Supporting Information

Regulating Zn/Co bimetallic catalyst in metal-organic framework and

oxyhydroxide for improved photoelectrochemical water oxidation

Xiu-Shuang Xing,^a Xuyang Zeng,^{a,b} Zhongyuan Zhou,^{c,d,*} Xin Song,^c Xiaohua Jing,^a Minghao Yuan,^a Cuiying Xu,^a Xiaofei Ren,^{a,b} and Jimin Du^{a,*}

^aHenan Key Laboratory of New Optoelectronic Functional Materials, College of

Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P.

R. China. E-mail: djm@iccas.ac.cn

^bCollege of Chemistry, Zhengzhou University, Zhengzhou 450000, P. R. China.

°School of Chemical and Environmental Engineering, Anyang Institute of Technology,

Anyang 455000, P. R. China. Email: 20200038@ayit.edu.cn

^dKey Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.

Figure S1. The EDS elements composition of $FTO/Sn@\alpha$ -Fe₂O₃ photoanode.

Figure S2. The EDS elements composition of $FTO/Sn@\alpha-Fe_2O_3/Zn_{0.5}Co_{0.5}-ZIF$ photoanode.

Figure S3. The EDS elements composition of FTO/Sn@ α -Fe₂O₃/Zn_{0.46}Co_{0.54}OOH photoanode.

Figure S4. The (a and d) XRD patterns, (b and e) UV–vis reflectance spectra and (c and f) XPS survey spectra of α -Fe₂O₃ photoanodes decorated by ZnCo-ZIF and ZnCoOOH catalyst, respectively.

Figure S5. The *J-V* curves and transient photocurrent density curves of (a and b) FTO/Sn@ α -Fe₂O₃/Zn-ZIF, (c and d) FTO/Sn@ α -Fe₂O₃/Co-ZIF, (e and f) FTO/Sn@ α -Fe₂O₃/ZnCo-ZIF photoanodes for different optimization time.

Figure S6. The *J-V* curves and transient photocurrent density curves of (a and b) FTO/Sn@ α -Fe₂O₃/ZnOOH, (c and d) FTO/Sn@ α -Fe₂O₃/CoOOH, (e and f) FTO/Sn@ α -Fe₂O₃/ZnCoOOH photoanodes for different optimization time.

Figure S7. *J-t* curves of the α -Fe₂O₃ photoanode with ZnCo-ZIF and ZnCoOOH catalyst at 1.23 V_{RHE}.

Figure S8. The SEM images before (a and c) and after (b and d) stability test of α -Fe₂O₃ photoanode with ZnCo-ZIF and ZnCoOOH catalyst for 5 hours.

Figure S9. Schematic diagram of carriers transports in α -Fe₂O₃ photoanode with ZnCo-ZIF or ZnCoOOH catalyst.

Table S1. The ion contents of Fe, Zn and Co in FTO/Sn@ α -Fe₂O₃/Zn_{0.5}Co_{0.5}-ZIF (10min) and FTO/Sn@ α -Fe₂O₃/Zn_{0.46}Co_{0.54}OOH (5 min) photoanodes.

Concentration	$FTO/Sn@\alpha-Fe_2O_3/Zn_{0.5}Co_{0.5}-ZIF$	$FTO/Sn@\alpha-Fe_2O_3/Zn_{0.46}Co_{0.54}OOH$
	(10 min)	(5 min)
Fe (mol/cm ²)	2.97×10 ⁻⁶	1.90×10 ⁻⁶
Zn (mol/cm ²)	3.85×10 ⁻⁷	5.0×10 ⁻⁷
Co (mol/cm ²)	3.83×10 ⁻⁷	5.83×10 ⁻⁷

Table S2. The fitting EIS data of α -Fe₂O₃ photoanodes based on equivalent circuits.

	FTO/Sn@α-Fe ₂ O ₃	$FTO/Sn@\alpha-Fe_2O_3/Zn_{0.5}Co_{0.5}-ZIF$	FTO/Sn@α-Fe ₂ O ₃ /Zn _{0.46} Co _{0.54} OOH
$R_{\rm s} \left(\Omega \ {\rm cm}^2\right)$	9.18	11.55	12.24
$R_{ m trap}$ ($\Omega \ m cm^2$)	6.1	9.1	19.7
C_{bulk} (F/cm ²)	1.6×10-6	1.4×10 ⁻⁶	1.6×10 ⁻⁶
$R_{\rm ct} (\Omega { m cm}^2)$	2019.0	433.2	36.24
$C_{\rm ss}~({\rm F/cm^2})$	3.6×10-6	1.7×10 ⁻³	1.1×10 ⁻³