Supporting information for

Al and Zn phenoxy-amidine complexes for lactide ROP catalysis
Benjamin Théron, ${ }^{\text {a }}$ Valentin Vaillant-Coindard, ${ }^{\text {a }}$ Cédric Balan, ${ }^{\text {a }}$ Yoann Rousselin, ${ }^{\text {a }}$ Jérôme Bayardon, ${ }^{\text {a }}$ Raluca Malacea Kabbara ${ }^{a}$ and Pierre Le Gendre*a
${ }^{\text {a }}$ Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR-CNRS 6302), Université de Bourgogne

Contents

$$
{ }^{1} H,\left\{{ }^{1} H\right\}^{13} C, C O S Y, H S Q C \text { and } H M B C \text { NMR spectra of } L 1 H
$$

${ }^{1} H,\left\{{ }^{1} H\right\}^{13} \mathrm{C}$, COSY, HSQC and HMBC NMR spectra of $\mathbf{L 2 H}$ S4
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C, C O S Y, H S Q C$ and HMBC NMR spectra of $\mathbf{L 3 H}$ S7
${ }^{1} \mathrm{H},\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}, \mathrm{COSY}, \mathrm{HSQC}$ and HMBC NMR spectra of $\mathbf{L 4 H}$ S9
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} \mathrm{C}$, COSY, HSQC and HMBC NMR spectra of $\mathbf{L 5 H}$ S12
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} \mathrm{C}, ~ C O S Y, ~ H S Q C$ and HMBC NMR spectra of $\mathbf{L 6 H}$ S14
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C, H S Q C$ and HMBC NMR spectra of $1 a$ S17
${ }^{1} \mathrm{H},\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}, \mathrm{HSQC}$ and HMBC NMR spectra of 1 b S19
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C$, HSQC and HMBC NMR spectra of $\mathbf{2 b}$ S22
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C, H S Q C, H M B C$ and $V T^{1} H$ NMR spectra of $3 b$ S24
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C, H S Q C$ and HMBC NMR spectra of $\mathbf{4 b}$ S28
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C, H S Q C$ and HMBC NMR spectra of $6 \boldsymbol{b}$ S31
${ }^{1} \mathrm{H},\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$, HSQC and HMBC NMR spectra of $\mathbf{1} \boldsymbol{b}^{\prime}$ S33
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C$, HSQC and HMBC NMR spectra of 1c S36
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C$, HSQC and HMBC NMR spectra of 2c S38
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} \mathrm{C}, \mathrm{HSQC}$ and HMBC NMR spectra of 5 c S41
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C$, HSQC and HMBC NMR spectra of $6 c$ S43
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C, H S Q C$ and HMBC NMR spectra of 1d S46
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} \mathrm{C}, \mathrm{HSQC}$ and HMBC NMR spectra of 2d S47
${ }^{1} \mathrm{H},\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ and $V T^{1} \mathrm{H}$ NMR spectra of 3 d S50
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C$ and $V T^{1} H$ NMR spectra of $4 d$ S52
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C$ and $V T^{1} H$ NMR spectra of $5 d$ S53
${ }^{1} H,\left\{{ }^{1} H\right\}^{13} C, H S Q C$ and HMBC NMR spectra of $6 \boldsymbol{d}$ S55
DOSY NMR spectra of 1a and 1c S57
Experimental procedure for the synthesis of 7d S59
Polymer characterization S60
X-ray data for compounds L1H, L3H, L4H, L5H, 1a, 1b, 1b', 2b, 3b, 1c, 5c, 6c, 1d, 2d, 3d, 4d, 6d S63

Figure S1 ${ }^{1} \mathrm{H}$ NMR (400 MHz, CD ${ }_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N, N-dimethylformamidine L1H.

Figure S2 $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N, N-dimethylformamidine L1H.

Figure $\mathrm{S3}^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of N^{\prime}-(2-hydroxyphenyl)- N, N-dimethylformamidine $\mathbf{L 1 H}$.

Figure S4 ${ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HSQC (400 MHz/101 MHz, CD ${ }_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N, N dimethylformamidine L1H.

Figure $\mathrm{S}^{1}{ }^{1} \mathrm{H}{ }^{13} \mathrm{C} \mathrm{HMBC}\left(400 \mathrm{MHz} / 141 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\mathrm{N}^{\prime}-(2$-hydroxyphenyl)- $\mathrm{N}, \mathrm{N}-$ dimethylformamidine L1H.

Figure $S^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, CD ${ }_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathrm{N}^{\prime}(2$-hydroxyphenyl)- N, N-pyrrolydinyl-formamidine L2H.

Figure $\operatorname{S7}\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathrm{N}^{\prime}(2$-hydroxyphenyl)- N, N-pyrrolydinyl-formamidine $\mathbf{L 2 H}$.

Figure $\mathrm{SB}^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\mathrm{N}^{\prime}(2$-hydroxyphenyl)- N, N-pyrrolydinyl-formamidine $\mathbf{L 2 H}$.

Figure $59{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC (400 MHz / $101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathrm{N}^{\prime}(2$-hydroxyphenyl)- N, N-pyrrolydinylformamidine L2H.

Figure S10 ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($400 \mathrm{MHz} / 141 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathrm{N}^{\prime}(2$-hydroxyphenyl)- N, N-pyrrolydinylformamidine L2H.

Figure S11 ${ }^{1} \mathrm{H}$ NMR (600 MHz, CD ${ }_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N, N-dimethyl-2-methylbenzamidine L3H.

Figure S12 $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(151 \mathrm{MHz}, \quad \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of N^{\prime}-(2-hydroxyphenyl)- N, N-dimethyl-2methylbenzamidine L3H.

Figure $\mathrm{S} 13{ }^{1} \mathrm{H}{ }^{1} \mathrm{H} \quad \operatorname{COSY}\left(600 \mathrm{MHz}, \quad \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of N^{\prime}-(2-hydroxyphenyl)- N, N-dimethyl-2methylbenzamidine L3H.

Figure S14 ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($600 \mathrm{MHz} / 151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N, N-dimethyl-2methylbenzamidine L3H.

Figure S15 ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($600 \mathrm{MHz} / 151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N, N-dimethyl-2methylbenzamidine L3H.

Figure S16 ${ }^{1} \mathrm{H} \quad \mathrm{NMR}\left(600 \mathrm{MHz}, \quad \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of N^{\prime}-(2-hydroxyphenyl)-N,N-pyrrolidinyl-2methylbenzamidine L4H.
(

Figure S17 $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C} \quad \mathrm{NMR}\left(151 \mathrm{MHz}, \quad \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of N^{\prime}-(2-hydroxyphenyl)-N,N-pyrrolidinyl-2methylbenzamidine L4H.

Figure $\operatorname{S18}{ }^{1} \mathrm{H}{ }^{1} \mathrm{H}$ COSY ($600 \mathrm{MHz}, \quad \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N, N-pyrrolidinyl-2methylbenzamidine L4H.

Figure S19 ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC (600 MHz / $151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N'-(2-hydroxyphenyl)- N, N-pyrrolidinyl-2methylbenzamidine L4H.

Figure $\mathrm{S} 20{ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HMBC ($600 \mathrm{MHz} / 151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N'-(2-hydroxyphenyl)-N,N-pyrrolidinyl-2methylbenzamidine L4H.

Figure S21 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N, N-pyrrolidinyl-1-naphtylamidine L5H.

Figure S22 $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (151 MHz, CD $\left.{ }_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of N^{\prime}-(2-hydroxyphenyl)- N, N-pyrrolidinyl-1naphtylamidine L5H.

Figure $\mathrm{S} 23^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of N^{\prime}-(2-hydroxyphenyl)- N, N-pyrrolidinyl-1-naphtylamidine L5H.

Figure S24 ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($600 \mathrm{MHz} / 151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N, N-pyrrolidinyl-1naphtylamidine $\mathbf{L 5 H}$.

Figure $\mathrm{S}_{2} 5^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($600 \mathrm{MHz} / 151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of N'-(2-hydroxyphenyl)-N,N-pyrrolidinyl-1naphtylamidine L5H.

Figure S26 ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD, 298 K) of N^{\prime}-(2-hydroxyphenyl)- N-methyl- N (dimethylaminoethyl)formamidine L6H.

Figure S27 $\left\{^{1} \mathrm{H}\right\}^{13} \mathrm{C} \quad$ NMR (101 MHz, MeOD, 298 K) of N^{\prime}-(2-hydroxyphenyl)- N-methyl- N (dimethylaminoethyl)formamidine L6H.

Figure S28 ${ }^{1} \mathrm{H}{ }^{1} \mathrm{H}$ COSY ($400 \mathrm{MHz} / 400 \mathrm{MHz}, \mathrm{MeOD}, 298 \mathrm{~K}$) of N^{\prime}-(2-hydroxyphenyl)- N -methyl- N (dimethylaminoethyl)formamidine L6H.

Figure S29 ${ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HSQC (400 MHz / 101 MHz , MeOD, 298 K) of N^{\prime}-(2-hydroxyphenyl)- N -methyl- N (dimethylaminoethyl)formamidine L6H.

Figure S30 ${ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}$, MeOD, 298 K) of N^{\prime}-(2-hydroxyphenyl)- N -methyl- N (dimethylaminoethyl)formamidine L6H.

Figure $\mathrm{S} 31{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1 a .

Figure $S 32\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C} N M R\left(101 \mathrm{MHz}, C D_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $1 a$.

Figure $\operatorname{S33}{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of 1 a .

Figure $\mathrm{S} 34 \mathrm{H}^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1 a .

Figure $\mathrm{S} 35{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, C D_{2} \mathrm{Cl}, 298 \mathrm{~K}$) of 1 a .

Figure $\mathrm{S} 36{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{1 b}$.

Figure $S 37\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{1 b}$.
1 iduld \qquad \sim

Figure $\mathrm{S} 38{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\mathbf{1 b}$.

Figure $\mathrm{S} 39{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1 b .

Figure $\mathrm{S} 4 \mathrm{O}^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1b.

Figure $\mathrm{S} 41^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\mathbf{2 b}$.

Figure S42 $\left\{{ }^{1} H\right\}^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{2 b}$.

Figure $\mathrm{S} 43^{1} \mathrm{H}{ }^{1} \mathrm{H} \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\mathbf{2 b}$.

Figure $\mathrm{S} 44{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{2 b}$.

Figure $\mathrm{S} 45{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}$, 298 K) of $\mathbf{2 b}$.

Figure $S 46^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, C_{5} D_{5} \mathrm{~N}, 298 \mathrm{~K}\right)$ of $3 b$.

Figure $S 47\left\{{ }^{1} H\right\}^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 3 b .

Figure $\mathrm{S} 48{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}\right)$ of 3 b .

Figure $\mathrm{S} 49{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 3 b .

Figure $\mathrm{S}_{5} \mathrm{I}^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 3b.

Figure $\mathrm{S} 51{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 383 \mathrm{~K}$) of 3 b .

Figure S52 Variable Temperature ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) of $3 b$.

Figure $S 53{ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, C_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}\right)$ of $\mathbf{4 b}$.

Figure $S 54\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, C_{5} D_{5} \mathrm{~N}, 298 \mathrm{~K}$) of $\mathbf{4 b}$.

Figure $S 55{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}\right)$ of 4 b .

Figure $556{ }^{1} \mathrm{H}^{13} \mathrm{CHSQC}\left(400 \mathrm{MHz} / 101 \mathrm{MHz}, C_{5} D_{5} \mathrm{~N}, 298 \mathrm{~K}\right)$ of 4 b .

Figure $S 57{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, C_{5} D_{5} \mathrm{~N}, 298 \mathrm{~K}$) of $\mathbf{4 b}$.

Figure S58 Variable Temperature ${ }^{1} \mathrm{H}$ NMR (400 MHz , Toluene- d_{8}) of $4 b$.

Figure S59 ${ }^{1} \mathrm{H}$ NMR (500 MHz, THF-d8, 298 K) of 6 b .

Figure $S 60\left\{{ }^{1} H\right\}^{13} \mathrm{C}(125 \mathrm{MHz}$, THF-d8, 298 K$)$ of 6 b .

Figure S61 ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY (500 MHz / $500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8,298 \mathrm{~K}$) of 6 b .

Figure $562{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSCQ ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8,298 \mathrm{~K}$) of 6 b .

Figure $563{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($500 \mathrm{MHz} / 125 \mathrm{MHz}$, THF-d8, 298 K) of 6 b .

Figure $564^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{1 b}^{\prime}$.

Figure S65 $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{1 b}^{\prime}$.

Figure $\operatorname{S66}{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\mathbf{1 b}^{\mathbf{\prime}}$.

Figure $\mathrm{S} 67{ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HSQC ($600 \mathrm{MHz} / 151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{1} \mathbf{b}^{\prime}$.

Figure $\mathrm{S} 68{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($600 \mathrm{MHz} / 151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{1} \boldsymbol{b}^{\prime}$.

Figure S69 ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}\right)$ of 1c.

Figure $570\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (101 MHz, $\left.C_{5} D_{5} N, 298 \mathrm{~K}\right)$ of 1 c .

Figure $\operatorname{S71}{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$ of 1 c .

Figure $\mathrm{S} 72{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 1 c .

Figure $\mathrm{S} 73{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 1 c .

Figure $S 74{ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, C_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}\right)$ of 2 c .

Figure $S 75\left\{{ }^{1} H\right\}^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 2 c .

Figure $\mathrm{S} 76{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$ of 2 c .

Figure $\mathrm{S} 77{ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HSQC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 2 c .

Figure $\mathrm{S} 78{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 2 c .

Figure $S 79{ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, C_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}\right)$ of 5 c .

Figure $S 80\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 5 c .

Figure $\mathrm{S} 81{ }^{1} \mathrm{H}{ }^{1} \mathrm{H} \operatorname{COSY}\left(500 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}\right)$ of 5 c .

Figure $\mathrm{S} 82{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 5 c .

Figure $\mathrm{S} 83{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 298 \mathrm{~K}$) of 5 c .

Figure $\mathrm{S} 84{ }^{1} \mathrm{H}(500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8,298 \mathrm{~K})$ of 6 c .

Figure $\mathrm{S} 85{ }^{13} \mathrm{C}(125 \mathrm{MHz}$, THF-d8, 298 K$)$ of 6 c .

Figure $586{ }^{1} \mathrm{H}^{1} \mathrm{H}$ HMBC ($500 \mathrm{MHz} / 500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8,298 \mathrm{~K}$) of 6 c .
\qquad M \qquad u \qquad \sim 1 \qquad Ω \qquad \cdots \qquad

Figure $\mathrm{S} 87{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($500 \mathrm{MHz} / 125 \mathrm{MHz}$, THF-d8, 298 K) of 6c.

Figure $\mathrm{S} 88{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{THF}$-d8, 298 K) of 6 c .

Figure $\mathrm{S} 89{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1 d .

Figure S90 $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1 d .

Figure $\mathrm{S} 91{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1 d .

Figure $\mathrm{S} 92{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of 2 d .

Figure S93 $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 2d.

Figure $594{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of 2 d .

Figure $\mathrm{S95}{ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HSQC ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 2 d .

Figure $\mathrm{S96}{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 2d.

Figure $S 97{ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, C_{5} \mathrm{D}_{5} \mathrm{~N}, 378 \mathrm{~K}\right)$ of $3 d$.

Figure $S 98\left\{{ }^{1} H\right\}^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 378 \mathrm{~K}$) of 3 d .

Figure $\operatorname{S99}{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($400 \mathrm{MHz} / 101 \mathrm{MHz}, C_{5} D_{5} \mathrm{~N}, 378 \mathrm{~K}$) of $3 d$.

Figure S100 Variable Temperature ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) of 3 d .

Figure S101 ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 383 \mathrm{~K}$) of 4 d .

Figure S102 $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 383 \mathrm{~K}$) of 4d.

Figure S103 Variable Temperature ${ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, C_{5} \mathrm{D}_{5} \mathrm{~N}\right)$ of $4 d$.

Figure S104 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, C_{5} \mathrm{D}_{5} \mathrm{~N}, 383 \mathrm{~K}$) of 5 d .

Figure S105 $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 383 \mathrm{~K}$) of 5 d .

Figure S106 Variable Temperature ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$ of 5 d .

Figure $\mathrm{S} 107^{1} \mathrm{H}\left(500 \mathrm{MHz}, C D_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of 6 d .

Figure $\mathrm{S} 108{ }^{13} \mathrm{C}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of 6 d .

Figure $\operatorname{S109}{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\left(125 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of 6 d .

Figure $\mathrm{S} 110{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 6d.

Figure $\mathrm{S} 111{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 6 d .

DOSY analyses

All spectra were recorded on an Avance III HD 600 MHz Bruker spectrometer equipped with a 5 mm Prodigy probe, and using 5 mm NMR tubes at 298 K . The samples were prepared as follow: $15 \mu \mathrm{~mol}$ of the analyte were dissolved in $500 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (or Pyridine- D_{5}) then introduced in a 5 mm NMR tube and finally introduced in the magnet. The specific parameters of each sample ($\mathrm{d} 1, \mathrm{p} 1, \mathrm{~ns}, \mathrm{rg}$) were optimized on a standard 1D acquisition (${ }^{1} \mathrm{H}$ sequence $\mathrm{zg} 30,16$ scans), and recalled in the dosy experiment (ledbpgp2s, 32 points, linear gradient from 95% to 5%). The diffusion delay d 20 was fixed at $0,01 \mathrm{~s}$, while the diffusion gradient length p30 was adapted to get a 95% intensity decrease between the first spectrum and the last one. DOSY data were processed using Topspin 3.5 pl 7 with the dosy2d exponential processing method. All diffusion coefficients were read on the two-dimensional spectrum obtained after processing.

The Stokes-Einstein equation (1) for diffusion of spherical particles was used to calculate the hydrodynamic radius of spherical particle.
$\mathrm{rH}=\mathrm{kT} / 6 \pi \eta \mathrm{D}$ (equation 1)
D is the diffusion coefficient $\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$
k is the Boltzmann constant $\left(\mathrm{k}=1.38065 \times 10^{-23} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}\right)$
T is the absolute temperature $(\mathrm{T}=298 \mathrm{~K})$
η is the dynamic viscosity $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}: \eta=4.13 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$
r_{H} is the hydrodynamic radius of the spherical particle (m)
OLEX2 was used to determine the hydrodynamic radius (r ' ${ }_{\mathrm{H}}$) from the molecular volume based on the XRD structure (equation 2).
$\left.r^{\prime} H=\sqrt[3]{(} 3 \mathrm{~V} / 4 \pi\right) \quad$ (equation 2$)$

Figure S112 Processed DOSY spectrum for 1a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
$\left(1.45 * 10^{-9} \mathrm{~m}^{2} / \mathrm{s}\right)$

Table S1 Comparison of the hydrodynamic radius $\left(r_{H}\right)$ estimated from the diffusion coefficients with the hydrodynamic radius ($\mathrm{r}^{\prime} \mathrm{H}$) determined from the XRD structure for complexes $\mathbf{1 a}$ and $\mathbf{1 c}$.

Complex	$\mathrm{D}\left(\mathrm{m}^{2} / \mathrm{s}\right)$	$\begin{gathered} \text { Radius (Å) } \\ r_{H} \end{gathered}$	Complex	Volume (\AA^{3})	$\begin{gathered} \text { Radius (Å) } \\ r_{H}^{\prime} \end{gathered}$
1a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	$1.45 * 10^{-9}$		1a (dimer)	388.14	4.53
			1a (monomer)	198.96	3.62
1c in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	$1.15 * 10^{-9}$	4.60	1c (dimer)	371.45	4.46
			1c (monomer)	187.51	3.55
1c in Pyridine -D5	$0.66 * 10^{-9}$	3.76	1c in (dimer)	371.45	4.46
			1c (monomer)	187.51	3.55

Experimental procedure for the synthesis of 7d

In a glovebox, 197.24 mg (1 mmol) of N -benzylidene-2-hydroxyaniline were solubilized in 10 mL of dried THF. 0.5 mL ($0.5 \mathrm{mmol}, 0.5$ equiv.) of a 1 M solution of ZnEt_{2} in hexane was added and the mixture was stirred at r.t. for 2 h . The volatiles were evaporated under vacuum and the solid obtained was washed with 4 mL of pentane before being dried under vacuum affording 7d as a reddish powder ($115 \mathrm{mg}, 50 \%$ yield). Elemental Analysis: calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Zn}$: C, 68.21; $\mathrm{H}, 4.40 ; \mathrm{N}, 6.12$. Found: $\mathrm{C}, 68.08 ; \mathrm{H}, 4.36 ; \mathrm{N}, 5.81 .^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298\right.$

7d K): $\delta(\mathrm{ppm})=8.27(\mathrm{~s}, 2 \mathrm{H}), 7.62-7.47$ (broad signal, 4 H), 7.37-7.25 (broad signal, 2 H), 7.22-7.02 (broad signal, 8 H), 6.94-6.80 (broad signal, 2H), $6.57(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .\left\{^{1} \mathrm{H}\right\}^{13} \mathrm{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=$ $163.08,158.54,135.50,134.15,132.62,131.37,129.38,128.99,120.70,116.68,115.41$.

Polymer characterization

Representative homonuclear decoupled ${ }^{1}$ H NMR spectrum:

Figure S115 Homonuclear decoupled ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectra of purified PLA (Pr $=0.77$) product from the solution polymerisation of rac-LA at $20^{\circ} \mathrm{C}$ for 2 h using 1c, displaying the five tetrad possibilities in the methine region (blue)

MALDI-ToF spectra

Figure S116 MALDI-ToF spectrum of PLA produced using 1^{\prime} ($90^{\circ} \mathrm{C}, 4 \mathrm{~h}, 25 \%$ conv., 100:1:1). Magnified version is provided to assist in identifying the repeat unit.

Figure S117 MALDI-ToF spectrum of PLA produced using 6 c with ${ }^{i} \mathrm{PrOH}$ as co-initiator $\left(20^{\circ} \mathrm{C}, 40 \mathrm{~min}, 42 \%\right.$ conv., 100:1:1). Magnified version is provided to assist in identifying the repeat unit.

Figure S118 MALDI-ToF spectrum of PLA produced using 6 c with ${ }^{i}$ PrOH as co-initiator $\left(20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 100 \%\right.$ conv., 25:1:1). Magnified version is provided to assist in identifying the repeat unit.

