3.263257
Н	-0.965044	2.857886	-2.870850
Н	1.478902	-0.335802	-2.562147
Н	-1.825444	1.329708	-3.171704
С	0.621378	0.316602	3.244955
Н	1.991901	-1.726601	3.932071
C	3.859301	-3.413816	2.821788
Ĥ	4 447083	-2 127716	0 499098
N	0.600708	0.479008	0.159133
N	-1 440002	1 285801	-0.020298
C	5.007706	-0.629772	-1 100565
й	3 11/723	-0.023772	-1 7/7770
\hat{c}	2 020122	1 500777	0 540442
ĉ	5 102027	1.500777	2 09 9 2 0 1
Č	5.103037 6.200450	-1.010911	-2.000391
Č	7 466624	-2.230043	-2.309003
C	7.400034	-1.862450	-1.664004
C	0.104300	-0.200884	-0.404591
	1.383857	-0.875021	-0.682272
н	4.207807	-1.912477	-2.643893
н	6.379125	-2.996088	-3.147243
н	8.424655	-2.338841	-1.884681
н	6.110257	0.519614	0.358320
Н	8.278686	-0.574625	-0.131953
C	3.738514	2.073399	0.732185
С	3.959936	3.439917	0.917631
С	4.278148	4.255762	-0.164525
С	4.180328	2.329543	-1.616936
С	4.393995	3.692529	-1.436217
н	3.509358	1.447857	1.596952
н	3.891259	3.865460	1.921884
н	4.450276	5.324526	-0.018017
Н	4.314586	1.891124	-2.610986
Н	4.663982	4.317533	-2.290823
С	-3.049497	2.786434	1.022169
С	-4.375396	3.051990	1.378625
С	-5.412199	2.166960	1.076091
С	-5.106430	0.981477	0.392587
С	-3.804253	0.668218	0.014146
С	-3.448254	-0.631633	-0.699366
С	-1.940856	3.741645	1.356630
Н	-4.601085	3.982590	1.906039
С	-6.830909	2.469179	1.455522
Н	-5.907670	0.282084	0.142503
С	-4.660329	-1.337922	-1.283521
Н	-2.821549	-0.355888	-1.563970
С	-2.580063	-1.511146	0.183566
С	-5.230794	-0.825327	-2.456085
С	-6.362322	-1.410983	-3.015542
С	-6.942301	-2.526032	-2.408869
С	-5.244576	-2.457604	-0.686637
С	-6.379610	-3.046919	-1.246370
Н	-4.783620	0.052042	-2.933964
Н	-6.792348	-0.999135	-3.931656
Н	-7.828516	-2.990855	-2.846953
Н	-4.807932	-2.884104	0.219005
Н	-6.822541	-3.924459	-0.769456
-			

```
С
  -2.833989 -1.644250 1.554156
С
   -1.997364 -2.417837 2.359656
С
   -0.890770 -3.062876 1.806517
С
   -1.480811 -2.182350 -0.364181
С
   -0.636640 -2.946095 0.440241
н
   -3.687894 -1.124424
                      1.997404
   -2.212768 -2.517810 3.426553
Н
Н
   -0.226768 -3.656781 2.438157
   -1.278217 -2.094299 -1.435782
н
н
   0.229949 -3.446171 0.001175
н
   -0.855990 0.326129 1.755189
н
   -2.340370
            4.688777 1.741102
Н
  -1.272094 3.327363 2.129120
н
  -1.315538 3.967709 0.479001
Н
  -7.267476 1.643944 2.038688
н
   -6.909428 3.388851 2.050590
Н
  -7.455704 2.591477 0.556581
Н
   1.144457 0.322416 4.210780
Н
   0.502058 1.366230 2.940998
Н
  -0.377136 -0.111602 3.440508
Н
   4.929090 -3.428965 2.567609
Н
   3.760451 -3.420903 3.916319
Н
   3.424710 -4.354493 2.444283
H1
M12Fdn_x_GB.log -1925.843934
M12Fdn.log -1923.8595906 | | 0.798262 |253.754|
-1923.138295
State 1-A
NImag 1
PG C01 [X(C47H45N2)]
HF -1923.8595906
Low frequencies --- -52.2838 -3.5762
C -0.284038 0.620325 0.910533
С
   0.803494 2.303627 1.806736
С
  -0.355673 2.799068 1.262987
С
   1.908733 3.020707 2.491407
С
  -0.576895 4.263480 1.143361
   1.919381 0.061908 1.835904
С
С
   -2.296360
             1.565202 -0.047296
С
   -3.067349 2.662244 -0.513171
С
   -3.895203 2.456067 -1.622511
С
   -4.104394
             1.212028 -2.208014
С
   -3.595553 0.124030 -1.502860
С
   -2.738062 0.258197 -0.410843
С
   -2.536085 -1.019457 0.419401
С
   -1.535143 -2.022305 -0.135137
С
   -3.900081 -1.653707
                      0.684876
н
   2.762257
             2.349665
                       2.651775
Н
    1.588663
             3.416785
                       3.467102
Н
   2.260340
             3.862485
                       1.878783
Н
   -0.835434
            4.545605
                      0.118157
н
   0.376729
             4.753278
                       1.373225
н
   -1.326394
            4.669430
                       1.833319
С
   -3.294886
             3.977628
                      0.189971
н
   -4.453897
             3.318283 -1.998786
н
   -3.928228 -0.882098 -1.769253
н
   -2.176644 -0.719389 1.417441
Ν
   0.821548 0.946510 1.561031
Ν
   -1.072881
            1.698221 0.736678
Н
   -0.438646 -0.370789 0.502208
С
   2.753716 -0.364745 0.782099
С
   3.881634 -1.103286 1.132475
```