Figure S119 MALDI-ToF spectrum of PLA produced using $6 d$ with ${ }^{i} \mathrm{PrOH}$ as co-initiator $\left(30^{\circ} \mathrm{C}, 40 \mathrm{~min}, 20 \%\right.$ conv., 100:1:1). Magnified version is provided to assist in identifying the repeat unit.

Figure S120 MALDI-ToF spectrum of PLA produced using $6 d$ with ${ }^{i} \operatorname{PrOH}$ as co-initiator $\left(30{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 100 \%\right.$ conv., 25:1:1). Magnified version is provided to assist in identifying the repeat unit.

X-ray data for compounds
 L1H, L3H, L4H, L5H, 1a, 1b, 1b', 2b, 3b, 1c, 5c, 6c, 1d, 2d, 3d, 4d, 6d

Crystal Data and Experimental

Figure S121: ORTEP view of compound L1H.
Experimental. Single clear light colourless prism crystals of compound $\mathbf{L 1 H}$ recrystallized from DCM by slow evaporation. A suitable crystal with dimensions 0.69 x $0.09 \times 0.08 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 Venture (Cu) diffractometer. The crystal was kept at a steady $T=100.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2}$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}, M_{r}=164.21$, orthorhombic, Fdd2 (No. 43), $\mathrm{a}=21.7702(6) \AA, \quad \mathrm{b}=21.9570(6) \AA, \quad \mathrm{c}=$ 7.2513(2) $\AA, \alpha=\beta=\gamma=90^{\circ}, \quad V=3466.18(17) \AA^{3}, \quad T=$ $100.0(1) \mathrm{K}, Z=16, Z^{\prime}=1, \mu\left(\mathrm{CuK}_{\alpha}\right)=0.677,15105$ reflections measured, 1510 unique $\left(\mathrm{R}_{\mathrm{int}}=0.0498\right)$ which were used in all calculations. The final $w R_{2}$ was 0.0794 (all data) and R_{1} was $0.0327(\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S2: Experimental parameters

Compound	L1H
CCDC	2182070
Formula	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.259
μ / mm^{-1}	0.677
Formula Weight	164.21
Colour	clear light colourless
Shape	prism
Size/mm ${ }^{3}$	0.69x0.09x0.08
T/K	100.0(1)
Crystal System	orthorhombic
Flack Parameter	unknown
Space Group	Fdd2
$a / \AA{ }^{\text {a }}$	21.7702(6)
b/A	21.9570(6)
c / \AA	7.2513(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V/Å ${ }^{3}$	3466.18(17)
Z	16
Z^{\prime}	1
Wavelength/Å	1.54178
Radiation type	$\mathrm{CuK}{ }_{\alpha}$
$\Theta_{\text {min }} /{ }^{\circ}$	5.724
$\Theta_{\max } /{ }^{\circ}$	66.855
Measured Refl's.	15105
Indep't Refl's	1510
Refl's I $\geq 2 \sigma$ (I)	1429
Rint	0.0498
Parameters	112
Restraints	1
Largest Peak	0.138
Deepest Hole	-0.187
GooF	1.072
$w R_{2}$ (all data)	0.0794
$w R_{2}$	0.0778
R_{1} (all data)	0.0354
R_{1}	0.0327

Table S3: Structure Quality Indicators

Reflections:	d min (Cu)		$0.84{ }^{1 / \sigma(1)}$		38.0	Rint			4.98\%		complete	98\%
Refinement:	Shift	0.000	0 Max Peak	0.1	ak		0.2					

A clear light colourless prism-shaped crystal with dimensions $0.69 \times 0.09 \times 0.08 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 Venture (Cu) diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=100.0(1)$ K. Data were measured using ϕ and ω scans using CuK_{α} radiation. The maximum resolution that was achieved was $\Theta=66.855^{\circ}(0.84 \AA)$. The unit cell was refined using SAINT ${ }^{4}$ on 9915 reflections, 66% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT ${ }^{4}$. The final completeness is 99.90% out to 66.855° in Θ. A multi-scan absorption correction was performed using SADABS-2016/25 was used for absorption correction. $w R_{2}$ (int) was 0.0868 before and 0.0704 after correction. The Ratio of minimum to maximum transmission is 0.8195 . The absorption coefficient μ of this material is $0.677 \mathrm{~mm}^{-}$ ${ }^{1}$ at this wavelength $(\lambda=1.54178 \AA$) and the minimum and maximum transmissions are 0.739 and 0.902 . The structure was solved and the space group Fdd2 (\#43) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 16 and Z ' is 1 .

Table S4: Bond Lengths in Å for compound L1H.

Atom	Atom	Length/Å
O1	C2	$1.362(3)$
N1	C1	$1.416(3)$
N1	C7	$1.290(3)$
N2	C7	$1.335(3)$
N2	C8	$1.448(3)$
N2	C9	$1.452(3)$

Atom	Atom	Length/Å
C1	C2	$1.405(3)$
C1	C6	$1.399(3)$
C2	C3	$1.390(3)$
C3	C4	$1.383(3)$
C4	C5	$1.384(3)$
C5	C6	$1.389(3)$

Table S5: Bond Angles in ${ }^{\circ}$ for compound L1H.

Atom	Atom	Atom	Angle ${ }^{\circ}{ }^{\circ}$
C7	N1	C1	$116.17(18)$
C7	N2	C8	$121.2(2)$
C7	N2	C9	$121.0(2)$
C8	N2	C9	$117.4(2)$
C2	C1	N1	$118.43(18)$
C6	C1	N1	$123.19(19)$
C6	C1	C2	$118.3(2)$
O1	C2	C1	$122.7(2)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
O1	C2	C3	$117.41(19)$
C3	C2	C1	$119.88(19)$
C4	C3	C2	$120.8(2)$
C3	C4	C5	$120.1(2)$
C4	C5	C6	$119.5(2)$
C5	C6	C1	$121.4(2)$
N1	C7	N2	$124.7(2)$

Table S6: Torsion Angles in ${ }^{\circ}$ for compound L1H.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O1	C2	C3	C4	$178.5(2)$
N1	C1	C2	O1	$4.1(3)$
N1	C1	C2	C3	$-176.6(2)$
N1	C1	C6	C5	$177.1(2)$
C1	N1	C7	N2	$-174.9(2)$

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1	C2	C3	C4	$-0.9(3)$
C2	C1	C6	C5	$0.2(3)$
C2	C3	C4	C5	$0.5(4)$
C3	C4	C5	C6	$0.3(4)$
C4	C5	C6	C1	$-0.6(4)$
C6	C1	C2	O1	$-178.8(2)$
C6	C1	C2	C3	$0.5(3)$
C7	N1	C1	C2	$-143.1(2)$
C7	N1	C1	C6	$40.0(3)$
C8	N2	C7	N1	$5.0(3)$
C9	N2	C7	N1	$177.5(2)$

Table S7: Hydrogen Bond information for compound L1H.

\mathbf{D}	\mathbf{H}	\mathbf{A}	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \AA$	$\mathbf{d}(\mathbf{H}-\mathbf{A}) / \AA$	$\mathbf{d}(\mathbf{D}-\mathbf{A}) / \AA$	$\mathbf{D}-\mathbf{H}-\mathbf{A} / \mathbf{d e g}$
01	H 1	$\mathrm{~N}^{1}$	0.84	2.07	$2.837(2)$	151.9

$11 / 2-\mathrm{x}, 3 / 2-\mathrm{y},+\mathrm{z}$						

Analyse Chimique Synthése Moléculaire
UNIVERSITÉ DE BOURGOGNE

Crystal Data and Experimental

Figure S122: ORTEP view of compound L3H
Experimental. Single clear light colourless block-shaped crystals of compound L3H recrystallised from a mixture of DCM and pentane by slow evaporation. A suitable crystal with dimensions $0.33 \times 0.25 \times 0.19 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Nonius APEX-II CCD diffractometer. The crystal was kept at a steady $T=110.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ 2018/2 solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}, M_{r}=254.32$, orthorhombic, Pccn (No. 56), $\mathrm{a}=16.7113(6) \AA, \quad \mathrm{b}=10.8251(4) \AA, \mathrm{c}=$ $15.6437(6) \AA, \alpha=\beta=\gamma=90^{\circ}, V=2829.97(18) \AA^{3}, T=$ $110.0(1) \mathrm{K}, Z=8, Z^{\prime}=1, \mu\left(\right.$ Mo $\left.\mathrm{K}_{\alpha 1}\right)=0.075,50670$ reflections measured, 3246 unique $\left(\mathrm{R}_{\mathrm{int}}=0.0548\right)$ which were used in all calculations. The final $w R_{2}$ was 0.1016 (all data) and R_{1} was $0.0396(\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S8: Experimental parameters

Compound	L3H
CCDC	2182071
Formula	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.194
μ / mm^{-1}	0.075
Formula Weight	254.32
Colour	clear light colourless
Shape	block-shaped
Size/mm ${ }^{3}$	0.33x0.25x0.19
T/K	110.0(1)
Crystal System	orthorhombic
Space Group	Pccn
$a / \AA{ }^{\text {a }}$	16.7113(6)
b / \AA	10.8251(4)
c / \AA	15.6437(6)
$\alpha /{ }^{\circ}$	90
$\beta /^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	2829.97(18)
Z	8
Z'	1
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{\alpha 1}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.592
$\Theta_{\max } /{ }^{\circ}$	27.511
Measured Refl's.	50670
Indep't Refl's	3246
Refl's $\mathrm{I} \geq 2 \%$ (I)	2378
$R_{\text {int }}$	0.0548
Parameters	176
Restraints	0
Largest Peak	0.242
Deepest Hole	-0.242
GooF	1.056
$w R_{2}$ (all data)	0.1016
$w R_{2}$	0.0867
R_{1} (all data)	0.0662
R_{1}	0.0396

Table S9: Structure Quality Indicators

Reflections:	$\begin{aligned} & d \min (M o) \\ & 2 \Theta=55.0^{\circ} \end{aligned}$	0.77	1//()	37.9	Rint	5.48\%	Full 50.5°	99.9
Refinement:	Shift	0.000	Max Peak	0.2	Min Peak	-0.2	GooF	1.056

A clear light colourless block-shaped-shaped crystal with dimensions $0.33 \times 0.25 \times 0.19 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Nonius APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=110.0$ (1) K. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX4 ${ }^{6}$. The maximum resolution that was achieved was $\Theta=27.511^{\circ}(0.77 \AA$). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 8989 reflections, 18% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90% out to 27.511° in Θ. SADABS-2016/2 ${ }^{5}$ was used for absorption correction. $w R_{2}$ (int) was 0.0568 before and 0.0538 after correction. The Ratio of minimum to maximum transmission is 0.9385 . The absorption coefficient μ of this material is $0.075 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.911 and 0.971 . The structure was solved and the space group Pccn (\#56) determined by the ShelXT ${ }^{1}$ 2018/2 structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 8 and Z^{\prime} is 1 .

Table S10: Bond Lengths in Å for compound L3H.

Atom	Atom	Length/Å
O1	C2	$1.3613(16)$
N1	C7	$1.3039(16)$
N1	C1	$1.4212(16)$
N2	C7	$1.3559(17)$
N2	C9	$1.4585(17)$
N2	C8	$1.4531(18)$
C7	C1'	$1.5012(18)$
C1	C2	$1.4054(18)$
C1	C6	$1.3963(19)$
C2	C3	$1.3897(19)$

Atom	Atom	Length/Å
C1' $^{\prime}$	C2' $^{\prime}$	$1.4034(19)$
C1' $^{\prime}$	C6' $^{\prime}$	$1.396(2)$
C6	C5	$1.386(2)$
C2' $^{\prime}$	C3' $^{\prime}$	$1.399(2)$
C2' $^{\prime}$	C7' $^{\prime}$	$1.507(2)$
C3	C4	$1.385(2)$
C6' $^{\prime}$	C5' $^{\prime}$	$1.383(2)$
C3' $^{\prime}$	C4' $^{\prime}$	$1.380(2)$
C5	C4	$1.386(2)$
C4 $^{\prime}$	C5' $^{\prime}$	$1.385(2)$

Table S11: Bond Angles in ${ }^{\circ}$ for compound L3H.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C7	N1	C1	$119.56(11)$
C7	N2	C9	$122.91(12)$
C7	N2	C8	$119.49(11)$
C8	N2	C9	$115.44(12)$
N1	C7	N2	$119.70(12)$
N1	C7	C1'	$123.17(12)$
N2	C7	C1'	$117.13(11)$
C2	C1	N1	$118.13(12)$
C6	C1	N1	$123.60(12)$
C6	C1	C2	$118.22(12)$
O1	C2	C1	$123.09(12)$
O1	C2	C3	$116.77(12)$
C3	C2	C1	$120.12(12)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C2'	C1'	C7	121.14(12)
C6'	C1'	C7	118.52(12)
C6'	C1'	C2'	120.22(13)
C5	C6	C1	121.46(13)
C1'	C2'	C7'	122.68(13)
C3'	C2'	C1'	118.02(13)
C3'	C2'	C7'	119.29(13)
C4	C3	C2	120.54(13)
C5'	C6'	C1'	120.59(13)
C4'	C3'	C2'	121.30(13)
C6	C5	C4	119.57(13)
C3	C4	C5	120.02(13)
C3'	C4'	C5'	120.32(14)

Atom	Atom	Atom	Angle $/{ }^{\circ}$
C6' $^{\prime}$	C5 $^{\prime}$	C4' $^{\prime}$	$119.52(14)$

Table S12: Torsion Angles in ${ }^{\circ}$ for compound L3H.

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}$
01	C2	C3	C4	179.27(13)
N1	C7	C1'	C2'	-116.88(15)
N1	C7	C1'	C6'	59.25(18)
N1	C1	C2	01	1.66 (19)
N1	C1	C2	C3	179.63(12)
N1	C1	C6	C5	179.57(13)
N2	C7	C1'	C2'	62.65(17)
N2	C7	C1'	C6'	-121.21(13)
C7	N1	C1	C2	-128.40(13)
C7	N1	C1	C6	54.23(18)
C7	C1'	C2'	C3'	176.65(12)
C7	C1'	C2'	C7'	-2.1(2)
C7	C1'	C6'	C5'	-177.52(13)
C1	N1	C7	N2	-171.60(11)
C1	N1	C7	C1'	7.93(19)
C1	C2	C3	C4	1.2(2)
C1	C6	C5	C4	0.2(2)
C2	C1	C6	C5	2.2(2)
C2	C3	C4	C5	1.3(2)
C1'	C2'	C3'	C4'	0.9(2)
C1'	C6'	C5'	C4'	0.6(2)
C6	C1	C2	01	179.17(12)
C6	C1	C2	C3	-2.86(19)
C6	C5	C4	C3	-1.9(2)
C2'	C1'	C6'	C5'	-1.4(2)
C2'	C3'	C4'	C5'	-1.7(2)
C6'	C1'	C2'	C3'	0.58(19)
C6'	C1'	C2'	C7'	-178.12(13)
C3'	C4'	C5'	C6'	0.9(2)
C9	N2	C7	N1	-155.50(13)
C9	N2	C7	C1'	24.95(18)
C7'	C2'	C3'	C4'	179.70(13)
C8	N2	C7	N1	7.04(19)
C8	N2	C7	C1'	-172.51(12)

Table S13: Hydrogen Bond information for compound L3H.

\mathbf{D}	\mathbf{H}	\mathbf{A}	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \AA$	$\mathbf{d}(\mathbf{H}-\mathbf{A}) / \AA$	$\mathbf{d}(\mathbf{D}-\mathbf{A}) / \AA$	D-H-A/deg
01	H 1	$\mathrm{~N}^{1}$	0.84	2.01	$2.7509(14)$	146.5

$13 / 2-\mathrm{x}, 3 / 2-\mathrm{y},+\mathrm{z}$						

Crystal Data and Experimental

Figure S123: ORTEP view of compound L4H
Experimental. Single clear light colourless block-shaped crystals of compound L4H recrystallised from a mixture of DCM and pentane by slow evaporation. A suitable crystal with dimensions $0.66 \times 0.56 \times 0.47 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Nonius APEX-II CCD diffractometer. The crystal was kept at a steady $T=110.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Crystal Data. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}, M_{r}=280.36$, orthorhombic, Pna2 ${ }_{1}$ (No. 33), $\mathrm{a}=19.8302$ (12) $\AA, \mathrm{b}=8.1178(5) \AA, \mathrm{c}=$ 18.3922(12) $\AA, \alpha=\beta=\gamma=90^{\circ}, V=2960.7(3) \AA^{3}, T=$ $110.0(1) \mathrm{K}, Z=8, Z^{\prime}=2, \mu\left(\mathrm{Mo} \mathrm{K}_{\alpha 1}\right)=0.079,68139$ reflections measured, 5224 unique ($\mathrm{R}_{\text {int }}=0.0728$) which were used in all calculations. The final $w R_{2}$ was 0.2340 (all data) and R_{1} was $0.0868(\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S14: Experimental parameters

Compound	L4H
CCDC	2182072
Formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.258
μ / mm^{-1}	0.079
Formula Weight	280.36
Colour	clear light colourless
Shape	block-shaped
Size/mm ${ }^{3}$	0.66x0.56x0.47
T/K	110.0(1)
Crystal System	orthorhombic
Flack Parameter	1(4)
Hooft Parameter	-0.2(7)
Space Group	Pna21
a / \AA	19.8302(12)
b / \AA	8.1178(5)
c / \AA	18.3922(12)
$\alpha /{ }^{\circ}$	90
$\beta /^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V/A ${ }^{3}$	2960.7(3)
Z	8
Z^{\prime}	2
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{\alpha 1}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.054
$\Theta_{\max } /{ }^{\circ}$	24.998
Measured Refl's.	68139
Indep't Refl's	5224
Refl's I ≥ 2 (I)	4631
$R_{\text {int }}$	0.0728
Parameters	394
Restraints	1
Largest Peak	0.743
Deepest Hole	-0.410
GooF	1.192
$w R_{2}$ (all data)	0.2340
$w R_{2}$	0.2210
R_{1} (all data)	0.0971
R_{1}	0.0868

Table S15: Structure Quality Indicators

A clear light colourless block-shaped-shaped crystal with dimensions $0.66 \times 0.56 \times 0.47 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Nonius APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=110.0$ (1) K. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX46 . The maximum resolution that was achieved was $\Theta=24.998^{\circ}(0.84 \AA$). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 9903 reflections, 15% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90% out to 24.998° in Θ. SADABS-2016/2 $\mathbf{2}^{5}$ (Bruker, 2016/2) was used for absorption correction. $w R_{2}$ (int) was 0.1013 before and 0.0904 after correction. The Ratio of minimum to maximum transmission is 0.8389 . The absorption coefficient μ of this material is $0.079 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.804 and 0.958 . The structure was solved and the space group Pna 2_{1} (\#33) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All non-hydrogen atoms were refined anisotropically, excepted minor disordered part on each pyrrolidine (Table). Hydrogen atom positions were calculated geometrically and refined using the riding model.

Table S16: Bond Lengths in Å for compound L4H.

Atom	Atom	Length/Å
01	C2	1.372(8)
N1	C1	1.426 (8)
N1	C7	1.293(9)
N2	C7	1.348(8)
N2	C8	1.433(9)
N2	C9	1.469(9)
C1	C2	1.401(9)
C1	C6	1.388(9)
C1'	C2'	1.417(8)
C1'	C6'	1.402(9)
C1'	C7	1.489(9)
C2	C3	1.377(10)
C2'	C3'	1.388(9)
C2'	C7'	1.488(9)
C3	C4	1.369(11)
C3'	C4'	1.396(10)
C4	C5	1.393(11)
C4'	C5'	1.394(10)
C5	C6	1.393(9)
C5'	C6'	1.387(10)
C8	C11	1.537(10)
C9	C10	1.494(12)
C9	C10*	1.39 (4)
C10	C11	1.517(12)
C10*	C11	1.52(4)

Atom	Atom	Length/Å
O1A	C2A	$1.360(8)$
N1A	C1A	$1.395(8)$
N1A	C7A	$1.316(8)$
N2A	C7A	$1.348(8)$
N2A	C8A	$1.459(8)$
N2A	C9A	$1.480(9)$
C1'A	C2'A	$1.376(9)$
C1'A	C6'A	$1.395(9)$
C1'A	C7A	$1.500(9)$
C1A	C2A	$1.407(9)$
C1A	C6A	$1.400(9)$
C2'A	C3'A	$1.396(9)$
C2'A	C7'A	$1.498(10)$
C2A	C3A	$1.393(11)$
C3'A	C4'A	$1.396(10)$
C3A	C4A	$1.368(11)$
C4'A	C5'A	$1.372(10)$
C4A	C5A	$1.389(10)$
C5'A	C6'A	$1.380(10)$
C5A	C6A	$1.396(10)$
C8A	C11A	$1.527(10)$
C9A	C10A	$1.505(12)$
C9A	C10B	$1.42(3)$
C10A	C11A	$1.512(11)$
C11A	C10B	$1.52(3)$

Table S17: Bond Angles in ${ }^{\circ}$ for compound L4H.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C7	N1	C1	126.5(5)
C7	N2	C8	122.4(6)
C7	N2	C9	125.3(6)
C8	N2	C9	112.3(6)
C2	C1	N1	111.8(5)
C6	C1	N1	129.9(6)
C6	C1	C2	118.2(6)
C2'	C1'	C7	119.5(5)
C6'	C1'	C2'	120.5(6)
C6'	C1'	C7	120.0(5)
01	C2	C1	118.2(6)
01	C2	C3	120.2(6)
C3	C2	C1	121.6(6)
C1'	C2'	C7'	119.6(6)
C3'	C2'	C1'	118.2(6)
C3'	C2'	C7'	122.1(6)
C4	C3	C2	120.0(7)
C2'	C3'	C4'	121.4(6)
C3	C4	C5	119.6(7)
C5'	C4'	C3'	119.9(7)
C4	C5	C6	120.7(6)
C6'	C5'	C4'	120.1(6)
C1	C6	C5	119.9(6)
C5'	C6'	C1'	119.9(6)
N1	C7	N2	117.9(6)
N1	C7	C1'	126.8(6)
N2	C7	C1'	115.4(6)
N2	C8	C11	104.6(6)
N2	C9	C10	102.6(7)
C10*	C9	N2	104.8(17)
C9	C10	C11	104.5(7)
C9	C10*	C11	110(3)
C10	C11	C8	103.3(6)
C10*	C11	C8	102.9(16)

Atom	Atom	Atom	Angle/
C7A	N1A	C1A	$125.1(5)$
C7A	N2A	C8A	$122.9(5)$
C7A	N2A	C9A	$125.1(5)$
C8A	N2A	C9A	$111.7(5)$
C2'A	C1'A	C6'A	$121.5(6)$
C2'A	C1'A	C7A	$120.4(6)$
C6'A	C1'A	C7A	$118.2(6)$
N1A	C1A	C2A	$111.2(5)$
N1A	C1A	C6A	$132.6(6)$
C6A	C1A	C2A	$116.2(6)$
C1'A	C2'A	C3'A	$117.9(6)$
C1'A	C2'A	C7'A	$121.5(6)$
C3'A	C2'A	C7'A	$120.6(6)$
01A	C2A	C1A	$117.9(6)$
O1A	C2A	C3A	$120.2(6)$
C3A	C2A	C1A	$121.8(6)$
C4'A	C3'A	C2'A	$120.8(6)$
C4A	C3A	C2A	$120.2(6)$
C5'A	C4'A	C3'A	$120.2(6)$
C3A	C4A	C5A	$120.1(7)$
C4'A	C5'A	C6'A	$119.7(6)$
C4A	C5A	C6A	$119.3(6)$
C5'A	C6'A	C1'A	$119.8(6)$
C5A	C6A	C1A	$122.3(6)$
N1A	C7A	N2A	$117.6(6)$
N1A	C7A	C1'A	$126.2(6)$
N2A	C7A	C1'A	$116.2(5)$
N2A	C8A	C11A	$103.8(5)$
N2A	C9A	C10A	$102.5(6)$
C10B	C9A	N2A	$106.6(14)$
C9A	C10A	C11A	$103.9(7)$
C10A	C11A	C8A	$105.9(6)$
C10B	C11A	C8A	$105.8(13)$
C9A	C10B	C11A	$108(2)$

Table S18: Torsion Angles in ${ }^{\circ}$ for compound L4H.