С	4.172642	-1.446862	2.459416
С	2.146953	-0.291653	3.172212
С	3.282646	-1.054833	3.458546
С	2.392028	-0.096665	-0.681105
Н	4.554414	-1.436747	0.340228
С	5.413751	-2.225101	2.779137
Н	3.473664	-1.345468	4.495051
С	1.213720	0.135256	4.268248
С	3.329716	-0.781738	-1.669268
н	1.416076	-0.589496	-0.838571
С	2.188143	1.373624	-0.986602
С	-4.307460	-2.846126	0.080853
С	-5.577575	-3.367598	0.331928
С	-6.451263	-2.706674	1.191570
С	-4.784747	-0.997320	1.549912
С	-6.049528	-1.517995	1.803428
н	-3.627430	-3.378016	-0.588696
н	-5.881990	-4.301040	-0.147355
н	-7.443728	-3.117851	1.389707
н	-4.478452	-0.059652	2.023783
н	-6.726663	-0.995775	2,483547
С	-1.126955	-2.034308	-1.473897
č	-0.260545	-3.022671	-1.944867
č	0.214112	-4.007453	-1.081790
č	-1.028851	-3.004735	0.728973
Ĉ	-0 161921	-3 988047	0 262346
й	-1.494539	-1.270571	-2.162582
н	0.045580	-3 018718	-2 993464
н	0.883243	-4.787144	-1.453461
н	-1 338794	-3 007861	1 778145
н	0 214885	-4 749792	0 948769
C	3 107072	2 340055	-0.562206
c	2 925329	3 684569	-0.885540
c	1 811325	4 083904	-0.000040
c	1.011020	1 783807	-1.024007
c	0.887197	3 128643	-2 048223
н	3 976447	2 032138	0 025943
н	3 661230	1 125251	-0 561086
н	1 670021	5 137213	-0.001000
н	0.361112	1 036968	-2 085380
н	0.001112	3 4 28 4 67	-2.0000000
C	3 245477	-2 173033	-2.000717
č	1 070282	-2.173333	-2 690634
č	5 015736	-2.007.020	-2.030034
č	4 267323	0.080635	2 430640
č	4.207323	0.773506	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ц	2 5 1 7 4 7 7 1	2 726022	1 212500
ц Ц	2.017407	2 042250	2 795104
н	5.670267	-2 688507	-2.705194
	1 212696	-2.000507	-4.140333
п	4.343000	0.990307	-2.300200
C	1 026910	1 026522	2 1 1 5 7 0 2
Ц	-4.920010	1.030323	-3.445795
	-5.013900	0.075404	-3.001570
Ц	-4.210410	0.313404	-4.000007
п	-0.010213 5 /16500	0.1009/0 2 582277	2 917/71
п	5 520064	-2.303211	0.01/4/1 0.110725
п	5.520004 6 300022	-0.094100	2.112/00
п	1 210210	-1.099/09	2.000/40
п	1 407407	-0.010033	0.1409/0
Ц	1.421 101 0 161701	1.100102	4.004003
п	1 274444	0.109020 4 100005	0.122000
п	-4.3/1141	4.192000	0.152900