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}$
O1	C2	C3	C4	$-179.6(6)$
N1	C1	C2	01	$-2.2(8)$
N1	C1	C2	C3	$179.8(6)$
N1	C1	C6	C5	$-178.5(6)$
N2	C8	C11	C10	$-22.0(8)$
N2	C8	C11	C10*	$12.3(19)$
N2	C9	C10	C11	$-33.6(9)$
N2	C9	C10	C11	$24(3)$
C1	N1	C7	N2	$179.2(6)$
C1	N1	C7	C1'	$-1.0(10)$
C1	C2	C3	C4	$-1.6(10)$
C1'	C2'	C3'	C4'	$-0.4(11)$
C2	C1	C6	C5	$-1.4(9)$
C2	C3	C4	C5	$0.1(10)$
C2'	C1'	C6'	C5'	$0.9(10)$
C2' $^{\prime}$	C1'	C7	N1	$-80.0(9)$

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2'	C1'	C7	N2	99.8(7)
C2'	C3'	C4'	C5'	1.3(11)
C3	C4	C5	C6	0.6(10)
C3'	C4'	C5'	C6'	-1.1(11)
C4	C5	C6	C1	0.0(9)
C4'	C5'	C6'	C1'	0.0 (11)
C6	C1	C2	01	-179.7(6)
C6	C1	C2	C3	2.2(9)
C6'	C1'	C2'	C3'	-0.7(10)
C6'	C1'	C2'	C7'	175.7(6)
C6'	C1'	C7	N1	98.1(8)
C6'	C1'	C7	N2	-82.1(8)
C7	N1	C1	C2	169.7(6)
C7	N1	C1	C6	-13.1(10)
C7	N2	C8	C11	178.6(6)
C7	N2	C9	C10	-156.9(7)
C7	N2	C9	C10*	167(2)
C7	C1'	C2'	C3'	177.5(6)
C7	C1'	C2'	C7'	-6.2(10)
C7	C1'	C6'	C5'	-177.2(6)
C7'	C2'	C3'	C4'	-176.7(6)
C8	N2	C7	N1	0.8(9)
C8	N2	C7	C1'	-179.0(6)
C8	N2	C9	C10	20.4(9)
C8	N2	C9	C10*	-16(2)
C9	N2	C7	N1	177.9(6)
C9	N2	C7	C1'	-1.9(9)
C9	N2	C8	C11	1.2(8)
C9	C10	C11	C8	34.7(9)
C9	C10*	C11	C8	-23(3)
01A	C2A	C3A	C4A	176.4(6)
N1A	C1A	C2A	01A	3.2(8)
N1A	C1A	C2A	C3A	-178.2(6)
N1A	C1A	C6A	C5A	179.1(6)
N2A	C8A	C11A	C10A	-17.1(7)
N2A	C8A	C11A	C10B	15.9(15)
N2A	C9A	C10A	C11A	-34.2(8)
N2A	C9A	C10B	C11A	19(2)
C1'A	C2'A	C3'A	C4'A	-3.1(11)
C1A	N1A	C7A	N2A	-178.2(5)
C1A	N1A	C7A	C1'A	1.8(10)
C1A	C2A	C3A	C4A	-2.2(10)
C2'A	C1'A	C6'A	C5'A	-1.4(10)
C2'A	C1'A	C7A	N1A	81.1(9)
C2'A	C1'A	C7A	N2A	-98.9(7)
C2'A	C3'A	C4'A	C5'A	1.5(11)
C2A	C1A	C6A	C5A	2.2(9)
C2A	C3A	C4A	C5A	3.5(10)
C3'A	C4'A	C5'A	C6'A	0.3(11)
C3A	C4A	C5A	C6A	-1.9(10)
C4'A	C5'A	C6'A	C1'A	-0.4(10)
C4A	C5A	C6A	C1A	-1.0(10)
C6'A	C1'A	C2'A	C3'A	3.1(10)
C6'A	C1'A	C2'A	C7'A	-175.9(7)
C6'A	C1'A	C7A	N1A	-97.9(8)
C6'A	C1'A	C7A	N2A	82.1(8)
C6A	C1A	C2A	01A	-179.3(6)
C6A	C1A	C2A	C3A	-0.6(9)
C7'A	C2'A	C3'A	C4'A	175.8(7)
C7A	N1A	C1A	C2A	-170.1(6)

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C7A	N1A	C1A	C6A	$12.9(10)$
C7A	N2A	C8A	C11A	$-179.6(6)$
C7A	N2A	C9A	C10A	$-160.7(7)$
C7A	N2A	C9A	C10B	$165.7(16)$
C7A	C1'A	C2'A	C3'A	$-175.9(6)$
C7A	C1'A	C2'A	C7'A	$5.2(10)$
C7A	C1'A	C6'A	C5'A	$177.6(6)$
C8A	N2A	C7A	N1A	$0.8(9)$
C8A	N2A	C7A	C1'A	$-179.3(6)$
C8A	N2A	C9A	C10A	$24.8(8)$
C8A	N2A	C9A	C10B	$-8.8(17)$
C8A	C11A	C10B	C9A	$-22(2)$
C9A	N2A	C7A	N1A	$-173.1(6)$
C9A	N2A	C7A	C1'A	$6.9(9)$
C9A	N2A	C8A	C11A	$-5.0(7)$
C9A	C10A	C11A	C8A	$32.3(8)$

Table S19: Hydrogen Bond information for compound L4H.

\mathbf{D}	\mathbf{H}	\mathbf{A}	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \AA$	$\mathbf{d}(\mathbf{H}-\mathbf{A}) / \AA$	$\mathbf{d}(\mathbf{D}-\mathbf{A}) / \AA$	$\mathbf{D}-\mathbf{H}-\mathbf{A} / \mathbf{d e g}$
01	H	N1	0.84	2.11	$2.581(7)$	115.0
01A	H1A	N1A	0.84	2.06	$2.552(8)$	116.9

Table S20: Atomic Occupancies for all atoms that are not fully occupied in compound $\mathbf{L 4 H}$.

Atom	Occupancy
HN	0.8
HO	0.8
HP	0.2
HQ	0.2
C10	0.8
HR	0.8
HS	0.8

Atom	Occupancy
$\mathrm{C} 10^{*}$	0.2
HT	0.2
HU	0.2
HV	$0.95(12)$
HW	$0.95(12)$
HX	$0.05(12)$
HY	$0.05(12)$

Atom	Occupancy
H9AA	$0.81(8)$
H9AB	$0.81(8)$
H9AC	$0.19(8)$
H9AD	$0.19(8)$
C10A	0.77
H10A	0.77
H10B	0.77

Atom	Occupancy
H11A	$0.81(8)$
H11B	$0.81(8)$
H11C	$0.19(8)$
H11D	$0.19(8)$
C10B	0.23
H10C	0.23
H10D	0.23

Compound L5H

Analuse Chimique

Crystal Data and Experimental

Figure S124: ORTEP view of compound L5H
Experimental. Single clear light colourless prism-shaped crystals of compound L5H recrystallised from a mixture of DCM and pentane by slow evaporation. A suitable crystal with dimensions $0.87 \times 0.62 \times 0.53 \mathrm{~mm}^{3}$ was selected and mounted on a glass fibre oil on a Nonius APEX-II CCD diffractometer. The crystal was kept at a steady $T=110.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ 2018/2 solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}, M_{r}=316.39$, triclinic, $P-1$ (No. 2), $\mathrm{a}=8.7993(2) \AA, \mathrm{b}=9.5600(3) \AA, \mathrm{c}=11.0330(4) \AA, \alpha=$ $92.371(2)^{\circ}, \quad \beta=100.401(2)^{\circ}, \quad \gamma=114.782(2)^{\circ}, \quad V=$ 821.64(5) $\AA^{3}, T=110.0(1) K, Z=2, Z^{\prime}=1, \mu\left(\right.$ Mo $\left._{\alpha 1}\right)=$ $0.079,20523$ reflections measured, 3792 unique $\left(\mathrm{R}_{\text {int }}=\right.$ 0.0220) which were used in all calculations. The final $w R_{2}$ was 0.1193 (all data) and R_{1} was 0.0436 (I $\geq 2 \sigma(\mathrm{I})$).

Table S21: Experimental parameters

Compound	L5H
CCDC	2182073
Formula	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.279
μ / mm^{-1}	0.079
Formula Weight	316.39
Colour	clear light colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	0.87 x 0.62 x 0.53
T/K	110.0(1)
Crystal System	triclinic
Space Group	$P-1$
$a / \AA{ }^{\text {a }}$	8.7993(2)
b/Å	9.5600(3)
c / \AA	11.0330(4)
$\alpha /{ }^{\circ}$	92.371(2)
$\beta /{ }^{\circ}$	100.401(2)
$\gamma /{ }^{\circ}$	114.782(2)
V / \AA^{3}	821.64(5)
Z	2
Z^{\prime}	1
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{\alpha 1}$
$\Theta_{\text {min }} /{ }^{\circ}$	1.893
$\Theta_{\max } /{ }^{\circ}$	27.532
Measured Refl's.	20523
Indep't Refl's	3792
Refl's I $\geq 2 \sigma$ (I)	3047
$R_{\text {int }}$	0.0220
Parameters	218
Restraints	0
Largest Peak	0.296
Deepest Hole	-0.218
GooF	1.055
$w R_{2}$ (all data)	0.1193
$w^{2} 2$	0.1061
R_{1} (all data)	0.0587
R_{1}	0.0436

Table S22: Structure Quality Indicators

Reflections:	$\begin{aligned} & \mathrm{d} \min (\mathrm{Mo}) \\ & 2 \Theta=55.1^{\circ} \end{aligned}$	0.77	1//()	57.9	Rint	2.20\%	Full 50.5°	100
Refinement:	Shift	0.000	Max Peak	0.3	Min Peak	-0.2	GooF	1.055

A clear light colourless prism-shaped-shaped crystal with dimensions $0.87 \times 0.62 \times 0.53 \mathrm{~mm}^{3}$ was mounted on a glass fibre oil. Data were collected using a Nonius APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=110.0(1) \mathrm{K}$. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX4 ${ }^{6}$. The maximum resolution that was achieved was $\Theta=27.532^{\circ}(0.77 \AA)$. The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 6361 reflections, 31% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 100.00% out to 27.532° in Θ. SADABS$\mathbf{2 0 1 6} / \mathbf{2}^{5}$ was used for absorption correction. $w R_{2}$ (int) was 0.0529 before and 0.0389 after correction. The Ratio of minimum to maximum transmission is 0.8878 . The absorption coefficient μ of this material is $0.079 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.71073 \AA)$ and the minimum and maximum transmissions are 0.851 and 0.958 . The structure was solved, and the space group $P-1$ (\# 2) determined by the ShelXT ${ }^{1}$ 2018/2 structure solution program using dual methods and refined by full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$ using version 2018/3 of ShelXL ${ }^{3} \mathbf{2 0 1 8 / 3}$. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

Table S23: Bond Lengths in Å for compound L5H.

Atom	Atom	Length/Å
O1	C2	$1.3723(18)$
N1	C1	$1.4087(17)$
N1	C7	$1.2978(17)$
N2	C7	$1.3419(17)$
N2	C8	$1.4684(16)$
N2	C9	$1.4680(17)$
C1	C2	$1.399(2)$
C1	C6	$1.390(2)$
C1' $^{\prime}$	C2'	$1.4235(18)$
C1' $^{\prime}$	C7	$1.5013(17)$
C1 $^{\prime}$	C10'	$1.3743(18)$
C2' $^{\prime}$	C3	$1.383(2)$
C2' $^{\prime}$	C7'	$1.4180(18)$
		$1.4224(17)$

Atom	Atom	Length/Å
C3	C4	$1.386(2)$
C3' $^{\prime}$	C4'	$1.368(2)$
C4	C5	$1.380(2)$
C4' $^{\prime}$	C5' $^{\prime}$	$1.409(2)$
C5	C6 $^{\prime}$	$1.392(2)$
C5' $^{\prime}$	C6' $^{\prime}$	$1.360(2)$
C6' $^{\prime}$	C7' $^{\prime}$	$1.4165(19)$
C7' $^{\prime}$	C8' $^{\prime}$	$1.4101(19)$
C8	C10 $^{\prime}$	$1.519(2)$
C8'	C9' $^{\prime}$	$1.360(2)$
C9 $^{\prime}$	C11 $^{\prime}$	$1.510(2)$
C9	C10'	$1.4142(19)$
C10	C11	$1.519(2)$

Table S24: Bond Angles in ${ }^{\circ}$ for compound L5H.

Atom	Atom	Atom	Angle $/^{\circ}$
C7	N1	C1	$120.92(11)$
C7	N2	C8	$121.89(11)$
C7	N2	C9	$125.92(11)$
C9	N2	C8	$111.90(11)$
C2	C1	N1	$116.43(12)$
C6	C1	N1	$124.95(13)$
C6	C1	C2	$118.30(13)$
C2' $^{\prime}$	C1' $^{\prime}$	C7	$121.17(11)$
C10' $^{\prime}$	C1' $^{\prime}$	C2'	$120.12(11)$
C10'	C1' $^{\prime}$	C7	$118.66(11)$
O1	C2	C1	$119.51(12)$
O1	C2	C3	$119.15(13)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C3	C2	C1	121.34(14)
C3'	C2'	C1'	122.79(11)
C3'	C2'	C7'	118.57(12)
C7'	C2'	C1'	118.63(11)
C2	C3	C4	119.49(14)
C4'	C3'	C2'	120.58(13)
C5	C4	C3	120.09(14)
C3'	C4'	C5'	120.73(14)
C4	C5	C6	120.34(15)
C6'	C5'	C4'	120.08(13)
C1	C6	C5	120.41(14)
C5'	C6'	C7'	120.93(13)

Atom	Atom	Atom	Angle ${ }^{\circ}{ }^{\circ}$
N1	C7	N2	$118.95(12)$
N1	C7	C1' $^{\prime}$	$125.09(12)$
N2	C7	C1' $^{\prime}$	$115.86(11)$
C6' $^{\prime}$	C7' $^{\prime}$	C2' $^{\prime}$	$119.12(13)$
C8' $^{\prime}$	C7' $^{\prime}$	C2' $^{\prime}$	$119.57(12)$
C8'	C7'	C6' $^{\prime}$	$121.29(12)$
N2	C8	C10	$103.47(11)$

Atom	Atom	Atom	Angle $/^{\circ}$
C9' $^{\prime}$	C8' $^{\prime}$	C7' $^{\prime}$	$120.71(12)$
N2	C9	C11 $^{\prime}$	$102.83(11)$
C8' $^{\prime}$	C9' $^{\prime}$	C10' $^{\prime}$	$120.41(13)$
C11 $^{\prime}$	C10 $^{\prime}$	C8	$104.44(12)$
C1 $^{\prime}$	C10' $^{\prime}$	C9' $^{\prime}$	$120.52(12)$
C9	C11	C10	$103.21(13)$

Table S25: Torsion Angles in ${ }^{\circ}$ for compound L5H.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
01	C2	C3	C4	-178.30(12)
N1	C1	C2	01	4.93(18)
N1	C1	C2	C3	-175.52(12)
N1	C1	C6	C5	173.53(13)
N2	C8	C10	C11	25.23(17)
N2	C9	C11	C10	34.25(16)
C1	N1	C7	N2	-172.87(12)
C1	N1	C7	C1'	10.8(2)
C1	C2	C3	C4	2.1(2)
C1'	C2'	C3'	C4'	178.25(13)
C1'	C2'	C7'	C6'	-178.86(12)
C1'	C2'	C7'	C8'	-0.66(18)
C2	C1	C6	C5	0.2(2)
C2	C3	C4	C5	-1.2(2)
C2'	C1'	C7	N1	-117.34(15)
C2'	C1'	C7	N2	66.23(17)
C2'	C1'	C10'	C9'	-2.1(2)
C2'	C3'	C4'	C5'	0.5(2)
C2'	C7'	C8'	C9'	-1.0(2)
C3	C4	C5	C6	-0.2(2)
C3'	C2'	C7'	C6'	-0.20(18)
C3'	C2'	C7'	C8'	178.00(12)
C3'	C4'	C5'	C6'	0.0(2)
C4	C5	C6	C1	0.7(2)
C4'	C5'	C6'	C7'	-0.5(2)
C5'	C6'	C7'	C2'	0.6(2)
C5'	C6'	C7'	C8'	-177.53(13)
C6	C1	C2	01	178.82(12)
C6	C1	C2	C3	-1.63(19)
C6'	C7'	C8'	C9'	177.11(13)
C7	N1	C1	C2	-126.45(14)
C7	N1	C1	C6	60.12(19)
C7	N2	C8	C10	-177.89(13)
C7	N2	C9	C11	154.58(14)
C7	C1'	C2'	C3'	6.34(19)
C7	C1'	C2'	C7'	-175.05(11)
C7	C1'	C10'	C9'	175.23(12)
C7'	C2'	C3'	C4'	-0.4(2)
C7'	C8'	C9'	C10'	1.2(2)
C8	N2	C7	N1	1.8(2)
C8	N2	C7	C1'	178.50(12)
C8	N2	C9	C11	-19.39(16)
C8	C10	C11	C9	-37.36(18)
C8'	C9'	C10'	C1'	0.4(2)
C9	N2	C7	N1	-171.57(13)
C9	N2	C7	C1'	5.09(19)
C9	N2	C8	C10	-3.64(16)
C10'	C1'	C2'	C3'	-176.38(12)
C10'	C1'	C2'	C7'	2.23(18)

Atom	Atom	Atom	Atom	Angle $/{ }^{\circ}$
C10' $^{\prime}$	C1'	C7	N1	$65.34(18)$
C10' $^{\prime}$	C1'	C7	N2	$-111.09(14)$

Table S26: Hydrogen Bond information for compound L5H.

\mathbf{D}	\mathbf{H}	\mathbf{A}	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \AA ̊$	$\mathbf{d}(\mathbf{H}-\mathbf{A}) / \AA$	d(D-A)/Å	D-H-A/deg
01	H1	N1	0.84	2.23	$2.7045(15)$	116.2

Analyse Chimique Synthese Moléculaire

Crystal Data and Experimental

Figure S125: ORTEP view of compound 1a

Experimental. Single clear light colourless prism-shaped crystals of compound 1a recrystallised from DCM by slow evaporation. A suitable crystal with dimensions $0.27 \times 0.22 \times 0.17 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 VENTURE diffractometer. The crystal was kept at a steady $T=$ $100.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{Al}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}, M_{r}=440.49$, monoclinic, $P 2_{1} / n$ (No. 14), $\mathrm{a}=8.7561(7) \AA, \mathrm{b}=10.6856(7) \AA, \mathrm{c}=$ 12.8516(9) $\AA, \quad \beta=99.758(3)^{\circ}, \quad \alpha=\quad \gamma=90^{\circ}, \quad V=$ $1185.05(15) \AA^{3}, T=100.0(1) \mathrm{K}, Z=2, Z^{\prime}=0.5, \mu\left(\mathrm{Mo} \mathrm{K}_{\alpha 1}\right)=$ $0.148,35086$ reflections measured, 2733 unique $\left(\mathrm{R}_{\mathrm{int}}=\right.$ 0.0600) which were used in all calculations. The final $w R_{2}$ was 0.0915 (all data) and R_{1} was 0.0355 ($\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S27: Experimental parameters

Compound	1a
CCDC	2182074
Formula	$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{Al}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.234
μ / mm^{-1}	0.148
Formula Weight	440.49
Colour	clear light colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	$0.27 \times 0.22 \times 0.17$
T/K	100.0(1)
Crystal System	monoclinic
Space Group	$P 21 / n$
a / \AA	8.7561(7)
b / \AA	10.6856(7)
c / \AA	12.8516(9)
$\alpha /{ }^{\circ}$	90
$\beta 1^{\circ}$	99.758(3)
$\gamma /{ }^{\circ}$	90
$\mathrm{V} / \mathrm{A}^{3}$	1185.05(15)
Z	2
Z^{\prime}	0.5
Wavelength/Å	0.71073
Radiation type	Mo K α_{1}
$\Theta_{\text {min }} /{ }^{\circ}$	3.034
$\Theta_{\max } /{ }^{\circ}$	27.549
Measured Refl's.	35086
Indep't Refl's	2733
Refl's $\mathrm{I} \geq 2 \%$ (I)	2337
$R_{\text {int }}$	0.0600
Parameters	140
Restraints	0
Largest Peak	0.301
Deepest Hole	-0.274
GooF	1.063
$w R_{2}$ (all data)	0.0915
$w R_{2}$	0.0859
R_{1} (all data)	0.0464
R_{1}	0.0355

Table S28: Structure Quality Indicators

Reflections:	$\begin{aligned} & \mathrm{d} \min (\mathrm{Mo}) \\ & 2 \Theta=55.1^{\circ} \end{aligned}$	0.77	1//()	44.8	Rint	6.00\%	Full 50.5°	99.9
Refinement:	Shift	0.000	Max Peak	0.3	Min Peak	-0.3	GooF	1.063

A clear light colourless prism-shaped-shaped crystal with dimensions $0.27 \times 0.22 \times 0.17 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 VENTURE diffractometer operating at $T=100.0(1) \mathrm{K}$. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX46. The maximum resolution that was achieved was $\Theta=27.549^{\circ}$ $\left(0.77 \AA\right.$) . The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 9909 reflections, 28% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90% out to 27.549° in Θ. SADABS-2016/25 was used for absorption correction. $w R_{2}$ (int) was 0.0636 before and 0.0591 after correction. The Ratio of minimum to maximum transmission is 0.9215 . The absorption coefficient μ of this material is $0.148 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=$ $0.71073 \AA$) and the minimum and maximum transmissions are 0.894 and 0.971 . The structure was solved, and the space group $P 2_{1} / n$ (\# 14) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ $2018 / 3$. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. The value of Z^{\prime} is 0.5 . This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms.

Table S29: Bond Lengths in \AA for compound 1a.

Atom	Atom	Length/Å
Al1	O1	$1.8509(10)$
Al1	O1 ${ }^{1}$	$2.0254(11)$
Al1	N1	$2.1742(12)$
Al1	C10	$1.9751(15)$
Al1	C11	$1.9789(15)$
O1	C2	$1.3565(16)$
N2	C7	$1.3260(18)$
N2	C9	$1.454(2)$
N2	C8	$1.4594(19)$
N1	C7	$1.3091(18)$

Atom	Atom	Length/Å
N1	C1	$1.4205(17)$
C2	C1	$1.4009(19)$
C2	C3	$1.3881(19)$
C1	C6	$1.3942(19)$
C5	C4	$1.387(2)$
C5	C6	$1.394(2)$
C4	C3	$1.396(2)$

$11-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$		

Table S30: Bond Angles in ${ }^{\circ}$ for compound 1a.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
01	Al1	O1 1	$73.25(5)$
O1 1	Al1	N1	$152.62(5)$
O1	Al1	N1	$79.64(4)$
01	Al1	C10	$118.82(6)$
O1	Al1	C11 1	$116.20(6)$
C10	Al1	O1 1	$94.94(6)$
C10	Al1	N1	$94.74(6)$
C10	Al1	C11 1	$124.45(7)$
C11	Al1	O1 1	$93.50(5)$
C11	Al1	N1 1	$101.93(6)$
Al1	O1	Al1 1	$106.75(5)$
C2	O1	Al1	$132.28(9)$
C2	O1	Al1	$120.92(9)$
C7	N2	C9	$122.57(13)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
C7	N2	C8	$120.78(13)$
C9	N2	C8	$116.58(13)$
C7	N1	Al1	$130.63(10)$
C7	N1	C1	$115.16(12)$
C1	N1	Al1	$108.29(9)$
N1	C7	N2	$125.27(13)$
O1	C2	C1	$116.18(12)$
O1	C2	C3	$123.25(12)$
C3	C2	C1	$120.57(13)$
C2	C1	N1	$114.50(12)$
C6	C1	N1	$125.98(13)$
C6	C1	C2	$119.43(13)$
C4	C5	C6	$120.04(13)$
C5	C4	C3	$120.47(13)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	
C2	C3	C4	$119.40(13)$	
C1	C6	C5	$120.02(13)$	
			$1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$	

Table S31: Torsion Angles in ${ }^{\circ}$ for compound 1a.

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}$
Al1	01	C2	C1	-5.15(16)
Al1 ${ }^{1}$	01	C2	C1	177.75(9)
Al1	01	C2	C3	174.33(10)
Al1 ${ }^{1}$	01	C2	C3	-2.8(2)
Al1	N1	C7	N2	44.2(2)
Al1	N1	C1	C2	4.93(14)
Al1	N1	C1	C6	-171.61(12)
01^{1}	Al1	01	Al1 ${ }^{1}$	-0.001(1)
01^{1}	Al1	01	C2	-177.76(13)
01	C2	C1	N1	-0.72(17)
01	C2	C1	C6	176.07(12)
01	C2	C3	C4	-176.92(13)
N1	Al1	01	Al1 ${ }^{1}$	-176.13(6)
N1	Al1	01	C2	6.12(10)
N1	C1	C6	C5	178.65(13)
C7	N1	C1	C2	-150.99(12)
C7	N1	C1	C6	32.5(2)
C2	C1	C6	C5	2.3(2)
C1	N1	C7	N2	-166.45(13)
C1	C2	C3	C4	2.5(2)
C5	C4	C3	C2	-0.5(2)
C4	C5	C6	C1	-0.2(2)
C3	C2	C1	N1	179.78(12)
C3	C2	C1	C6	-3.4(2)
C6	C5	C4	C3	-0.7(2)
C10	Al1	01	$\mathrm{Al}^{1}{ }^{1}$	-86.39(7)
C10	Al1	01	C2	95.85(11)
C11	Al1	01	Al1 ${ }^{1}$	85.58(7)
C11	Al1	01	C2	-92.18(11)
C9	N2	C7	N1	6.9(2)
C8	N2	C7	N1	-169.98(14)

[^0]$R_{1}=3.78 \%$

Crystal Data and Experimental

Figure S126: ORTEP view of compound 1b
Experimental. Single clear light colourless prism-shaped crystals of compound 1b recrystallised from DCM by slow evaporation. A suitable crystal with dimensions $0.63 \times 0.22 \times 0.22 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 Venture diffractometer. The crystal was kept at a steady $T=$ $120.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Crystal Data. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{AlN}_{4} \mathrm{O}_{2}, M_{r}=368.41$, monoclinic, $P 2_{1} / c$ (No. 14), $\mathrm{a}=12.0344(13) \AA, \mathrm{b}=13.1284(16) \AA, \mathrm{c}=$ $12.6875(15) \AA, \quad \beta=107.976(4)^{\circ}, \quad \alpha=\quad \gamma=90^{\circ}, \quad V=$ 1906.7(4) $\AA^{3}, T=120.0(1) \mathrm{K}, Z=4, Z^{\prime}=1, \mu\left(\mathrm{MoK}_{\alpha}\right)=0.127$, 49921 reflections measured, 4390 unique ($\mathrm{R}_{\text {int }}=0.0620$) which were used in all calculations. The final $w R_{2}$ was 0.0971 (all data) and R_{1} was 0.0378 ($\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S32: Experimental parameters

Compound	1b
CCDC	2182075
Formula	$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{AlN}_{4} \mathrm{O}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.283
μ / mm^{-1}	0.127
Formula Weight	368.41
Colour	clear light colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	$0.63 \times 0.22 \times 0.22$
T/K	120.0(1)
Crystal System	monoclinic
Space Group	$P 21 / c$
a / \AA	12.0344(13)
b / \AA	13.1284(16)
c / \AA	12.6875(15)
$\alpha /{ }^{\circ}$	90
$\beta 1^{\circ}$	107.976(4)
$\gamma /{ }^{\circ}$	90
$\mathrm{V} / \mathrm{A}^{3}$	1906.7(4)
Z	4
Z^{\prime}	1
Wavelength/Å	0.71073
Radiation type	MoK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	2.563
$\Theta_{\max } /{ }^{\circ}$	27.584
Measured Refl's.	49921
Indep't Refl's	4390
Refl's $\mathrm{I} \geq 2 \%$ (I)	3550
$R_{\text {int }}$	0.0620
Parameters	240
Restraints	0
Largest Peak	0.338
Deepest Hole	-0.386
GooF	1.038
$w R_{2}$ (all data)	0.0971
$w R_{2}$	0.0867
R_{1} (all data)	0.0559
R_{1}	0.0378

Table S33: Structure Quality Indicators

Reflections:	$\begin{aligned} & d \min (M o) \\ & 2 O=55.2^{\circ} \end{aligned}$	0.77	I/ס()	38.2	Rint	6.20\%	Full 50.5° 99% to 55.2°	99.9
Refinement:	Shift	0.000	Max Peak	0.3	Min Peak	-0.4	Goof	1.038

A clear light colourless prism-shaped-shaped crystal with dimensions $0.63 \times 0.22 \times 0.22 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 Venture diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=120.0(1) \mathrm{K}$. Data were measured using ϕ and ω scans with MoK_{α} radiation. The maximum resolution that was achieved was $\Theta=$ $27.584^{\circ}\left(0.77 \AA\right.$ A). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 9714 reflections, 19% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90 \% out to 27.584° in Θ. SADABS-2016/2 ${ }^{5}$ was used for absorption correction. $w R_{2}$ (int) was 0.0681 before and 0.0568 after correction. The Ratio of minimum to maximum transmission is 0.9196 . The absorption coefficient μ of this material is $0.127 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=$ $0.71073 \AA$) and the minimum and maximum transmissions are 0.892 and 0.971 . The structure was solved, and the space group $P 2_{1} / c$ (\#14) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$ using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z ' is 1 .

Table S34: Bond Lengths in Å for compound 1b.

Atom	Atom	Length/Å
Al1	O1	$1.8000(11)$
Al1	O1A	$1.7905(11)$
Al1	N1	$2.1109(13)$
Al1	N1A	$2.1604(13)$
Al1	C10	$1.9802(16)$
O1	C2	$1.3418(17)$
O1A	C2A	$1.3414(18)$
N1	C1	$1.4221(18)$
N1	C7	$1.3147(19)$
N1A	C1A	$1.4233(18)$
N1A	C7A	$1.3062(19)$
N2	C7	$1.3199(19)$
N2	C8	$1.4644(19)$
N2	C9	$1.4600(19)$
N2A	C7A	$1.3275(19)$

Atom	Atom	Length/Å
N2A	C8A	$1.4526(19)$
N2A	C9A	$1.458(2)$
C1	C2	$1.408(2)$
C1	C6	$1.393(2)$
C1A	C2A	$1.404(2)$
C1A	C6A	$1.395(2)$
C2	C3	$1.388(2)$
C2A	C3A	$1.391(2)$
C3	C4	$1.395(2)$
C3A	C4A	$1.394(2)$
C4	C5	$1.383(2)$
C4A	C5A	$1.382(3)$
C5	C6	$1.395(2)$
C5A	C6A	$1.394(2)$

Table S35: Bond Angles in ${ }^{\circ}$ for compound 1b.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
01	Al1	N1	$82.74(5)$
01	Al1	N1A	$85.97(5)$
01	Al1	C10	$123.06(6)$
01A	Al1	O1	$116.74(5)$
01A	Al1	N1	$93.66(5)$
01A	Al1	N1A	$81.99(5)$
01A	Al1	C10	$120.04(6)$
N1	Al1	N1A	$164.53(5)$
C10	Al1	N1	$97.49(6)$
C10	Al1	N1A	$97.53(6)$
C2	O1	Al1	$118.45(9)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C2A	01A	Al1	$118.90(9)$
C1	N1	Al1	$107.64(9)$
C7	N1	Al1	$133.01(10)$
C7	N1	C1	$115.74(12)$
C1A	N1A	Al1	$105.89(9)$
C7A	N1A	Al1	$136.70(10)$
C7A	N1A	C1A	$115.50(12)$
C7	N2	C8	$120.26(13)$
C7	N2	C9	$123.73(13)$
C9	N2	C8	$115.95(12)$
C7A	N2A	C8A	$123.89(13)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
C7A	N2A	C9A	$120.42(13)$
C8A	N2A	C9A	$115.66(12)$
C2	C1	N1	$112.96(12)$
C6	C1	N1	$127.34(13)$
C6	C1	C2	$119.67(13)$
C2A	C1A	N1A	$113.30(12)$
C6A	C1A	N1A	$126.59(14)$
C6A	C1A	C2A	$120.06(14)$
O1	C2	C1	$117.98(13)$
O1	C2	C3	$122.14(13)$
C3	C2	C1	$119.88(14)$
O1A	C2A	C1A	$118.26(13)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
01A	C2A	C3A	$122.34(14)$
C3A	C2A	C1A	$119.40(14)$
C2	C3	C4	$120.13(15)$
C2A	C3A	C4A	$119.95(16)$
C5	C4	C3	$119.93(14)$
C5A	C4A	C3A	$120.37(15)$
C4	C5	C6	$120.61(15)$
C4A	C5A	C6A	$120.23(15)$
C1	C6	C5	$119.74(14)$
C5A	C6A	C1A	$119.54(16)$
N1	C7	N2	$126.25(14)$
N1A	C7A	N2A	$126.98(14)$

Table S36: Torsion Angles in ${ }^{\circ}$ for compound 1b.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Al1	01	C2	C1	-2.74(17)
Al1	01	C2	C3	177.11(11)
Al1	01A	C2A	C1A	-6.26(18)
Al1	01A	C2A	C3A	174.31(12)
Al1	N1	C1	C2	3.82(14)
Al1	N1	C1	C6	-174.42(13)
Al1	N1	C7	N2	35.7(2)
Al1	N1A	C1A	C2A	11.06(14)
Al1	N1A	C1A	C6A	-166.37(13)
Al1	N1A	C7A	N2A	28.4(2)
01	Al1	01A	C2A	-71.49(12)
01	C2	C3	C4	-178.47(14)
01A	Al1	01	C2	-86.60(11)
01A	C2A	C3A	C4A	-176.38(15)
N1	Al1	01	C2	3.85(10)
N1	Al1	01A	C2A	-155.20(11)
N1	C1	C2	01	-1.25(18)
N1	C1	C2	C3	178.90(13)
N1	C1	C6	C5	-179.51(14)
N1A	Al1	01	C2	-165.54(10)
N1A	Al1	01A	C2A	9.87(11)
N1A	C1A	C2A	01A	-4.89(19)
N1A	C1A	C2A	C3A	174.56(13)
N1A	C1A	C6A	C5A	-177.09(14)
C1	N1	C7	N2	-168.84(14)
C1	C2	C3	C4	1.4(2)
C1A	N1A	C7A	N2A	-170.05(14)
C1A	C2A	C3A	C4A	4.2(2)
C2	C1	C6	C5	2.4(2)
C2	C3	C4	C5	0.3(2)
C2A	C1A	C6A	C5A	5.6(2)
C2A	C3A	C4A	C5A	1.6(3)
C3	C4	C5	C6	-0.7(3)
C3A	C4A	C5A	C6A	-3.8(3)
C4	C5	C6	C1	-0.7(2)
C4A	C5A	C6A	C1A	0.2(2)
C6	C1	C2	01	177.14(13)
C6	C1	C2	C3	-2.7(2)
C6A	C1A	C2A	01A	172.73(13)
C6A	C1A	C2A	C3A	-7.8(2)
C7	N1	C1	C2	-157.61(13)
C7	N1	C1	C6	24.1(2)
C7A	N1A	C1A	C2A	-155.91(13)

Atom	Atom	Atom	Atom	Angle $/{ }^{\circ}$
C7A	N1A	C1A	C6A	$26.7(2)$
C8	N2	C7	N1	$-171.65(15)$
C8A	N2A	C7A	N1A	$7.3(2)$
C9	N2	C7	N1	$11.3(2)$
C9A	N2A	C7A	N1A	$-174.47(16)$
C10	A11	O1	C2	$98.09(11)$
C10	Al1	01A	C2A	$103.97(11)$

Crystal Data and Experimental

Figure S127: ORTEP view of compound 1b'
Experimental. Single clear light colourless prism-shaped crystals of compound 1bp' recrystallised from a mixture of DCM and pentane by slow evaporation. A suitable crystal with dimensions $0.22 \times 0.21 \times 0.11 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Nonius APEX-II CCD diffractometer. The crystal was kept at a steady $T=115.0$ (1) K during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{AlN}_{4} \mathrm{O}_{3}, M_{r}=412.46$, monoclinic, $P 2_{1} / n$ (No. 14), $\mathrm{a}=10.6976(5) \AA, \mathrm{b}=7.7241(4) \AA, \mathrm{c}=$ 25.9622(11) $\AA, \quad \beta=95.4237(15)^{\circ}, \quad \alpha=\gamma=90^{\circ}, \quad V=$ 2135.63(17) $\AA^{3}, T=115.0(1) \mathrm{K}, Z=4, Z^{\prime}=1, \mu\left(\right.$ Mo K $\left._{\alpha 1}\right)=$ $0.124,19967$ reflections measured, 3760 unique $\left(\mathrm{R}_{\mathrm{int}}=\right.$ 0.0870) which were used in all calculations. The final $w R_{2}$ was 0.1373 (all data) and R_{1} was 0.0547 ($\geq 2 \sigma(\mathrm{I})$).

Table S37: Experimental parameters

Compound	1b'
CCDC	2182076
Formula	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{AlN}_{4} \mathrm{O}_{3}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.283
μ / mm^{-1}	0.124
Formula Weight	412.46
Colour	clear light colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	$0.22 \times 0.21 \times 0.11$
T/K	115.0(1)
Crystal System	monoclinic
Space Group	$P 21 / n$
$a / \AA{ }^{\text {a }}$	10.6976(5)
b / \AA	7.7241(4)
c / \AA	25.9622(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	95.4237(15)
$\gamma /{ }^{\circ}$	90
V/A ${ }^{3}$	2135.63(17)
Z	4
Z'	1
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{\alpha 1}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.752
$\Theta_{\max } /{ }^{\circ}$	24.995
Measured Refl's.	19967
Indep't Refl's	3760
Refl's $\mathrm{I} \geq 2 \%$ (I)	2304
Rint	0.0870
Parameters	268
Restraints	0
Largest Peak	0.262
Deepest Hole	-0.443
GooF	1.013
$w R_{2}$ (all data)	0.1373
$w R_{2}$	0.1125
R_{1} (all data)	0.1115
R_{1}	0.0547

Table S38: Structure Quality Indicators

Reflections:	$\underset{2 O=50,0^{\circ}}{d \min ^{\circ}}$	0.84	1/G()	11.6	Rint	8.70\%	Full 50.0 ${ }^{\circ}$	99.9
Refinement:	Shift	-0.001	Max Peak	0.3	Min Peak	-0.4	Goof	1.013

A clear light colourless prism-shaped-shaped crystal with dimensions $0.22 \times 0.21 \times 0.11 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Nonius APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=115.0(1) \mathrm{K}$. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX46. The maximum resolution that was achieved was $\Theta=24.995^{\circ}$ ($0.84 \AA$). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 5488 reflections, 27% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90% out to 24.995° in Θ. SADABS-2016/2 ${ }^{5}$ was used for absorption correction. $w R_{2}$ (int) was 0.0733 before and 0.0615 after correction. The Ratio of minimum to maximum transmission is 0.8675 . The absorption coefficient μ of this material is $0.124 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.832 and 0.959 . The structure was solved, and the space group $P 2_{1} / n$ (\# 14) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$ using version 2018/3 of ShelXL ${ }^{\mathbf{3}} \mathbf{2 0 1 8}$ /3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z ' is 1.

Table S39: Bond Lengths in \AA A for compound 1b'.

Atom	Atom	Length/Å
Al1	O1	$1.795(2)$
Al1	O1A	$1.787(2)$
Al1	O2	$1.739(2)$
Al1	N1	$2.053(2)$
Al1	N1A	$2.092(2)$
O1	C2	$1.344(3)$
O1A	C2A	$1.342(3)$
O2	C10	$1.415(4)$
N1	C1	$1.422(4)$
N1	C7	$1.315(4)$
N1A	C1A	$1.427(4)$
N1A	C7A	$1.309(4)$
N2	C7	$1.322(4)$
N2	C8	$1.457(4)$
N2	C9	$1.466(4)$
N2A	C7A	$1.320(4)$

Atom	Atom	Length/Å
N2A	C8A	$1.460(4)$
N2A	C9A	$1.457(4)$
C1	C2	$1.409(4)$
C1	C6	$1.391(4)$
C1A	C2A	$1.409(4)$
C1A	C6A	$1.385(4)$
C2	C3	$1.386(4)$
C2A	C3A	$1.387(4)$
C3	C4	$1.391(4)$
C3A	C4A	$1.390(4)$
C4	C5	$1.380(4)$
C4A	C5A	$1.388(5)$
C5	C6	$1.389(4)$
C5A	C6A	$1.383(4)$
C10	C11	$1.519(5)$
C10	C12	$1.517(4)$

Table S40: Bond Angles in ${ }^{\circ}$ for compound 1b'.