н	-3.046079	3.931774	1.253638				
	-2.779012	4.833401	-0.204801				
H2							
M1	M12Fup_x_GB.log -1925.84/1999						
M12Fup.log -1923.86296 0.798059 256.091 -							
State 1-Δ							
NI	mag 1						
PC	G CÕ1 [X(C4	7H45N2)]					
HF	-1923.8629	96					
Low frequencies78.1197 -5.3997							
C	0.286427	0.973725	0.909975				
C	-1.139390	2.635352	0.990806				
C	2 425608	3.143004	0.000239				
с С	0 259117	4 611229	0 442658				
č	-1.943331	0.303774	1.580681				
Ċ	2.415321	1.894658	0.242635				
С	3.307212	2.982632	0.052005				
С	4.675938	2.761329	0.243104				
С	5.227312	1.513526	0.505387				
С	4.353561	0.437574	0.389056				
C	2.974809	0.578035	0.220152				
C	2.209691	-0.730087	-0.138342				
с С	3 069745	-1 495040	-1 189323				
Ĥ	-3.161561	2.602810	1.657277				
Н	-2.846155	3.801711	0.380117				
Н	-2.296585	4.102460	2.045581				
Н	1.073539	4.990014	1.069664				
Н	-0.663054	5.090996	0.791890				
Н	0.420034	4.946061	-0.588486				
C	2.991533	4.338414	-0.526099				
Г	5.343591	3.019802	0.12/0/0				
н	4 762968	-0 575428	0.367299				
н	1.321712	-0.487309	-0.664817				
Ν	-0.971459	1.280265	1.175371				
Ν	0.979532	2.050996	0.507807				
Н	0.674872	-0.014440	1.112602				
С	-2.920664	-0.097777	0.653831				
С	-3.820114	-1.083186	1.052760				
C	-3./5/4/9	-1.669013	2.323839				
c	-1.041033	-0.249000	2.003020 3.207731				
с С	-2.705050	0 480199	-0 755148				
Ĥ	-4.595889	-1.398296	0.350407				
С	-4.757749	-2.711806	2.724786				
Н	-2.705280	-1.686512	4.203844				
С	-0.764309	0.163498	3.822800				
С	-4.313301	0.424255	-1.403376				
Н	-2.699480	1.552144	-0.675589				
C	-1.824688	-0.127550	-1.592187				
C	3.408910	-2.0209/0	-1.UZÖZƏ/ 2.037685				
U	4.104031	-3.400043	-2.037000				

С	4.491640	-2.823526	-3.216741
С	3.408655	-0.834705	-2.379212
С	4.112002	-1.489414	-3.383674
Н	3.211512	-3.360027	-0.108780
Н	4.461520	-4.527650	-1.893940
Н	5.044643	-3.340691	-4.004197
н	3.119479	0.211489	-2.511981
н	4.368027	-0.958059	-4.303648
С	2.591951	-1.571415	2.269892
Ĉ	2.207287	-2.380751	3.340232
č	1.105126	-3.225714	3.224241
č	0 780948	-2 460140	0.956981
č	0.389525	-3 260347	2 027045
н	3 445942	-0.902003	2 387569
н	2 773410	-2 344161	4 274012
н	0.802450	-3 8536/0	4.065421
ц	0.214005	2 181885	0.022052
ц Ц	0.214995	2 01 17 12	1.0252352
	1 650601	-3.911742	1.925251
ĉ	-1.050091	-1.514555	-1.074955
C	-0.000094	-2.000070	-2.409107
C	0.100003	-1.227013	-3.221332
C	-0.909700	0.099010	-2.329301
	0.031125	0.155706	-3.135191
п	-2.303017	-2.173903	-1.099150
п	-0.540289	-3.144384	-2.550542
н	0.971777	-1.654889	-3.84/6/4
п	-1.099918	1.784038	-2.281590
н	0.688369	0.816577	-3.705648
C	-5.358006	1.143539	-0.804876
C	-6.635619	1.140721	-1.354012
C	-6.892483	0.416978	-2.520197
C	-4.578814	-0.290112	-2.573123
C	-5.861514	-0.294339	-3.126406
н	-5.16/042	1.707577	0.113233
н	-7.436203	1.707468	-0.872589
н	-7.894538	0.413174	-2.955145
н	-3.779129	-0.844753	-3.067531
Н	-6.050235	-0.858278	-4.042957
н	7.065993	0.401099	0.322948
Н	7.284367	2.168630	0.428393
н	6.856076	1.233819	1.873853
Н	3.851781	4.648262	-1.134441
Н	2.131208	4.312200	-1.200572
Н	2.840969	5.126700	0.222570
Н	-1.058620	-0.058910	4.856986
Н	0.169009	-0.390389	3.624754
Н	-0.535467	1.237452	3.757769
Н	-4.441992	-3.257064	3.624631
Н	-5.733281	-2.246665	2.941481
Н	-4.922443	-3.440128	1.917018

VII References

1. D. D. Perrin, W. L. F. Armarego, *Purification of Laboratory Chemicals*, Pergamnon Press: Oxford, 3rd ed., **1988**.

2. L. Kong, J. Morvan, D. Pichon, M. Jean, M. Albalat, T. Vives, S. Colombel-Rouen, M. Giorgi, V. Dorcet, T. Roisnel, C. Crévisy, D. Nuel, P. Nava, S. Humbel, N. Vanthuyne, M. Mauduit, H. Clavier, *J. Am. Chem. Soc.* **2020**, 142, 93-98.

3. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Golberg, *Organometallics* **2010**, *29*, 2176-2179.

4. D. Tempel, L. K. Johnson, R. L. Huff, P. S. White, M. Brookhart, *J. Am. Chem. Soc.*, **2000**, *122*, 6686-6700.

5. K. Hirano, S. Urban, C. Wang, F. Glorius, *Org. Lett.*, **2009**, *11*, 1019-1022.

6. S. Wurtz, C. Lohre, R. Frohlich, K. Bergander, F. Glorius, J. Am. Chem. Soc., 2009, 131, 8344–8345.

7. N. Probst, G. Grelier, N. Ghermani, V. Gandon, M. Alami, S. Messaoudi, Org. Lett., 2017, 19, 5038–5041.

8. D. Katayev, Y.-X. Jia, A. K. Sharma, D. Banerjee, C. Besnard, R. B. Sunoj, E. P. Kündig, *Chem. Eur. J.*, **2013**, *19*, 11916–11927.

9. S. Lee, J. F. Hartwig, J. Org. Chem., 2001, 66, 3402-3415.

10. E. P. Kündig, T. M. Seidel, Y.-x. Jia, G. Bernardinelli, Angew. Chem., 2007, 46, 8484–8487.

11. M. J. Spallek, D. Riedel, F. Rominger, A. S. K. Hashmi, O. Trapp, *Organometallics*, **2012**, *31*, 1127–1132.

5. C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.

6. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

7. S. Grimme, J. Antony, S. Ehrlich, H. A. Krieg, J. Chem. Phys. 2010, 132, 154104.

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

. f1 (ppm)

- S82 -

Figure S43. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of diimine S1a

Figure S44. ¹H NMR spectrum (400 MHz, CDCl₃) of diimine S1b

- S84 -

Figure S48. ¹H NMR spectrum (400 MHz, CDCl₃) of formamidine **S2b**

- S85 -

- S86 -

- S89 -

Figure S59. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of imidazolium salt 1a·BF₄

Figure S60. ¹⁹F{¹H} NMR spectrum (282 MHz, CDCl₃) of imidazolium salt 1a·BF₄

Figure S61. ¹H NMR spectrum (400 MHz, CDCl₃) of imidazolium salt 1b·OTf

Figure S62. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of imidazolium salt 1b·OTf

Figure S63. ¹⁹F{¹H} NMR spectrum (282 MHz, CDCl₃) of imidazolium salt 1b·OTf

Figure S65. $^{13}C\{^{1}H\}$ NMR spectrum (101 MHz, CDCl₃) of imidazolium salt $1c{\cdot}BF_{4}$

Figure S66. ¹⁹F{¹H} NMR spectrum (282 MHz, CDCl₃) of imidazolium salt 1c·BF₄

Figure S67. ¹H NMR spectrum (400 MHz, CDCl₃) of imidazolium salt 1d·OTf

Figure S68. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of imidazolium salt 1d·OTf

Figure S71. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of imidazolium salt 1e·OTf

Figure S72. ¹⁹F{¹H} NMR spectrum (282 MHz, CDCl₃) of imidazolium salt 1e·OTf

Figure S74. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of imidazolium salt 1f-OTf

Figure S75. $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum (282 MHz, CDCl₃) of imidazolium salt $1f\cdot OTf$

Figure S77. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of palladium complex meso-2a

Figure S78. ¹H NMR spectrum (400 MHz, CDCl₃) of palladium complex (±)-cis-2b

Figure S79. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of palladium complex (±)-cis-2b

Figure S81. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (101 MHz, CDCl₃) of palladium complex (±)-2c

- S102 -

Figure S87. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of palladium complex (meso)-2d

- S105 -

-88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 f1 (ppm)

- S106 -

Figure S95. ¹H NMR spectrum (400 MHz, CDCl₃) of palladium complex (meso)-3d

Figure S96. ¹³C¹H NMR spectrum (101 MHz, CDCl₃) of palladium complex (meso)-3d

Figure S97. ¹H NMR spectrum (400 MHz, CDCl₃) of palladium complex (\pm)-3e

Figure S101. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of palladium complex (±)-3f

Figure S105. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of substrate 5c

Figure S108. ¹⁹F{¹H} NMR spectrum (282 MHz, CDCl₃) of substrate 5d

Figure S109. 1 H NMR spectrum (400 MHz, CDCl₃) of substrate 5f

Figure S117. ¹H NMR spectrum (400 MHz, CDCl₃) of product 6d

- S120 -