Atom	Atom	Atom	Angle $/{ }^{\circ}$
01	Al1	N1	$83.66(10)$
01	Al1	N1A	$88.44(10)$
O1A	Al1	O1	$122.92(11)$
O1A	Al1	N1	$94.04(10)$
O1A	Al1	N1A	$83.30(10)$
O2	Al1	O1	$118.86(11)$
02	Al1	O1A	$118.20(11)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O2	Al1	N1	$93.98(11)$
O2	Al1	N1A	$97.09(10)$
N1	Al1	N1A	$168.55(11)$
C2	O1	Al1	$114.24(18)$
C2A	O1A	Al1	$116.25(18)$
C10	O2	Al1	$129.38(19)$
C1	N1	Al1	$105.24(17)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
C7	N1	Al1	$136.3(2)$
C7	N1	C1	$115.9(2)$
C1A	N1A	Al1	$106.07(18)$
C7A	N1A	Al1	$134.9(2)$
C7A	N1A	C1A	$116.7(2)$
C7	N2	C8	$123.6(2)$
C7	N2	C9	$120.1(3)$
C8	N2	C9	$116.3(2)$
C7A	N2A	C8A	$125.0(3)$
C7A	N2A	C9A	$120.4(3)$
C9A	N2A	C8A	$114.7(2)$
C2	C1	N1	$113.0(3)$
C6	C1	N1	$126.4(3)$
C6	C1	C2	$120.5(3)$
C2A	C1A	N1A	$112.9(2)$
C6A	C1A	N1A	$127.1(3)$
C6A	C1A	C2A	$120.0(3)$
01	C2	C1	$116.8(3)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
01	C2	C3	$123.8(3)$
C3	C2	C1	$119.4(3)$
O1A	C2A	C1A	$117.5(3)$
01A	C2A	C3A	$123.2(3)$
C3A	C2A	C1A	$119.3(3)$
C2	C3	C4	$119.8(3)$
C2A	C3A	C4A	$120.2(3)$
C5	C4	C3	$120.6(3)$
C5A	C4A	C3A	$120.4(3)$
C4	C5	C6	$120.6(3)$
C6A	C5A	C4A	$119.8(3)$
C5	C6	C1	$119.1(3)$
C5A	C6A	C1A	$120.4(3)$
N1	C7	N2	$126.4(3)$
N1A	C7A	N2A	$127.2(3)$
O2	C10	C11	$110.2(3)$
O2	C10	C12	$110.4(3)$
C12	C10	C11	$111.3(3)$

Table S41: Torsion Angles in ${ }^{\circ}$ for compound 1b'.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Al1	01	C2	C1	20.0(3)
Al1	01	C2	C3	-157.5(3)
Al1	01A	C2A	C1A	17.7(3)
Al1	01A	C2A	C3A	-161.9(3)
Al1	02	C10	C11	-146.7(2)
Al1	02	C10	C12	90.0(3)
Al1	N1	C1	C2	-17.2(3)
Al1	N1	C1	C6	159.3(3)
Al1	N1	C7	N2	-35.3(5)
Al1	N1A	C1A	C2A	-10.6(3)
Al1	N1A	C1A	C6A	166.5(3)
Al1	N1A	C7A	N2A	-31.8(5)
01	Al1	01A	C2A	-102.2(2)
01	Al1	02	C10	113.3(2)
01	C2	C3	C4	176.9(3)
01A	Al1	01	C2	-114.3(2)
01A	Al1	02	C10	-65.0(3)
01A	C2A	C3A	C4A	-179.3(3)
02	Al1	01	C2	67.5(2)
02	Al1	01A	C2A	76.1(2)
N1	Al1	01	C2	-23.5(2)
N1	Al1	01A	C2A	172.8(2)
N1	Al1	02	C10	-161.8(2)
N1	C1	C2	01	0.6(4)
N1	C1	C2	C3	178.2(3)
N1	C1	C6	C5	-178.3(3)
N1A	Al1	01	C2	164.8(2)
N1A	Al1	01A	C2A	-18.4(2)
N1A	Al1	02	C10	21.1(3)
N1A	C1A	C2A	01A	-2.6(4)
N1A	C1A	C2A	C3A	177.0(3)
N1A	C1A	C6A	C5A	-178.3(3)
C1	N1	C7	N2	166.1(3)
C1	C2	C3	C4	-0.5(5)
C1A	N1A	C7A	N2A	168.2(3)
C1A	C2A	C3A	C4A	1.2(5)
C2	C1	C6	C5	-2.0(5)

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	C3	C4	C5	$0.2(5)$
C2A	C1A	C6A	C5A	$-1.4(5)$
C2A	C3A	C4A	C5A	$-0.2(5)$
C3	C4	C5	C6	$-0.8(5)$
C3A	C4A	C5A	C6A	$-1.5(5)$
C4	C5	C6	C1	$1.7(5)$
C4A	C5A	C6A	C1A	$2.3(5)$
C6	C1	C2	01	$-176.2(3)$
C6	C1	C2	C3	$1.4(5)$
C6A	C1A	C2A	01A	$-179.9(3)$
C6A	C1A	C2A	C3A	$-0.3(5)$
C7	N1	C1	C2	$147.7(3)$
C7	N1	C1	C6	$-35.8(4)$
C7A	N1A	C1A	C2A	$154.8(3)$
C7A	N1A	C1A	C6A	$-28.1(5)$
C8	N2	C7	N1	$-8.4(5)$
C8A	N2A	C7A	N1A	$-7.0(5)$
C9	N2	C7	N1	$171.6(3)$
C9A	N2A	C7A	N1A	$173.4(3)$

Crystal Data and Experimental

Figure S128: ORTEP view of compound 2b
Experimental. Single clear light colourless prism-shaped crystals of compound $\mathbf{2 b}$ recrystallised from a mixture of DCM and pentane by slow evaporation. A suitable crystal with dimensions $0.21 \times 0.21 \times 0.15 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Nonius APEX-II CCD diffractometer. The crystal was kept at a steady $T=$ $110.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ 2018/2 solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Crystal Data. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{AlN}_{4} \mathrm{O}_{2}, M_{r}=420.48$, monoclinic, $P 2_{1} / c$ (No. 14), $\mathrm{a}=11.5025(6) \AA \AA, \mathrm{b}=17.2998(10) \AA, \mathrm{c}=$ $11.5070(6) \AA, \quad \beta=107.584(2)^{\circ}, \quad \alpha=\quad \gamma=90^{\circ}, \quad V=$ $2182.8(2) \AA^{3}, T=110.0(1) \mathrm{K}, Z=4, Z^{\prime}=1, \mu\left(\mathrm{Mo}_{\alpha 1}\right)=$ $0.120,44219$ reflections measured, 5007 unique $\left(\mathrm{R}_{\mathrm{int}}=\right.$ 0.0556) which were used in all calculations. The final $w R_{2}$ was 0.1292 (all data) and R_{1} was $0.0465(\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S42: Experimental parameters

Compound	2b
CCDC	2182077
Formula	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{AlN}_{4} \mathrm{O}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.280
μ / mm^{-1}	0.120
Formula Weight	420.48
Colour	clear light colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	$0.21 \times 0.21 \times 0.15$
T/K	110.0(1)
Crystal System	monoclinic
Space Group	$P 21 / \mathrm{c}$
a / \AA	11.5025(6)
b / \AA ¢	17.2998(10)
c / \AA	11.5070(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	107.584(2)
$\gamma /{ }^{\circ}$	90
V/A ${ }^{3}$	2182.8(2)
Z	4
Z'	1
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{\alpha 1}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.490
$\Theta_{\max } /{ }^{\circ}$	27.532
Measured Refl's.	44219
Indep't Refl's	5007
Refl's $\mathrm{I} \geq 2 \%$ (I)	3463
$R_{\text {int }}$	0.0556
Parameters	272
Restraints	0
Largest Peak	1.029
Deepest Hole	-0.382
GooF	1.036
$w R_{2}$ (all data)	0.1292
$w R_{2}$	0.1096
R_{1} (all data)	0.0814
R_{1}	0.0465

Table S43: Structure Quality Indicators

Reflections:	$\begin{aligned} & \mathrm{d} \min (M o) \\ & 2 \Theta=55.1^{\circ} \end{aligned}$	0.77	I/ס()	25.1	Rint	5.56\%	Full 50.5°	99.9
Refinement:	Shift	0.000	Max Peak	1.0	Min Peak	-0.4	Goof	1.036

A clear light colourless prism-shaped-shaped crystal with dimensions $0.21 \times 0.21 \times 0.15 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Nonius APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=110.0(1) \mathrm{K}$. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX46. The maximum resolution that was achieved was $\Theta=27.532^{\circ}(0.77 \AA)$. The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 6983 reflections, 16% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90% out to 27.532° in Θ. SADABS-2016/2 $\mathbf{2}^{5}$ was used for absorption correction. $w R_{2}$ (int) was 0.0542 before and 0.0520 after correction. The Ratio of minimum to maximum transmission is 0.9504 . The absorption coefficient μ of this material is $0.120 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.922 and 0.971 . The structure was solved, and the space group $P 2_{1} / c$ (\# 14) determined by the ShelXT ${ }^{1}$ 2018/2 structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

Table S44: Bond Lengths in \AA A for compound $2 b$.

Atom	Atom	Length/Å
Al1	O1A	$1.7951(14)$
Al1	O1	$1.7984(15)$
Al1	N1	$2.1200(17)$
Al1	N1A	$2.1224(17)$
Al1	C12	$1.973(2)$
O1A	C2A	$1.338(2)$
O1	C2	$1.342(2)$
N1	C7	$1.308(2)$
N1	C1	$1.420(2)$
N2	C7	$1.325(2)$
N2	C8	$1.472(2)$
N2	C9	$1.471(3)$
N2A	C7A	$1.319(2)$
N2A	C9A	$1.470(3)$
N2A	C8A	$1.471(3)$
N1A	C1A	$1.419(2)$
N1A	C7A	$1.311(2)$
C1A	C2A	$1.407(3)$

Atom	Atom	Length/Å
C1A	C6A	$1.385(3)$
C2	C1	$1.405(3)$
C2	C3	$1.390(3)$
C2A	C3A	$1.386(3)$
C1	C6	$1.389(3)$
C3	C4	$1.392(3)$
C4	C5	$1.386(3)$
C6	C5	$1.397(3)$
C6A	C5A	$1.395(3)$
C5A	C4A	$1.381(3)$
C3A	C4A	$1.392(3)$
C8	C11	$1.523(3)$
C9A	C10A	$1.508(3)$
C8A	C11A	$1.525(3)$
C9	C10	$1.514(3)$
C11	C10	$1.522(3)$
C11A	C10A	$1.522(3)$

Table S45: Bond Angles in ${ }^{\circ}$ for compound 2b.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
01A	Al1	O1	$126.79(7)$
01A	Al1	N1	$89.04(6)$
O1A	Al1	N1A	$82.43(6)$
O1A	Al1	C12	$116.16(8)$
O1	Al1	N1	$82.30(6)$
O1	Al1	N1A	$86.13(6)$
01	Al1	C12	$117.06(8)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N1	Al1	N1A	$157.40(7)$
C12	Al1	N1	$99.90(8)$
C12	Al1	N1A	$102.65(8)$
C2A	O1A	Al1	$118.34(12)$
C2	O1	Al1	$116.47(12)$
C7	N1	Al1	$135.20(13)$
C7	N1	C1	$116.70(16)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1	N1	Al1	$106.00(12)$
C7	N2	C8	$124.97(17)$
C7	N2	C9	$122.40(17)$
C9	N2	C8	$111.03(15)$
C7A	N2A	C9A	$123.07(17)$
C7A	N2A	C8A	$124.56(16)$
C9A	N2A	C8A	$111.36(15)$
C1A	N1A	Al1	$106.94(12)$
C7A	N1A	Al1	$132.57(13)$
C7A	N1A	C1A	$116.01(16)$
C2A	C1A	N1A	$113.37(17)$
C6A	C1A	N1A	$126.55(18)$
C6A	C1A	C2A	$120.04(18)$
01	C2	C1	$117.43(17)$
O1	C2	C3	$122.69(18)$
C3	C2	C1	$119.86(18)$
N1	C7	N2	$126.10(18)$
01A	C2A	C1A	$117.56(17)$
01A	C2A	C3A	$122.87(18)$
C3A	C2A	C1A	$119.57(18)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C2	C1	N1	$113.32(17)$
C6	C1	N1	$126.61(18)$
C6	C1	C2	$119.90(18)$
N1A	C7A	N2A	$125.28(18)$
C2	C3	C4	$119.84(19)$
C5	C4	C3	$120.49(19)$
C1	C6	C5	$119.93(19)$
C1A	C6A	C5A	$119.71(19)$
C4A	C5A	C6A	$120.30(19)$
C2A	C3A	C4A	$120.06(19)$
C4	C5	C6	$119.94(19)$
C5A	C4A	C3A	$120.23(19)$
N2	C8	C11	$103.57(16)$
N2A	C9A	C10A	$103.28(17)$
N2A	C8A	C11A	$103.70(16)$
N2	C9	C10	$103.31(17)$
C10	C11	C8	$104.14(17)$
C10A	C11A	C8A	$105.60(18)$
C9	C10	C11	$102.16(17)$
C9A	C10A	C11A	$102.98(19)$

Table S46: Torsion Angles in ${ }^{\circ}$ for compound 2b.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Al1	01A	C2A	C1A	12.1(2)
Al1	01A	C2A	C3A	-169.21(15)
Al1	01	C2	C1	20.5(2)
Al1	01	C2	C3	-157.85(16)
Al1	N1	C7	N2	-34.3(3)
Al1	N1	C1	C2	-9.27(18)
Al1	N1	C1	C6	165.98(17)
Al1	N1A	C1A	C2A	-4.27(19)
Al1	N1A	C1A	C6A	173.53(17)
Al1	N1A	C7A	N2A	-43.0(3)
01A	Al1	01	C2	-102.78(14)
01A	C2A	C3A	C4A	-175.90(18)
01	Al1	01A	C2A	-90.47(15)
01	C2	C1	N1	-5.2(2)
01	C2	C1	C6	179.25(17)
01	C2	C3	C4	-179.68(18)
N1	Al1	01A	C2A	-170.11(13)
N1	Al1	01	C2	-19.79(13)
N1	C1	C6	C5	-174.20(18)
N2	C8	C11	C10	27.0(2)
N2	C9	C10	C11	36.0(2)
N2A	C9A	C10A	C11A	34.9(2)
N2A	C8A	C11A	C10A	19.4(2)
N1A	Al1	01A	C2A	-11.10(13)
N1A	Al1	01	C2	179.66(14)
N1A	C1A	C2A	01A	-3.8(2)
N1A	C1A	C2A	C3A	177.38(17)
N1A	C1A	C6A	C5A	-179.65(19)
C1A	N1A	C7A	N2A	164.31(18)
C1A	C2A	C3A	C4A	2.8(3)
C1A	C6A	C5A	C4A	2.3(3)
C2	C1	C6	C5	0.8(3)
C2	C3	C4	C5	-0.1(3)
C7	N1	C1	C2	156.79(17)
C7	N1	C1	C6	-28.0(3)

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C7	N2	C8	C11	$-170.13(18)$
C7	N2	C9	C10	$146.14(19)$
C2A	C1A	C6A	C5A	$-2.0(3)$
C2A	C3A	C4A	C5A	$-2.5(3)$
C1	N1	C7	N2	$164.86(18)$
C1	C2	C3	C4	$2.0(3)$
C1	C6	C5	C4	$1.2(3)$
C7A	N2A	C9A	C10A	$144.8(2)$
C7A	N2A	C8A	C11A	$-165.85(19)$
C7A	N1A	C1A	C2A	$155.02(17)$
C7A	N1A	C1A	C6A	$-27.2(3)$
C3	C2	C1	N1	$173.25(17)$
C3	C2	C1	C6	$-2.4(3)$
C3	C4	C5	C6	$-1.5(3)$
C6A	C1A	C2A	O1A	$178.20(17)$
C6A	C1A	C2A	C3A	$-0.6(3)$
C6A	C5A	C4A	C3A	$-0.1(3)$
C8	N2	C7	N1	$-15.5(3)$
C8	N2	C9	C10	$-20.1(2)$
C8	C11	C10	C9	$-39.3(2)$
C9A	N2A	C7A	N1A	$179.63(18)$
C9A	N2A	C8A	C11A	$2.9(2)$
C8A	N2A	C7A	N1A	$-12.9(3)$
C8A	N2A	C9A	C10A	$-24.1(2)$
C8A	C11A	C10A	C9A	$-34.0(2)$
C9	N2	C7	N1	$-179.77(19)$
C12	N2	C8	C11	$-4.3(2)$
C12	Al1	O1A	C2A	$89.32(15)$
		01	C2	$77.43(15)$

Crystal Data and Experimental

Figure S129: ORTEP view of compound 3b
Experimental. Single clear light colourless prism-shaped crystals of compound $\mathbf{3 b}$ recrystallised from toluene by slow evaporation. A suitable crystal with dimensions $0.42 \times 0.34 \times 0.33 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 Venture diffractometer. The crystal was kept at a steady $T=$ $120.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Crystal Data. $\mathrm{C}_{87} \mathrm{H}_{98} \mathrm{Al}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}, M_{r}=1373.69$, triclinic, $P-1$ (No. 2), $a=12.4063(12) \AA, \quad b=13.7450(12) \AA, \quad c=$ $14.0446(13) \AA, \quad \alpha=110.884(3)^{\circ}, \quad \beta=110.057(3)^{\circ}, \gamma=$ $104.529(4)^{\circ}, V=1902.5(3) \AA^{3}, T=120.0(1) \mathrm{K}, Z=1, Z^{\prime}=$ $0.5, \mu\left(\mathrm{MoK}_{\alpha}\right)=0.095,90466$ reflections measured, 8806 unique $\left(\mathrm{R}_{\text {int }}=0.0689\right)$ which were used in all calculations.

The final $w R_{2}$ was 0.1547 (all data) and R_{1} was $0.0581(\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S47: Experimental parameters

Compound	3b
CCDC	2182078
Formula	$\mathrm{C}_{87} \mathrm{H}_{98} \mathrm{Al}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.199
μ / mm^{-1}	0.095
Formula Weight	1373.69
Colour	clear light colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	$0.42 \mathrm{x} 0.34 \times 0.33$
T/K	120.0(1)
Crystal System	triclinic
Space Group	$P-1$
a / \AA	12.4063(12)
b / \AA	13.7450(12)
c / \AA	14.0446(13)
$\alpha /{ }^{\circ}$	110.884(3)
$\beta /{ }^{\circ}$	110.057(3)
$\gamma /{ }^{\circ}$	104.529(4)
V / \AA^{3}	1902.5(3)
Z	1
Z'	0.5
Wavelength/Å	0.71073
Radiation type	MoK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	2.554
$\Theta_{\max } /{ }^{\circ}$	27.606
Measured Refl's.	90466
Indep't Refl's	8806
Refl's $\mathrm{I} \geq 2 \mathrm{\sigma}$ (I)	6546
$R_{\text {int }}$	0.0689
Parameters	461
Restraints	0
Largest Peak	0.906
Deepest Hole	-0.551
GooF	1.025
$w R_{2}$ (all data)	0.1547
$w R_{2}$	0.1340
R_{1} (all data)	0.0858
R_{1}	0.0581

Table S48: Structure Quality Indicators

Reflections:	$\begin{aligned} & d \min (M o) \\ & 2 \Theta=55.2^{\circ} \end{aligned}$	0.77	1/G()	31.1	Rint	6.89\%	Full 50.5°	99.9
Refinement:	Shift	-0.001	Max Peak	0.9	Min Peak	-0.6	GooF	1.025

A clear light colourless prism-shaped-shaped crystal with dimensions $0.42 \times 0.34 \times 0.33 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 Venture diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=120.0$ (1) K. Data were measured using ϕ and ω scans with MoK_{α} radiation. The maximum resolution that was achieved was $\Theta=$ $27.606^{\circ}\left(0.77 \AA\right.$). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 9955 reflections, 11% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90% out to 27.606° in Θ. SADABS-2016/2 ${ }^{5}$ was used for absorption correction. w R_{2} (int) was 0.0628 before and 0.0576 after correction. The Ratio of minimum to maximum transmission is 0.9397 . The absorption coefficient μ of this material is $0.095 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=$ $0.71073 \AA$) and the minimum and maximum transmissions are 0.912 and 0.971 . The structure was solved, and the space group $P-1$ (\#2) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$. All nonhydrogen atoms were refined anisotropically, excepted minor disordered parts. Hydrogen atom positions were calculated geometrically and refined using the riding model. The value of Z ' is 0.5 . This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms.

Table S49: Bond Lengths in \AA A for compound 3b.

Atom	Atom	Length/Å
Al1	O1	$1.7940(15)$
Al1	O1A	$1.7969(15)$
Al1	N1	$2.1703(17)$
Al1	N1A	$2.1555(17)$
Al1	C10	$1.970(2)$
O1	C2	$1.340(2)$
01A	C2A	$1.341(2)$
N1	C1	$1.418(2)$
N1	C7	$1.321(2)$
N1A	C1A	$1.415(2)$
N1A	C7A	$1.319(3)$
N2	C7	$1.342(2)$
N2	C8	$1.455(3)$
N2	C9	$1.459(3)$
N2A	C7A	$1.337(3)$
N2A	C8A	$1.456(3)$
N2A	C9A	$1.455(3)$
C1	C2	$1.409(3)$
C1	C6	$1.389(3)$
C1'	C2'	$1.394(3)$
C1'	C6'	$1.409(3)$
C1'	C7	$1.502(3)$
C1'A	C2'A	1.3900
C1'A	C6'A	1.3900
C1'A	C7A	$1.530(2)$
C2'A	C3'A	1.3900
C2'A	C7'A	$1.513(4)$
C3'A	C4'A	1.3900
C4'A	C5'A	1.3900

Atom	Atom	Length/Å
C5'A	C6'A	1.3900
C1'B	C6'B	1.3900
C1'B	C2'B	1.3900
C1'B	C7A	$1.503(4)$
C6'B	C5'B	1.3900
C5'B	C4'B	1.3900
C4'B	C3'B	1.3900
C3'B	C2'B	1.3900
C2'B	C7'B	$1.486(11)$
C1A	C2A	$1.411(3)$
C1A	C6A	$1.389(3)$
C2	C3	$1.390(3)$
C2'	C3'	$1.399(3)$
C2'	C7'	$1.486(3)$
C2A	C3A	$1.392(3)$
C3	C4	$1.388(3)$
C3'	C4'	$1.376(3)$
C3A	C4A	$1.389(3)$
C4	C5	$1.386(3)$
C4'	C5'	$1.385(3)$
C4A	C5A	$1.389(3)$
C5	C6	$1.391(3)$
C5'	C6'	$1.385(3)$
C5A	C6A	$1.389(3)$
C14	C13	1.3900
C14	C15	1.3900
C13	C12	1.3900
C12	C11	1.3900
C11	C16	1.3900

Atom	Atom	Length/Å
C11	C17	$1.486(12)$
C16	C15	1.3900
C24	C18	$1.510(4)$
C24A	C18A	$1.501(15)$
C21	C22	1.3900
C21	C20	1.3900
C22	C23	1.3900
C23	C18	1.3900

Atom	Atom	Length/Å
C18	C19	1.3900
C19	C20	1.3900
C19A	C18A	1.3900
C19A	C20A	1.3900
C18A	C23A	1.3900
C23A	C22A	1.3900
C22A	C21A	1.3900
C21A	C20A	1.3900

Table S50: Bond Angles in ${ }^{\circ}$ for compound 3b.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
01	Al1	01A	128.60(7)
01	Al1	N1	81.42(6)
01	Al1	N1A	86.33(7)
01	Al1	C10	115.64(9)
01A	Al1	N1	87.10(7)
01A	Al1	N1A	81.66(7)
01A	Al1	C10	115.76(9)
N1A	Al1	N1	152.73(7)
C10	Al1	N1	103.55(8)
C10	Al1	N1A	103.71(8)
C2	01	Al1	119.16(12)
C2A	01A	Al1	118.55(12)
C1	N1	Al1	106.41(12)
C7	N1	Al1	126.19(13)
C7	N1	C1	119.65(16)
C1A	N1A	Al1	106.77(12)
C7A	N1A	Al1	125.44(14)
C7A	N1A	C1A	119.85(17)
C7	N2	C8	121.42(17)
C7	N2	C9	122.64(18)
C8	N2	C9	114.51(17)
C7A	N2A	C8A	121.00(18)
C7A	N2A	C9A	123.46(18)
C9A	N2A	C8A	114.54(18)
C2	C1	N1	113.37(17)
C6	C1	N1	126.69(18)
C6	C1	C2	119.65(18)
C2'	C1'	C6'	120.36(19)
C2'	C1'	C7	120.89(18)
C6'	C1'	C7	118.66(18)
C2'A	C1'A	C6'A	120.0
C2'A	C1'A	C7A	119.80(13)
C6'A	C1'A	C7A	120.13(13)
C1'A	C2'A	C7'A	120.89(16)
C3'A	C2'A	C1'A	120.0
C3'A	C2'A	C7'A	119.09(16)
C2'A	C3'A	C4'A	120.0
C3'A	C4'A	C5'A	120.0
C6'A	C5'A	C4'A	120.0
C5'A	C6'A	C1'A	120.0
C6'B	C1'B	C2'B	120.0
C6'B	C1'B	C7A	121.7(4)
C2'B	C1'B	C7A	118.3(4)
C1'B	C6'B	C5'B	120.0
C4'B	C5'B	C6'B	120.0
C5'B	C4'B	C3'B	120.0
C2'B	C3'B	C4'B	120.0

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1'B	C2'B	C7'B	120.3(6)
C3'B	C2'B	C1'B	120.0
C3'B	C2'B	C7'B	119.7(5)
C2A	C1A	N1A	113.18(17)
C6A	C1A	N1A	126.50(18)
C6A	C1A	C2A	119.96(18)
01	C2	C1	117.84(17)
01	C2	C3	122.66(18)
C3	C2	C1	119.50(18)
C1'	C2'	C3'	118.1(2)
C1'	C2'	C7'	121.57(19)
C3'	C2'	C7'	120.33(19)
01A	C2A	C1A	117.80(17)
01A	C2A	C3A	122.83(18)
C3A	C2A	C1A	119.37(19)
C4	C3	C2	120.2(2)
C4'	C3'	C2'	121.4(2)
C4A	C3A	C2A	120.04(19)
C5	C4	C3	120.4(2)
C3'	C4'	C5'	120.7(2)
C3A	C4A	C5A	120.50(19)
C4	C5	C6	119.9(2)
C6'	C5'	C4'	119.3(2)
C4A	C5A	C6A	120.0(2)
C1	C6	C5	120.30(19)
C5'	C6'	C1'	120.2(2)
C1A	C6A	C5A	120.11(19)
N1	C7	N2	119.64(17)
N1	C7	C1'	125.00(17)
N2	C7	C1'	115.35(17)
N1A	C7A	N2A	120.08(18)
N1A	C7A	C1'A	126.38(17)
N1A	C7A	C1'B	115.4(3)
N2A	C7A	C1'A	113.26(17)
N2A	C7A	C1'B	120.6(3)
C13	C14	C15	120.0
C12	C13	C14	120.0
C13	C12	C11	120.0
C12	C11	C17	115.6(6)
C16	C11	C12	120.0
C16	C11	C17	124.4(6)
C15	C16	C11	120.0
C16	C15	C14	120.0
C22	C21	C20	120.0
C21	C22	C23	120.0
C18	C23	C22	120.0
C23	C18	C24	120.4(2)

Atom	Atom	Atom	Angle $/{ }^{\circ}$
C23	C18	C19	120.0
C19	C18	C24	$119.6(2)$
C18	C19	C20	120.0
C19	C20	C21	120.0
C18A	C19A	C20A	120.0
C19A	C18A	C24A	$118.7(8)$

Atom	Atom	Atom	Angle ${ }^{\circ}$
C19A	C18A	C23A	120.0
C23A	C18A	C24A	$121.2(8)$
C22A	C23A	C18A	120.0
C23A	C22A	C21A	120.0
C20A	C21A	C22A	120.0
C21A	C20A	C19A	120.0

Table S51: Torsion Angles in ${ }^{\circ}$ for compound 3b.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Al1	01	C2	C1	13.4(2)
Al1	01	C2	C3	-166.58(15)
Al1	01A	C2A	C1A	14.8(2)
Al1	01A	C2A	C3A	-165.81(15)
Al1	N1	C1	C2	-5.77(18)
Al1	N1	C1	C6	167.95(16)
Al1	N1	C7	N2	-56.9(2)
Al1	N1	C7	C1'	124.14(18)
Al1	N1A	C1A	C2A	-5.14(18)
Al1	N1A	C1A	C6A	167.89(16)
Al1	N1A	C7A	N2A	-59.0(2)
Al1	N1A	C7A	C1'A	127.59(18)
Al1	N1A	C7A	C1'B	98.7(3)
01	Al1	01A	C2A	-91.96(15)
01	C2	C3	C4	178.14(19)
01A	Al1	01	C2	-91.97(15)
01A	C2A	C3A	C4A	179.09(18)
N1	Al1	01	C2	-12.68(14)
N1	Al1	01A	C2A	-168.58(14)
N1	C1	C2	01	-3.3(2)
N1	C1	C2	C3	176.67(17)
N1	C1	C6	C5	-175.09(18)
N1A	Al1	01	C2	-168.25(14)
N1A	Al1	01A	C2A	-13.49(14)
N1A	C1A	C2A	01A	-4.7(2)
N1A	C1A	C2A	C3A	175.92(17)
N1A	C1A	C6A	C5A	-174.36(18)
C1	N1	C7	N2	158.12(18)
C1	N1	C7	C1'	-20.9(3)
C1	C2	C3	C4	-1.8(3)
C1'	C2'	C3'	C4'	0.0 (3)
C1'A	C2'A	C3'A	C4'A	0.0
C2'A	C1'A	C6'A	C5'A	0.0
C2'A	C1'A	C7A	N1A	-67.6(2)
C2'A	C1'A	C7A	N2A	118.55(17)
C2'A	C3'A	C4'A	C5'A	0.0
C3'A	C4'A	C5'A	C6'A	0.0
C4'A	C5'A	C6'A	C1'A	0.0
C6'A	C1'A	C2'A	C3'A	0.0
C6'A	C1'A	C2'A	C7'A	178.8(2)
C6'A	C1'A	C7A	N1A	115.5(2)
C6'A	C1'A	C7A	N2A	-58.4(2)
C1'B	C6'B	C5'B	C4'B	0.0
C6'B	C1'B	C2'B	C3'B	0.0
C6'B	C1'B	C2'B	C7'B	-177.1(7)
C6'B	C1'B	C7A	N1A	-46.6(4)
C6'B	C1'B	C7A	N2A	111.0(4)
C6'B	C5'B	C4'B	C3'B	0.0
C5'B	C4'B	C3'B	C2'B	0.0

Atom	Atom	Atom	Atom	Angle/
C4'B	C3'B	C2'B	C1'B	0.0
C4'B	C3'B	C2'B	C7'B	$177.1(7)$
C2'B	C1'B	C6'B	C5'B	0.0
C2'B	C1'B	C7A	N1A	$132.4(3)$
C2'B	C1'B	C7A	N2A	$-70.0(4)$
C1A	N1A	C7A	N2A	$156.29(18)$
C1A	N1A	C7A	C1'A	$-17.2(3)$
C1A	N1A	C7A	C1'B	$-46.0(3)$
C1A	C2A	C3A	C4A	$-1.6(3)$
C2	C1	C6	C5	$-1.7(3)$
C2	C3	C4	C5	$0.4(3)$
C2'	C1'	C6'	C5'	$1.1(3)$
C2'	C1'	C7	N1	$-59.4(3)$
C2'	C1'	C7	N2	$121.6(2)$
C2'	C3'	C4'	C5'	$-0.3(4)$
C2A	C1A	C6A	C5A	$-1.8(3)$
C2A	C3A	C4A	C5A	$0.1(3)$
C3	C4	C5	C6	$0.4(3)$
C3'	C4'	C5'	C6'	$0.9(4)$
C3A	C4A	C5A	C6A	$0.5(3)$
C4	C5	C6	C1	$0.3(3)$
C4'	C5'	C6'	C1'	$-1.3(4)$
C4A	C5A	C6A	C1A	$0.3(3)$
C6	C1	C2	O1	$-177.47(17)$
C6	C1	C2	C3	$2.5(3)$
C6'	C1'	C2'	C3'	$-0.5(3)$
C6'	C1'	C2'	C7'	$177.5(2)$
C6'	C1'	C7	N1	$124.1(2)$
C6'	C1'	C7	N2	$-54.9(3)$
C6A	C1A	C2A	O1A	$-178.24(17)$
C6A	C1A	C2A	C3A	$2.4(3)$
C9	C13	C8	C1	C14

Atom	Atom	Atom	Atom	Angle $^{\circ}{ }^{\circ}$
C13	C12	C11	C16	0.0
C13	C12	C11	C17	$-180.0(9)$
C12	C11	C16	C15	0.0
C11	C16	C15	C14	0.0
C15	C14	C13	C12	0.0
C17	C11	C16	C15	$180.0(10)$
C24	C18	C19	C20	$179.7(2)$
C24A	C18A	C23A	C22A	$-178.1(9)$
C21	C22	C23	C18	0.0
C22	C21	C20	C19	0.0
C22	C23	C18	C24	$-179.7(3)$
C22	C23	C18	C19	0.0
C23	C18	C19	C20	0.0
C18	C19	C20	C21	0.0
C20	C21	C22	C23	0.0
C19A	C18A	C23A	C22A	0.0
C18A	C19A	C20A	C21A	0.0
C18A	C23A	C22A	C21A	0.0
C23A	C22A	C21A	C20A	0.0
C22A	C21A	C20A	C19A	0.0
C20A	C19A	C18A	C24A	$178.2(9)$
C20A	C19A	C18A	C23A	0.0

Table S52: Atomic Occupancies for all atoms that are not fully occupied in compound $\mathbf{3 b}$.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
C1'A	0.760(4)	C2'B	0.240(4)	H15	0.5	C18	0.793(4)
C2'A	0.760(4)	C7'A	0.760(4)	C17	0.5	C19	0.793(4)
C3'A	0.760(4)	H7'D	0.760(4)	H17A	0.5	H19	0.793(4)
H3'A	0.760(4)	H7'E	0.760(4)	H17B	0.5	C20	0.793(4)
C4'A	0.760(4)	H7'F	0.760(4)	H17C	0.5	H20	0.793(4)
H4'A	0.760(4)	C7'B	0.240(4)	C24	0.793(4)	C19A	0.207(4)
C5'A	0.760(4)	H7'G	0.240(4)	H24A	0.793(4)	H19A	0.207(4)
H5'A	0.760(4)	H7'H	0.240(4)	H24B	0.793(4)	C18A	0.207(4)
C6'A	0.760(4)	H7'I	0.240(4)	H24C	0.793(4)	C23A	0.207(4)
H6'A	0.760(4)	C14	0.5	C24A	0.207(4)	H23A	0.207(4)
C1'B	0.240(4)	H14	0.5	H24D	0.207(4)	C22A	0.207(4)
C6'B	0.240(4)	C13	0.5	H24E	0.207(4)	H22A	0.207(4)
H6'B	0.240 (4)	H13	0.5	H24F	0.207(4)	C21A	0.207(4)
C5'B	0.240(4)	C12	0.5	C21	0.793(4)	H21A	0.207(4)
H5'B	0.240(4)	H12	0.5	H21	0.793(4)	C20A	0.207(4)
C4'B	0.240(4)	C11	0.5	C22	0.793(4)	H20A	0.207(4)
H4'B	0.240(4)	C16	0.5	H22	0.793(4)		
C3'B	0.240(4)	H16	0.5	C23	0.793(4)		
H3'B	0.240(4)	C15	0.5	H23	0.793(4)		

Compound 1c

Analyse Chimique
Synthèse Moléculaire

$R_{1}=3.31 \%$

Crystal Data and Experimental

Figure S130: ORTEP view of compound 1c
Experimental. Single clear light colorless plate crystals of compound 1c recrystallized from DCM by slow evaporation. A suitable crystal with dimensions 0.18 x $0.11 \times 0.10 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 VENTURE diffractometer. The crystal was kept at a steady $T=100.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2}$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimization on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}_{2}, M_{r}=515.25$, orthorhombic, Cmce (No. 64), $\mathrm{a}=10.3231(6) \AA, \mathrm{b}=14.4461(9) \AA, \mathrm{c}=$ $15.2624(10) \AA, \alpha=\beta=\gamma=90^{\circ}, \quad V=2276.1(2) \AA^{3}, T=$ $100.0(1) \mathrm{K}, Z=4, Z^{\prime}=0.25, \mu\left(\right.$ Mo $\left._{\alpha 1}\right)=2.133,19802$ reflections measured, 1888 unique $\left(\mathrm{R}_{\text {int }}=0.0684\right)$ which were used in all calculations. The final $w R_{2}$ was 0.0579 (all data) and R_{1} was $0.0331(\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S53: Experimental parameters

Compound	1c
CCDC	2182079
Formula	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.504
μ / mm^{-1}	2.133
Formula Weight	515.25
Color	clear light colorless
Shape	plate
Size/mm ${ }^{3}$	$0.18 \times 0.11 \times 0.10$
T/K	100.0(1)
Crystal System	orthorhombic
Space Group	Cmce
$a / \AA ̊$	10.3231(6)
b / \AA	14.4461(9)
c / \AA	15.2624(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	2276.1(2)
Z	4
Z'	0.25
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{\alpha 1}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.669
$\Theta_{\max } /{ }^{\circ}$	31.580
Measured Refl's.	19802
Indep't Refl's	1888
Refl's I $\geq 2 \sigma$ (I)	1456
$R_{\text {int }}$	0.0684
Parameters	136
Restraints	0
Largest Peak	0.511
Deepest Hole	-0.611
GooF	1.056
$w R_{2}$ (all data)	0.0579
$w^{2} 2$	0.0511
R_{1} (all data)	0.0620
R_{1}	0.0331

Table S54: Structure Quality Indicators

Reflections:	d min (Mo)	0.68	/\%(I)	22.8	Rint	6.84\%	complete	100\%
Refinement:	Shift	0.000	Max	0.5		-0.6	Goof	1.056

A clear light colorless plate-shaped crystal with dimensions $0.18 \times 0.11 \times 0.10 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 VENTURE diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=100.0$ (1) K. Data were measured using ϕ and ω scans' using Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX3 ${ }^{7}$. The maximum resolution that was achieved was $\Theta=31.580^{\circ}(0.68 \AA \AA)$. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX3 ${ }^{7}$. The unit cell was refined using SAINT V8.40A ${ }^{8}$ on 6420 reflections, 32% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40A ${ }^{8}$, The final completeness is 99.90% out to 31.580° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 ${ }^{5}$ was used for absorption correction. $w R_{2}(\mathrm{int})$ was 0.0643 before and 0.0576 after correction. The Ratio of minimum to maximum transmission is 0.8731 . The absorption coefficient μ of this material is $2.133 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.690 and 0.790 . The structure was solved and the space group Cmce (\# 64) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimization on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. The value of Z' is 0.25 .

Table S55: Bond Lengths in \AA A for compound 1c.

Atom	Atom	Length/Å
Zn1	Zn1 1	$2.9829(5)$
Zn1	O1	$2.064(2)$
Zn1	N1	$2.089(2)$
Zn1	C10	$1.970(3)$
O1	C2	$1.343(3)$
N1	C1	$1.427(4)$
N1	C7	$1.304(4)$
N2	C7	$1.328(4)$
N2	C8	$1.452(4)$
N2	C9	$1.452(4)$

Atom	Atom	Length/Å
C1	C2	$1.409(4)$
C1	C6	$1.391(4)$
C2	C3	$1.395(4)$
C3	C4	$1.390(4)$
C4	C5	$1.387(5)$
C5	C6	$1.389(4)$
C10	C11	$1.527(5)$

${ }^{11-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}}$		

Table S56: Bond Angles in ${ }^{\circ}$ for compound 1c.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
01	Zn1	Zn1 ${ }^{1}$	$43.45(6)$
01	Zn1	N1	$80.41(9)$
N1	Zn1	Zn1 1^{1}	$89.07(7)$
C10	Zn1	Zn1 1	$138.61(10)$
C10	Zn1	O1	$125.76(12)$
C10	Zn1	N1	$131.83(12)$
C2	O1	Zn1	$109.58(19)$
C1	N1	Zn1	$107.92(18)$
C7	N1	Zn1	$133.8(2)$
C7	N1	C1	$117.3(3)$
C7	N2	C8	$120.8(3)$
C7	N2	C9	$121.7(3)$
C8	N2	C9	$117.2(3)$

Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	C1	N1	$115.3(3)$
C6	C1	N1	$124.4(3)$
C6	C1	C2	$120.2(3)$
O1	C2	C1	$119.4(3)$
O1	C2	C3	$121.9(3)$
C3	C2	C1	$118.6(3)$
C4	C3	C2	$121.0(3)$
C5	C4	C3	$119.8(3)$
C4	C5	C6	$120.2(3)$
C5	C6	C1	$120.2(3)$
N1	C7	N2	$125.1(3)$
C11	C10	Zn1	$115.1(2)$

${ }^{1} 1-x, 1-y, 1-z$

Table S57: Torsion Angles in ${ }^{\circ}$ for compound 1c.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Zn1	O1	C2	C1	$-20.0(3)$
Zn1	O1	C2	C3	$158.5(2)$
Zn1	N1	C1	C2	$18.8(3)$
Zn1	N1	C1	C6	$-158.2(3)$
Zn1	N1	C7	N2	$19.8(5)$
01	C2	C3	C4	$-177.2(3)$
N1	C1	C2	O1	$0.5(4)$
N1	C1	C2	C3	$-178.0(3)$
N1	C1	C6	C5	$176.9(3)$
C1	N1	C7	N2	$-173.3(3)$
C1	C2	C3	C4	$1.2(5)$
C2	C1	C6	C5	$0.1(5)$
C2	C3	C4	C5	$-0.7(5)$
C3	C4	C5	C6	$-0.2(5)$
C4	C5	C6	C1	$0.5(5)$
C6	C1	C2	O1	$177.6(3)$
C6	C1	C2	C3	$-0.9(5)$
C7	N1	C1	C2	$-151.4(3)$
C7	N1	C1	C6	$31.7(4)$
C8	N2	C7	N1	$-173.2(3)$
C9	N2	C7	N1	$1.3(5)$

Table S58: Atomic Occupancies for all atoms that are not fully occupied in compound 1c.

Atom	Occupancy
O1	0.5
N1	0.5
N2	0.5
C1	0.5
C2	0.5
C3	0.5
H3	0.5
C4	0.5

Atom	Occupancy
H4	0.5
C5	0.5
H5	0.5
C6	0.5
H6	0.5
C7	0.5
H7	0.5
C8	0.5

Atom	Occupancy
H8A	0.5
H8B	0.5
H8C	0.5
C9	0.5
H9A	0.5
H9B	0.5
H9C	0.5
C10	0.5

Atom	Occupancy
H10A	0.5
H10B	0.5
C11	0.5
H11A	0.5
H11B	0.5
H11C	0.5

Compound 5c

$R_{1}=11.86 \%$

Crystal Data and Experimental

Figure S131: ORTEP view of compound 5c
Experimental. Single clear light colourless plate-shaped crystals of compound $5 \mathbf{c}$ recrystallised from DCM by slow evaporation. A suitable crystal with dimensions $0.12 \times 0.08 \times 0.04 \mathrm{~mm}^{3}$ was selected and mounted on a Bruker D8 VENTURE diffractometer. The crystal was kept at a steady $T=110.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with Shel $\mathbf{X L}^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}_{2}, M_{r}=819.62$, triclinic, $P-1$ (No. 2), $\mathrm{a}=8.5813(6) \AA \AA, \mathrm{b}=9.6302(7) \AA, \mathrm{c}=12.5497$ (9) \AA, $\alpha=97.970(4)^{\circ}, \quad \beta=99.773(4)^{\circ}, \quad \gamma=102.037(4)^{\circ}, \quad V=$ $983.15(12) \AA^{3}, T=110.0(1) \mathrm{K}, Z=1, Z^{\prime}=0.5, \mu(\mathrm{Cu} \mathrm{K} \alpha 1)=$ 1.836, 11389 reflections measured, 3446 unique $\left(\mathrm{R}_{\text {int }}=\right.$ $0.1034)$ which were used in all calculations. The final $w R_{2}$ was 0.3283 (all data) and R_{1} was 0.1186 ($\geq 2 \sigma(\mathrm{I})$).

Table S59: Experimental parameters

Compound	5c
CCDC	2182080
Formula	$\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.384
μ / mm^{-1}	1.836
Formula Weight	819.62
Colour	clear light colourless
Shape	plate-shaped
Size/mm ${ }^{3}$	$0.12 \times 0.08 \times 0.04$
T/K	110.0(1)
Crystal System	triclinic
Space Group	$P-1$
$a / \AA{ }^{\text {a }}$	8.5813(6)
b / \AA	9.6302(7)
c / \AA	12.5497(9)
$\alpha /{ }^{\circ}$	97.970(4)
$\beta /{ }^{\circ}$	99.773(4)
$\gamma /{ }^{\circ}$	102.037(4)
V / \AA^{3}	983.15(12)
Z	1
Z'	0.5
Wavelength/Å	1.54178
Radiation type	$\mathrm{Cu} \mathrm{K}_{\alpha 1}$
$\Theta_{\text {min }} /{ }^{\circ}$	3.633
$\Theta_{\max } /{ }^{\circ}$	66.845
Measured Refl's.	11389
Indep't Refl's	3446
Refl's I $\geq 2 \sigma$ (I)	2739
$R_{\text {int }}$	0.1034
Parameters	245
Restraints	0
Largest Peak	1.047
Deepest Hole	-1.181
GooF	1.069
$w R_{2}$ (all data)	0.3283
$w R_{2}$	0.3100
R_{1} (all data)	0.1420
R_{1}	0.1186

Table S60: Structure Quality Indicators

Reflections:	$\begin{aligned} & \mathrm{d} \min (\mathrm{Cula}) \\ & 2 O=133.7^{\circ} \end{aligned}$	0.84	I/\%()	11.8	Rint	10.34\%	Full 133.7°	98.4
Refinement:	Shift	0.000	Max Peak	1.1	Min Peak	-1.2	GooF	1.069

A clear light colourless plate-shaped-shaped crystal with dimensions $0.12 \times 0.08 \times 0.04 \mathrm{~mm}^{3}$ was mounted. Data were collected using a Bruker D8 VENTURE diffractometer operating at $T=110.0(1) \mathrm{K}$. Data were measured using ϕ and ω scans with $\mathrm{Cu} \mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX46. The maximum resolution that was achieved was $\Theta=66.845^{\circ}(0.84 \AA$). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 9069 reflections, 80% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 98.40% out to 66.845° in Θ. SADABS-2016/25 was used for absorption correction. $w R_{2}$ (int) was 0.1523 before and 0.1083 after correction. The Ratio of minimum to maximum transmission is 0.5663 . The absorption coefficient μ of this material is $1.836 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=1.54178 \AA$) and the minimum and maximum transmissions are 0.426 and 0.753 . The structure was solved, and the space group $P-1$ (\# 2) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. The value of Z ' is 0.5 . This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms.

Figure S132: ORTEP view of complex 5c. Thermal ellipsoids are drawn 25\% probability level. Hydrogen atoms are omitted for clarity.

Table S61: Bond Lengths in \AA A for compound 5c.

Atom	Atom	Length/Å
Zn1	Zn1 ${ }^{1}$	$3.009(2)$
Zn1	O1 ${ }^{1}$	$2.042(6)$
Zn1	O1	$2.051(6)$
Zn1	N1	$2.082(7)$
Zn1	C12	$1.985(9)$
O1	C2	$1.354(11)$
N1	C1	$1.423(11)$
N1	C7	$1.307(12)$
N2	C7	$1.344(12)$
N2	C8	$1.479(11)$
N2	C9	$1.474(11)$
C1	C2	$1.411(14)$
C1	C6	$1.390(13)$
C1'	C2'	$1.416(13)$
C1'	C7	$1.507(12)$
C1	C10'	$1.362(14)$
C2	C3	$1.401(13)$
C2' $^{\prime}$	C3'	$1.424(13)$

Atom	Atom	Length/Å
C2'	C7'	1.435(12)
C3	C4	1.367(14)
C3'	C4'	1.346(14)
C4	C5	1.399(15)
C4'	C5'	1.433(14)
C5	C6	1.385(13)
C5'	C6'	1.369(15)
C6'	C7'	1.404(14)
C7'	C8'	1.408(14)
C8	C11	1.516(14)
C8'	C9'	1.372(14)
C9	C10	1.513(13)
C9'	C10'	1.379 (14)
C10	C11	1.513(14)
C12	C13	1.514(13)
${ }^{11-x, 1-y,-z}$		

Table S62: Bond Angles in ${ }^{\circ}$ for compound 5c.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
011	Zn1	Zn1 ${ }^{1}$	42.81(16)
01	Zn1	Zn1 ${ }^{1}$	42.57(17)
01^{1}	Zn1	01	85.4(2)
01	Zn1	N1	81.0(3)
01^{1}	Zn1	N1	97.4(3)
N1	Zn1	Zn1 ${ }^{1}$	88.9(2)
C12	Zn1	Zn1 ${ }^{1}$	143.1(3)
C12	Zn1	01	127.7(3)
C12	Zn1	01^{1}	124.3(3)
C12	Zn1	N1	127.5(4)
Zn1 ${ }^{1}$	01	Zn1	94.6(2)
C2	01	Zn1	108.6(5)
C2	01	Zn1 ${ }^{1}$	119.5(5)
C1	N1	Zn1	107.2(6)
C7	N1	Zn1	127.4(6)
C7	N1	C1	120.4(8)
C7	N2	C8	123.8(7)
C7	N2	C9	124.6(8)
C9	N2	C8	111.6(7)
C2	C1	N1	115.7(8)
C6	C1	N1	124.8(9)
C6	C1	C2	119.3(8)
C2'	C1'	C7	121.4(8)
C10'	C1'	C2'	119.9(8)
C10'	C1'	C7	118.7(8)
01	C2	C1	118.9(8)
01	C2	C3	122.4(9)
C3	C2	C1	118.7(9)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1'	C2'	C3'	123.3(8)
C1'	C2'	C7'	118.4(8)
C3'	C2'	C7'	118.3(8)
C4	C3	C2	121.0(10)
C4'	C3'	C2'	122.6(8)
C3	C4	C5	120.8(9)
C3'	C4'	C5'	118.5(9)
C6	C5	C4	118.6(9)
C6'	C5'	C4'	120.9(9)
C5	C6	C1	121.6(10)
C5'	C6'	C7'	121.3(9)
N1	C7	N2	120.3(8)
N1	C7	C1'	123.9(8)
N2	C7	C1'	115.6(8)
C6'	C7'	C2'	118.3(9)
C6'	C7'	C8'	122.6(9)
C8'	C7'	C2'	119.0(9)
N2	C8	C11	101.5(7)
C9'	C8'	C7'	120.5(9)
N2	C9	C10	103.3(8)
C8'	C9'	C10'	120.0(9)
C9	C10	C11	103.4(8)
C1'	C10'	C9'	122.1(9)
C10	C11	C8	103.3(8)
C13	C12	Zn1	117.2(7)

Table S63: Torsion Angles in ${ }^{\circ}$ for compound 5c.

Atom	Atom	Atom	Atom	Angle $/{ }^{\circ}$
Zn1	O1	C2	C1	$-22.2(9)$

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Zn1 ${ }^{1}$	01	C2	C1	84.6(9)
Zn1 ${ }^{1}$	01	C2	C3	-97.5(9)
Zn1	01	C2	C3	155.8(8)
Zn1	N1	C1	C2	19.3(9)
Zn1	N1	C1	C6	-154.6(8)
Zn1	N1	C7	N2	40.7(12)
Zn1	N1	C7	C1'	-134.8(7)
01	C2	C3	C4	-178.0(8)
N1	C1	C2	01	1.7(12)
N1	C1	C2	C3	-176.3(8)
N1	C1	C6	C5	175.1(9)
N2	C8	C11	C10	36.4(10)
N2	C9	C10	C11	28.8(11)
C1	N1	C7	N2	-167.8(8)
C1	N1	C7	C1'	16.7(14)
C1	C2	C3	C4	-0.1(14)
C1'	C2'	C3'	C4'	-179.6(8)
C1'	C2'	C7'	C6'	-179.0(8)
C1'	C2'	C7'	C8'	0.8(12)
C2	C1	C6	C5	1.4(14)
C2	C3	C4	C5	3.0 (14)
C2'	C1'	C7	N1	-109.1(10)
C2'	C1'	C7	N2	75.2(10)
C2'	C1'	C10'	C9'	-1.9(13)
C2'	C3'	C4'	C5'	-0.6(14)
C2'	C7'	C8'	C9'	-0.2(13)
C3	C4	C5	C6	-3.7(14)
C3'	C2'	C7'	C6'	2.8(12)
C3'	C2'	C7'	C8'	-177.5(8)
C3'	C4'	C5'	C6'	1.3(14)
C4	C5	C6	C1	1.5(14)
C4'	C5'	C6'	C7'	0.1(14)
C5'	C6'	C7'	C2'	-2.2(14)
C5'	C6'	C7'	C8'	178.1(9)
C6	C1	C2	01	175.9(8)
C6	C1	C2	C3	-2.1(13)
C6'	C7'	C8'	C9'	179.5(9)
C7	N1	C1	C2	-137.4(9)
C7	N1	C1	C6	48.8(13)
C7	N2	C8	C11	161.5(9)
C7	N2	C9	C10	173.4(9)
C7	C1'	C2'	C3'	-3.5(13)
C7	C1'	C2'	C7'	178.3(8)
C7	C1'	C10'	C9'	179.9(8)
C7'	C2'	C3'	C4'	-1.5(13)
C7'	C8'	C9'	C10'	-1.5(13)
C8	N2	C7	N1	8.4(14)
C8	N2	C7	C1'	-175.7(8)
C8	N2	C9	C10	-6.0(11)
C8'	C9'	C10'	C1'	2.6(14)
C9	N2	C7	N1	-170.9(9)
C9	N2	C7	C1'	4.9(13)
C9	N2	C8	C11	-19.0(10)
C9	C10	C11	C8	-41.2(11)
C10'	C1'	C2'	C3'	178.4(8)
C10'	C1'	C2'	C7'	0.3(12)
C10'	C1'	C7	N1	69.0(12)
C10'	C1'	C7	N2	-106.7(10)

Compound 6c

Analyse Chimique Synthèse Moléculaire

Crystal Data and Experimental

Figure S132: ORTEP view of compound 6c
Experimental. Single clear light colourless prism crystals of compound 6c recrystallised from DCM by slow evaporation. A suitable crystal with dimensions 0.42 x $0.20 \mathrm{x} 0.16 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 Venture diffractometer. The crystal was kept at a steady $T=100.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2}$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Zn}_{2}, M_{r}=629.45$, monoclinic, $P 2_{1} / n$ (No. 14), $\mathrm{a}=10.0934(6) \AA, \mathrm{b}=14.4079(8) \AA, \mathrm{c}=$ 11.0432(7) $\AA, \quad \beta=107.793(2)^{\circ}, \quad \alpha=\quad \gamma=90^{\circ}, \quad V=$ $1529.14(16) \AA^{3}, T=100.0(1) \mathrm{K}, Z=2, Z^{\prime}=0.5, \mu\left(\mathrm{MoK}_{\alpha}\right)=$ 1.603, 81240 reflections measured, 3525 unique $\left(\mathrm{R}_{\mathrm{int}}=\right.$ 0.0410) which were used in all calculations. The final $w R_{2}$ was 0.0500 (all data) and R_{1} was $0.0198(\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S64: Experimental parameters

Compound	6c
CCDC	2182081
Formula	$\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Zn}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.367
μ / mm^{-1}	1.603
Formula Weight	629.45
Colour	clear light colourless
Shape	prism
Size/mm ${ }^{3}$	$0.42 \mathrm{x} 0.20 \times 0.16$
T/K	100.0(1)
Crystal System	monoclinic
Space Group	$P 2_{1} / n$
$a / \AA{ }^{\text {a }}$	10.0934(6)
b / \AA	14.4079(8)
c/Å	11.0432(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	107.793(2)
$\gamma /^{\circ}$	90
V / \AA^{3}	1529.14(16)
Z	2
Z'	0.5
Wavelength/Å	0.71073
Radiation type	MoK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	2.548
$\Theta_{\max } /{ }^{\circ}$	27.543
Measured Refl's.	81240
Indep't Refl's	3525
Refl's I ≥ 2 (I)	3108
$R_{\text {int }}$	0.0410
Parameters	176
Restraints	0
Largest Peak	0.360
Deepest Hole	-0.294
GooF	1.054
$w R_{2}$ (all data)	0.0500
$w R_{2}$	0.0477
R_{1} (all data)	0.0253
R_{1}	0.0198

Table S65: Structure Quality Indicators

Reflections:	$\begin{gathered} d \min \\ 2 \theta=55.1^{\circ} \end{gathered}$	0.77	1/6(1)	86.6	Rint	4.10\%	Full 50.50	99.9
Refinement:	Shift	-0.001	Max Peak	0.4	Min P	-0.3	GooF	1.054

A clear light colourless prism-shaped crystal with dimensions $0.42 \times 0.20 \times 0.16 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 Venture diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=100.0$ (1) K. Data were measured using ϕ and ω scans using MoK_{α} radiation. The maximum resolution that was achieved was $\Theta=27.543^{\circ}(0.77 \AA$ Å). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 9889 reflections, 12% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B4. The final completeness is 99.90% out to 27.543° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 ${ }^{5}$ was used for absorption correction. $w R_{2}$ (int) was 0.0629 before and 0.0527 after correction. The Ratio of minimum to maximum transmission is 0.8625 . The absorption coefficient μ of this material is $1.603 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.616 and 0.714 . The structure was solved, and the space group $P 2_{1} / n$ (\# 14) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3} \mathbf{2 0 1 8}$ /3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. The value of Z^{\prime} is 0.5 . This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms.

Table S66: Bond Lengths in \AA A for compound 6c.

Atom	Atom	Length/Å
Zn1	Zn1 1	$3.0242(3)$
Zn1	O1 1	$2.0689(9)$
Zn1	O1	$2.0610(9)$
Zn1	N1 1	$2.0714(10)$
Zn1	C13	$1.9778(13)$
O1	C2	$1.3489(15)$
N1	C1	$1.4259(15)$
N1	C7	$1.3022(16)$
N2	C7	$1.3296(16)$
N2	C8	$1.4603(16)$
N2	C9	$1.4659(16)$
N3	C10	$1.4563(17)$

Atom	Atom	Length/Å
N3	C11	$1.4565(18)$
N3	C12	$1.4559(18)$
C14	C13	$1.5311(19)$
C1	C2	$1.4165(17)$
C1	C6	$1.3931(17)$
C2	C3	$1.3964(17)$
C3	C4	$1.3920(18)$
C4	C5	$1.3857(19)$
C5	C6	$1.3954(18)$
C9	C10	$1.5250(19)$

1-x,1-y,1-z		

Table S67: Bond Angles in ${ }^{\circ}$ for compound 6c.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O1	Zn1	Zn1 1	$43.02(2)$
O1 ${ }^{1}$	Zn1	Zn1 1	$42.82(2)$
O1	Zn1	O1 1	$85.84(3)$
O1	Zn1	N1 1	$101.91(4)$
O1 1	Zn1	N1 1	$80.90(4)$
N1 1	Zn1	Zn1 1	$91.85(3)$
C13	Zn1	Zn1 1	$135.17(4)$
C13	Zn1	O1 1	$126.58(5)$
C13	Zn1	O1 1	$116.26(5)$
C13	Zn1	N1 1	$132.63(5)$
Zn1	O1	Zn1 1	$94.16(3)$

Atom	Atom	Atom	Angle $^{\circ}$
C2	01	Zn1	$120.56(7)$
C2	O1	Zn1 1	$109.57(7)$
C1	N1	Zn1 1	$107.86(8)$
C7	N1	Zn1 1	$134.49(9)$
C7	N1	C1	$117.33(10)$
C7	N2	C8	$121.33(11)$
C7	N2	C9	$119.09(11)$
C8	N2	C9	$118.13(10)$
C10	N3	C11	$110.47(11)$
C12	N3	C10	$111.11(11)$
C12	N3	C11	$109.12(12)$

Atom	Atom	Atom	Angle ${ }^{\circ}{ }^{\circ}$
C2	C1	N1	$115.50(10)$
C6	C1	N1	$124.58(11)$
C6	C1	C2	$119.90(11)$
O1	C2	C1	$118.92(11)$
O1	C2	C3	$122.31(11)$
C3	C2	C1	$118.75(11)$
C4	C3	C2	$120.69(12)$
C5	C4	C3	$120.33(12)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
C4	C5	C6	$119.90(12)$
C1	C6	C5	$120.32(12)$
N1	C7	N2	$125.36(12)$
N2	C9	C10	$112.39(11)$
C14	C13	Zn1	$113.33(10)$
N3	C10	C9	$112.46(11)$

1-x,1-y,1-z			

Table S68: Torsion Angles in ${ }^{\circ}$ for compound 6c.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Zn1	01	C2	C1	91.04(12)
Zn1 ${ }^{1}$	01	C2	C1	-16.38(13)
Zn1 ${ }^{1}$	01	C2	C3	162.24(10)
Zn1	01	C2	C3	-90.35(12)
Zn1 ${ }^{1}$	N1	C1	C2	21.63(12)
Zn1 ${ }^{1}$	N1	C1	C6	-156.44(11)
Zn1 ${ }^{1}$	N1	C7	N2	7.2(2)
01	C2	C3	C4	-175.58(11)
N1	C1	C2	01	-3.80(16)
N1	C1	C2	C3	177.53(11)
N1	C1	C6	C5	-179.10(12)
N2	C9	C10	N3	68.27(14)
C1	N1	C7	N2	179.81(12)
C1	C2	C3	C4	3.03(18)
C2	C1	C6	C5	2.91(19)
C2	C3	C4	C5	-0.3(2)
C3	C4	C5	C6	-1.1(2)
C4	C5	C6	C1	-0.2(2)
C6	C1	C2	01	174.36(11)
C6	C1	C2	C3	-4.30(18)
C7	N1	C1	C2	-152.84(11)
C7	N1	C1	C6	29.09(18)
C7	N2	C9	C10	-87.20(14)
C8	N2	C7	N1	3.7(2)
C8	N2	C9	C10	79.26(14)
C9	N2	C7	N1	169.69(12)
C11	N3	C10	C9	-160.32(12)
C12	N3	C10	C9	78.41(14)

$R_{1}=2.53 \%$

Crystal Data and Experimental

Figure S133: ORTEP view of compound 1d
Experimental. Single clear light colourless prism-shaped crystals of compound 1d recrystallised from chloroform by slow evaporation. A suitable crystal with dimensions $0.31 \times 0.14 \times 0.07 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 Venture diffractometer. The crystal was kept at a steady $T=$ $100.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}, M_{r}=391.76$, monoclinic, $C 2 / c$ (No. 15), $\mathrm{a}=13.8168(15) \AA, \mathrm{b}=11.5315(13) \AA, \mathrm{c}=$ $11.4556(11) \AA, \quad \beta=110.176(3)^{\circ}, \quad \alpha=\gamma=90^{\circ}, \quad V=$ $1713.2(3) \AA^{3}, T=100.0(1) \mathrm{K}, Z=4, Z^{\prime}=0.5, \mu\left(\mathrm{Mo} \mathrm{K}_{\alpha 1}\right)=$ $1.453,60525$ reflections measured, 1977 unique $\left(\mathrm{R}_{\text {int }}=\right.$ 0.0725) which were used in all calculations. The final $w R_{2}$ was 0.0616 (all data) and R_{1} was 0.0253 ($\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S69: Experimental parameters

Compound	1d
CCDC	2182082
Formula	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.519
μ / mm^{-1}	1.453
Formula Weight	391.76
Colour	clear light colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	0.31 x 0.14 x 0.07
T/K	100.0(1)
Crystal System	monoclinic
Space Group	C2/c
$a / \AA{ }^{\text {a }}$	13.8168(15)
b / \AA	11.5315(13)
c / \AA	11.4556(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	110.176(3)
$\gamma /{ }^{\circ}$	90
V/A ${ }^{3}$	1713.2(3)
Z	4
Z'	0.5
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{1}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.363
$\Theta_{\max } /{ }^{\circ}$	27.585
Measured Refl's.	60525
Indep't Refl's	1977
Refl's I $\geq 2 \sigma$ (I)	1689
R int	0.0725
Parameters	116
Restraints	0
Largest Peak	0.385
Deepest Hole	-0.357
GooF	1.086
$w R_{2}$ (all data)	0.0616
$w R_{2}$	0.0578
R_{1} (all data)	0.0345
R_{1}	0.0253

Table S70: Structure Quality Indicators

Reflections:	$\begin{aligned} & \mathrm{d} \min (\mathrm{Mo}) \\ & 2 \Theta=55.2^{\circ} \end{aligned}$	0.77	I/ס()	60.5	Rint	7.25\%	Full 50.5°	100
Refinement:	Shift	0.000	Max Peak	0.4	Min Peak	-0.4	Goof	1.086

A clear light colourless prism-shaped-shaped crystal with dimensions $0.31 \times 0.14 \times 0.07 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 Venture diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=100.0$ (1) K. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX46. The maximum resolution that was achieved was $\Theta=27.585^{\circ}(0.77 \AA)$. The unit cell was refined using SAINT V8.40A ${ }^{8}$ on 9800 reflections, 16% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40A ${ }^{8}$. The final completeness is 100.00% out to 27.585° in Θ. SADABS-2016/2 ${ }^{5}$ was used for absorption correction. $w R_{2}$ (int) was 0.0725 before and 0.0616 after correction. The Ratio of minimum to maximum transmission is 0.8721 . The absorption coefficient μ of this material is $1.453 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.720 and 0.825 . The structure was solved, and the space group $C 2 / c$ (\#15) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. The value of Z^{\prime} is 0.5 . This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms.

Table S71: Bond Lengths in \AA A for compound 1d.

Atom	Atom	Length/Å
Zn1	01 ${ }^{1}$	$1.9339(12)$
Zn1	O1	$1.9339(12)$
Zn1	N1 1	$2.0240(14)$
Zn1	N1	$2.0240(14)$
01	C2	$1.329(2)$
N1	C7	$1.306(2)$
N1	C1	$1.433(2)$
N2	C7	$1.323(2)$
N2	C9	$1.458(2)$

Atom	Atom	Length/Å
N2	C8	1.451(2)
C1	C2	1.420 (2)
C1	C6	1.392(2)
C2	C3	1.398(2)
C5	C4	1.385(3)
C5	C6	1.391(2)
C4	C3	1.388(2)

Table S72: Bond Angles in ${ }^{\circ}$ for compound 1d.

Atom	Atom	Atom	Angle $/{ }^{\circ}$
O1 1	Zn1	O1	$117.76(8)$
O1	Zn1	N1	$86.49(5)$
O1 1	Zn1	N1 1	$86.49(5)$
O1 1	Zn1	N1 1	$119.77(5)$
O1	Zn1	N1 1	$119.77(5)$
N1	Zn1	N1 1	$130.19(8)$
C2	O1	Zn1	$110.62(10)$
C7	N1	Zn1	$134.23(11)$
C7	N1	C1	$118.42(13)$
C1	N1	Zn1	$107.02(10)$
C7	N2	C9	$120.67(15)$
C7	N2	C8	$123.01(15)$
C8	N2	C9	$116.21(15)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N1	C7	N2	$125.90(15)$
C2	C1	N1	$115.02(14)$
C6	C1	N1	$125.54(15)$
C6	C1	C2	$119.44(15)$
01	C2	C1	$120.84(14)$
01	C2	C3	$120.95(15)$
C3	C2	C1	$118.21(15)$
C4	C5	C6	$119.55(15)$
C5	C4	C3	$120.02(16)$
C4	C3	C2	$121.54(16)$
C5	C6	C1	$121.23(16)$

${ }^{11-x,+y, 1 / 2-z ~}$			

Table S73: Torsion Angles in ${ }^{\circ}$ for compound 1d.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Zn1	O1	C2	C1	$-1.22(19)$
Zn1	O1	C2	C3	$179.52(13)$
Zn1	N1	C7	N2	$10.8(3)$
Zn1	N1	C1	C2	$-0.21(16)$
Zn1	N1	C1	C6	$179.90(14)$
O1	C2	C3	C4	$178.57(16)$
N1	C1	C2	O1	$1.0(2)$
N1	C1	C2	C3	$-179.74(14)$
N1	C1	C6	C5	$-179.29(16)$
C7	N1	C1	C2	$-174.52(14)$
C7	N1	C1	C6	$5.6(2)$
C1	N1	C7	N2	$-176.78(15)$
C1	C2	C3	C4	$-0.7(3)$
C2	C1	C6	C5	$0.8(3)$
C5	C4	C3	C2	$0.3(3)$
C4	C5	C6	C1	$-1.3(3)$
C6	C1	C2	O1	$-179.12(15)$
C6	C1	C2	C3	$0.2(2)$
C6	C5	C4	C3	$0.7(3)$
C9	N2	C7	N1	$175.60(16)$
C8	N2	C7	N1	$-0.4(3)$

Compound 2d

Crystal Data and Experimental

Figure S134: ORTEP view of compound 2d
Experimental. Single clear light colourless prism-shaped crystals of compound 2d recrystallised from a mixture of cyclohexane and pyridine by slow evaporation. A suitable crystal with dimensions $0.29 \times 0.27 \times 0.27 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Nonius APEX-II CCD diffractometer. The crystal was kept at a steady $T=110.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ 2018/2 solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Zn}, M_{r}=522.94$, triclinic, $P-1$ (No. 2), $\quad \mathrm{a}=10.7763(3) \AA, \quad \mathrm{b}=11.2517(3) \AA, \quad \mathrm{c}=$ $12.6240(3) \AA, \quad \alpha=93.987(2)^{\circ}, \quad \beta=111.8620(10)^{\circ}, \quad \gamma=$ $115.4340(10)^{\circ}, V=1233.90(6) \AA \AA^{3}, T=110.0(1) \mathrm{K}, Z=2$, $Z^{\prime}=1, \mu\left(\mathrm{Mo} \mathrm{K}_{\alpha 1}\right)=1.030,32448$ reflections measured, 5666 unique ($\mathrm{R}_{\mathrm{int}}=0.0245$) which were used in all calculations. The final $w R_{2}$ was 0.0591 (all data) and R_{1} was 0.0238 ($\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S74: Experimental parameters

Compound	2d
CCDC	2182083
Formula	$\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Zn}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.407
μ / mm^{-1}	1.030
Formula Weight	522.94
Colour	clear light colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	0.29 x 0.27 x 0.27
T/K	110.0(1)
Crystal System	triclinic
Space Group	$P-1$
a / \AA	10.7763(3)
b / \AA	11.2517(3)
c / \AA	12.6240(3)
$\alpha /{ }^{\circ}$	93.987(2)
$\beta 1^{\circ}$	111.8620(10)
$\gamma /{ }^{\circ}$	115.4340(10)
V / \AA^{3}	1233.90(6)
Z	2
Z^{\prime}	1
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{1}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.339
$\Theta_{\max } /{ }^{\circ}$	27.509
Measured Refl's.	32448
Indep't Refl's	5666
Refl's $\mathrm{I} \geq 2 \%$ (I)	5056
$R_{\text {int }}$	0.0245
Parameters	316
Restraints	0
Largest Peak	0.581
Deepest Hole	-0.241
GooF	1.021
$w R_{2}$ (all data)	0.0591
$w R_{2}$	0.0564
R_{1} (all data)	0.0294
R_{1}	0.0238

Table S75: Structure Quality Indicators

Reflections:	$\min _{2 O=55}(\mathrm{Mo})$	0.77	[/\%()	52.8	Rint	2.45\%	Full 50.5 ${ }^{\circ}$	99.9
Refinement:	Shift	-0.002	Max Peak	0.6	Min Peak	-0.2	Goof	1.021

A clear light colourless prism-shaped-shaped crystal with dimensions $0.29 \times 0.27 \times 0.27 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Nonius APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=110.0(1) \mathrm{K}$. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX46. The maximum resolution that was achieved was $\Theta=27.509^{\circ}(0.77 \AA$). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 9862 reflections, 30% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90% out to 27.509° in Θ. SADABS-2016/2 ${ }^{5}$ was used for absorption correction. $w R_{2}$ (int) was 0.0401 before and 0.0347 after correction. The Ratio of minimum to maximum transmission is 0.9273 . The absorption coefficient μ of this material is $1.030 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.575 and 0.620 . The structure was solved, and the space group $P-1$ (\# 2) determined by the ShelXT ${ }^{1}$ 2018/2 structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z ' is 1 .

Table S76: Bond Lengths in \AA Å for compound 2d.

Atom	Atom	Length/Å
Zn1	O1	$1.9397(10)$
Zn1	O1A	$1.9446(10)$
Zn1	N1A	$2.0043(11)$
Zn1	N1	$2.0133(11)$
01	C2	$1.3296(16)$
O1A	C2A	$1.3290(16)$
N2	C7	$1.3203(17)$
N2	C8	$1.4681(18)$
N2	C9	$1.4778(17)$
N2A	C7A	$1.3207(17)$
N2A	C9A	$1.4763(17)$
N2A	C8A	$1.4647(18)$
N1A	C1A	$1.4319(17)$
N1A	C7A	$1.3074(17)$
N1	C1	$1.4314(16)$
N1	C7	$1.3114(17)$
C3A	C4A	$1.384(2)$
C3A	C2A	$1.4007(19)$
C4A	C5A	$1.386(2)$
C1A	C2A	$1.4208(19)$

Atom	Atom	Length/Å
C1A	C6A	$1.3915(19)$
C2	C1	$1.4213(19)$
C2	C3	$1.4007(18)$
C1	C6	$1.3944(19)$
N3	C12	$1.333(3)$
N3	C16	$1.334(3)$
C8	C11	$1.5289(19)$
C9	C10	$1.521(2)$
C4	C5	$1.385(2)$
C4	C3	$1.384(2)$
C10	C11	$1.521(2)$
C5	C6	$1.3893(19)$
C5A	C6A	$1.390(2)$
C9A	C10A	$1.518(2)$
C14	C13	$1.372(3)$
C14	C15	$1.376(3)$
C8A	C11A	$1.530(2)$
C11A	C10A	$1.518(2)$
C13	C12	$1.380(3)$
C15	C16	$1.377(3)$

Table S77: Bond Angles in ${ }^{\circ}$ for compound 2d.

Atom	Atom	Atom	Angle $/{ }^{\circ}$
01	Zn1	O1A	$118.09(4)$
01	Zn1	N1A	$120.15(4)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
01	Zn1	N1	$86.81(4)$
01A	Zn1	N1A	$86.71(4)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O1A	Zn1	N1	$115.57(4)$
N1A	Zn1	N1	$132.83(4)$
C2	O1	Zn1	$109.82(8)$
C2A	O1A	Zn1	$110.00(8)$
C7	N2	C8	$125.60(11)$
C7	N2	C9	$122.29(12)$
C8	N2	C9	$112.00(11)$
C7A	N2A	C9A	$121.73(12)$
C7A	N2A	C8A	$125.50(12)$
C8A	N2A	C9A	$112.26(11)$
C1A	N1A	Zn1	$107.37(8)$
C7A	N1A	Zn1	$133.22(9)$
C7A	N1A	C1A	$119.35(11)$
C1	N1	Zn1	$106.81(8)$
C7	N1	Zn1	$133.82(9)$
C7	N1	C1	$119.04(11)$
C4A	C3A	C2A	$121.48(13)$
C3A	C4A	C5A	$119.93(13)$
C2A	C1A	N1A	$115.03(11)$
C6A	C1A	N1A	$125.51(12)$
C6A	C1A	C2A	$119.44(12)$
O1A	C2A	C3A	$120.99(12)$
01A	C2A	C1A	$120.76(12)$
C3A	C2A	C1A	$118.25(12)$
01	C2	C1	$121.04(12)$
01	C2	C3	$121.00(12)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C3	C2	C1	$117.95(12)$
N1A	C7A	N2A	$125.20(12)$
C2	C1	N1	$114.96(11)$
C6	C1	N1	$125.34(12)$
C6	C1	C2	$119.70(12)$
C12	N3	C16	$116.45(16)$
N1	C7	N2	$125.00(12)$
N2	C8	C11	$103.38(11)$
N2	C9	C10	$102.44(11)$
C3	C4	C5	$120.26(13)$
C9	C10	C11	$103.15(12)$
C4	C5	C6	$119.61(13)$
C4	C3	C2	$121.45(13)$
C4A	C5A	C6A	$119.82(14)$
C5	C6	C1	$120.93(13)$
N2A	C9A	C10A	$103.28(12)$
C10	C11	C8	$103.75(12)$
C13	C14	C15	$119.11(17)$
N2A	C8A	C11A	$103.31(12)$
C5A	C6A	C1A	$121.06(14)$
C10A	C11A	C8A	$103.85(12)$
C14	C13	C12	$118.36(18)$
C11A	C10A	C9A	$104.19(12)$
C14	C15	C16	$118.31(19)$
N3	C12	C13	$123.85(19)$
N3	C16	C15	$123.91(19)$

Table S78: Torsion Angles in ${ }^{\circ}$ for compound 2d.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Zn1	O1	C2	C1	$-1.60(15)$
Zn1	01	C2	C3	$177.09(10)$
Zn1	O1A	C2A	C3A	$-175.96(10)$
Zn1	01A	C2A	C1A	$3.83(15)$
Zn1	N1A	C1A	C2A	$-0.87(13)$
Zn1	N1A	C1A	C6A	$177.43(12)$
Zn1	N1A	C7A	N2A	$-7.4(2)$
Zn1	N1	C1	C2	$7.45(13)$
Zn1	N1	C1	C6	$-172.20(11)$
Zn1	N1	C7	N2	$-12.7(2)$
01	C2	C1	N1	$-4.32(18)$
01	C2	C1	C6	$175.35(12)$
01	C2	C3	C4	$-176.43(13)$
N2	C8	C11	C10	$27.86(15)$
N2	C9	C10	C11	$34.56(14)$
N2A	C9A	C10A	C11A	$29.46(15)$
N2A	C8A	C11A	C10A	$29.25(15)$
N1A	C1A	C2A	O1A	$-2.02(18)$
N1A	C1A	C2A	C3A	$177.78(11)$
N1A	C1A	C6A	C5A	$-177.40(13)$
N1	C1	C6	C5	$-178.64(13)$
C3A	C4A	C5A	C6A	$-0.9(2)$
C4A	C3A	C2A	O1A	$179.46(13)$
C4A	C3A	C2A	C1A	$-0.3(2)$
C4A	C5A	C6A	C1A	$-0.1(2)$
C1A	N1A	C7A	N2A	$175.95(12)$
C2A	C3A	C4A	C5A	$1.1(2)$
C2	C1A	C6A	C5A	$0.8(2)$
	C6	C5	$1.7(2)$	

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C7A	N2A	C9A	C10A	$160.93(13)$
C7A	N2A	C8A	C11A	$176.86(13)$
C7A	N1A	C1A	C2A	$176.55(12)$
C7A	N1A	C1A	C6A	$-5.1(2)$
C1	N1	C7	N2	$174.86(12)$
C1	C2	C3	C4	$2.3(2)$
C7	N2	C8	C11	$177.39(13)$
C7	N2	C9	C10	$158.69(13)$
C7	N1	C1	C2	$-178.23(12)$
C7	N1	C1	C6	$2.1(2)$
C8	N2	C7	N1	$-0.8(2)$
C8	N2	C9	C10	$-17.84(15)$
C9	N2	C7	N1	$-176.89(12)$
C9	N2	C8	C11	$-6.21(15)$
C9	C10	C11	C8	$-39.17(15)$
C4	C5	C6	C11	$1.1(2)$
C5	C4	C3	C2	$0.5(2)$
C3	C2	C1	N1	$176.95(12)$
C3	C2	C1	C6	$-3.38(19)$
C3	C4	C5	C6	$-2.3(2)$
C9A	N2A	C7A	N1A	$-175.02(12)$
C9A	N2A	C8A	C11A	$-11.21(15)$
C14	C13	C12	N3	$-1.3(3)$
C14	C15	C16	N3	$-0.6(3)$
C8A	N2A	C7A	N1A	$-3.8(2)$
C8A	N2A	C9A	C10A	$-11.35(15)$
C6A	C11A	C10A	C9A	$-36.80(16)$
C6A	C1A	C2A	O1A	$179.57(12)$
C13	C14	C2A	C3A	$-0.63(19)$
C16	C14	N3	C13	C16

Crystal Data and Experimental

Figure S135: ORTEP view of compound 3d
Experimental. Single clear light colourless plate-shaped crystals of compound 3d recrystallised from DCM by slow evaporation. A suitable crystal with dimensions $0.19 \times 0.16 \times 0.09 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Nonius Kappa Apex II diffractometer. The crystal was kept at a steady $T=$ $110.0(0) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Crystal Data. $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}, M_{r}=572.00$, monoclinic, $C 2 / c$ (No. 15), $\mathrm{a}=9.5932(7) \AA, \mathrm{b}=12.3033(9) \AA, \mathrm{c}=$ 24.3137(19) $\AA, \quad \beta=99.317(2)^{\circ}, \quad \alpha=\quad \gamma=90^{\circ}, \quad V=$ 2831.8(4) $\AA^{3}, T=110.0(0) \mathrm{K}, Z=4, Z^{\prime}=0.5, \mu\left(\right.$ Mo K $\left._{\alpha 1}\right)=$ $0.903,24097$ reflections measured, 3244 unique $\left(\mathrm{R}_{\text {int }}=\right.$ 0.0577) which were used in all calculations. The final $w R_{2}$ was 0.0929 (all data) and R_{1} was $0.0385(\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Table S79: Experimental parameters

Compound	3d
CCDC	2182084
Formula	$\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.342
μ / mm^{-1}	0.903
Formula Weight	572.00
Colour	clear light colourless
Shape	plate-shaped
Size/mm ${ }^{3}$	0.19x0.16x0.09
T/K	110.0(0)
Crystal System	monoclinic
Space Group	C2/c
$a / \AA{ }^{\text {a }}$	9.5932(7)
b / \AA	12.3033(9)
c / \AA	24.3137(19)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	99.317(2)
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	2831.8(4)
Z	4
Z'	0.5
Wavelength/Å	0.71073
Radiation type	Mo K α_{1}
$\Theta_{\text {min }} /{ }^{\circ}$	2.715
$\Theta_{\max } /{ }^{\circ}$	27.518
Measured Refl's.	24097
Indep't Refl's	3244
Refl's I $\geq 2 \sigma$ (I)	2621
$R_{\text {int }}$	0.0577
Parameters	180
Restraints	0
Largest Peak	0.887
Deepest Hole	-0.451
GooF	1.046
$w R_{2}$ (all data)	0.0929
$w R_{2}$	0.0862
R_{1} (all data)	0.0563
R_{1}	0.0385

Table S80: Structure Quality Indicators

Reflections:	$d \min (M o)$ $20=55.0^{\circ}$	0.77	[/\%()	23.4	Rint	5.77\%	Full 50.5°	99.9
Refinement:	Shift	0.001	Max Peak	0.9	Min Peak	-0.5	Goof	1.046

A clear light colourless plate-shaped-shaped crystal with dimensions $0.19 \times 0.16 \times 0.09 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Nonius Kappa Apex II diffractometer operating at $T=110.0(0) \mathrm{K}$. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX4 ${ }^{6}$. The maximum resolution that was achieved was $\Theta=27.518^{\circ}$ ($0.77 \AA$). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 5183 reflections, 22% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90% out to 27.518° in Θ. SADABS-2016/2 ${ }^{5}$ was used for absorption correction. $w R_{2}(\mathrm{int})$ was 0.0650 before and 0.0579 after correction. The Ratio of minimum to maximum transmission is 0.9186 . The absorption coefficient μ of this material is $0.903 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.816 and 0.888 . The structure was solved, and the space group C2/c (\# 15) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All nonhydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. The value of Z^{\prime} is 0.5 . This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms.

Table S81: Bond Lengths in \AA A for compound 3d.

Atom	Atom	Length/\&̊
Zn1	O1	$1.9195(15)$
Zn1	O1 1	$1.9195(15)$
Zn1	N1 1	$2.0422(17)$
Zn1	N1	$2.0422(17)$
O1	C2	$1.334(3)$
N1	C1	$1.433(3)$
N1	C7	$1.316(3)$
N2	C7	$1.339(3)$
N2	C8	$1.460(3)$
N2	C9	$1.463(3)$
C1	C2	$1.415(3)$
C1	C6	$1.392(3)$
C1	C2'	$1.400(3)$

Atom	Atom	Length/Å
C1'	C6'	1.387(3)
C1'	C7	1.504(3)
C2	C3	$1.400(3)$
C2'	C3'	$1.394(3)$
C2'	C7'	1.497(3)
C3	C4	1.388(3)
C3'	C4'	1.377(3)
C4	C5	1.386(4)
C4'	C5'	1.382(3)
C5	C6	1.386(3)
C5'	C6'	1.393(3)

Table S82: Bond Angles in ${ }^{\circ}$ for compound 3d.

Atom	Atom	Atom	Angle $/{ }^{\circ}$
O1	Zn1	O1 1	$120.87(10)$
O1 1	Zn1	N1	$120.16(7)$
O1 1	Zn1	N1 1	$86.24(7)$
O1	Zn1	N1 1	$86.24(7)$
O1	Zn1	N1 1	$120.16(7)$
N1	Zn1	N1 1	$127.45(10)$
C2	O1	Zn1	$110.58(13)$
C1	N1	Zn1	$105.72(13)$
C7	N1	Zn1	$124.25(14)$
C7	N1	C1	$121.50(17)$
C7	N2	C8	$121.29(18)$
C7	N2	C9	$123.77(18)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C8	N2	C9	$114.52(18)$
C2	C1	N1	$115.64(18)$
C6	C1	N1	$123.9(2)$
C6	C1	C2	$119.9(2)$
C2' $^{\prime}$	C1' $^{\prime}$	C7	$118.18(19)$
C6' $^{\prime}$	C1' $^{\prime}$	C2'	$120.6(2)$
C6' $^{\prime}$	C1	C7	$121.17(19)$
O1	C2	C1	$120.19(19)$
O1	C2	C3	$121.5(2)$
C3	C2	C1	$118.3(2)$
C1' $^{\prime}$	C2' $^{\prime}$	C7' $^{\prime}$	$120.91(19)$
C3' $^{\prime}$	C2 $^{\prime}$	C1' $^{\prime}$	$117.9(2)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C3' $^{\prime}$	C2' $^{\prime}$	C7' $^{\prime}$	$121.2(2)$
C4 $^{\prime}$	C3	C2	$120.9(2)$
C4' $^{\prime}$	C3' $^{\prime}$	C2' $^{\prime}$	$121.9(2)$
C5 $^{\prime}$	C4	C3	$120.3(2)$
C3' $^{\prime}$	C4 $^{\prime}$	C5' $^{\prime}$	$119.7(2)$
C4	C5	C6	$119.7(2)$
C4' $^{\prime}$	C5 $^{\prime}$	C6' $^{\prime}$	$119.8(2)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
C5	C6	C1	$120.7(2)$
C1 $^{\prime}$	C6	C5' $^{\prime}$	$120.1(2)$
N1	C7	N2	$119.81(19)$
N1	C7	C1' $^{\prime}$	$123.53(18)$
N2	C7	C1' $^{\prime}$	$116.59(18)$

${ }^{11-\mathrm{x},+\mathrm{y}, 3 / 2-\mathrm{z}}$			

Table S83: Torsion Angles in ${ }^{\circ}$ for compound 3d.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Zn1	01	C2	C1	10.8(2)
Zn1	01	C2	C3	-166.97(18)
Zn1	N1	C1	C2	-7.1(2)
Zn1	N1	C1	C6	164.54(17)
Zn1	N1	C7	N2	-52.6(3)
Zn1	N1	C7	C1'	124.24(18)
01	C2	C3	C4	176.4(2)
N1	C1	C2	01	-2.1(3)
N1	C1	C2	C3	175.78(19)
N1	C1	C6	C5	-174.74(19)
C1	N1	C7	N2	164.13(18)
C1	N1	C7	C1'	-19.1(3)
C1	C2	C3	C4	-1.4(3)
C1'	C2'	C3'	C4'	-2.4(3)
C2	C1	C6	C5	-3.5(3)
C2	C3	C4	C5	-1.3(4)
C2'	C1'	C6'	C5'	1.5(3)
C2'	C1'	C7	N1	-77.2(3)
C2'	C1'	C7	N2	99.8(2)
C2'	C3'	C4'	C5'	$0.9(3)$
C3	C4	C5	C6	1.7(4)
C3'	C4'	C5'	C6'	$1.9(3)$
C4	C5	C6	C1	0.7(3)
C4'	C5'	C6'	C1'	-3.1(3)
C6	C1	C2	01	-174.04(19)
C6	C1	C2	C3	3.8(3)
C6'	C1'	C2'	C3'	1.3(3)
C6'	C1'	C2'	C7'	-179.3(2)
C6'	C1'	C7	N1	105.9(2)
C6'	C1'	C7	N2	-77.2(3)
C7	N1	C1	C2	142.0(2)
C7	N1	C1	C6	-46.3(3)
C7	C1'	C2'	C3'	-175.73(18)
C7	C1'	C2'	C7'	3.7(3)
C7	C1'	C6'	C5'	178.35(19)
C7'	C2'	C3'	C4'	178.1(2)
C8	N2	C7	N1	-5.8(3)
C8	N2	C7	C1'	177.17(19)
C9	N2	C7	N1	166.3(2)
C9	N2	C7	C1'	-10.7(3)

Crystal Data and Experimental

Figure S136: ORTEP view of compound 4d
Experimental. Single clear light colourless prism-shaped crystals of compound $\mathbf{4 d}$ recrystallised from a mixture of DCM and hexane by slow evaporation. A suitable crystal with dimensions $0.25 \times 0.13 \times 0.09 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 VENTURE diffractometer. The crystal was kept at a steady $T=100.0$ (1) K during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{76.5} \mathrm{H}_{86} \mathrm{Cl}_{3} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Zn}_{2}, M_{r}=1418.62$, triclinic, $P-1$ (No. 2), $\mathrm{a}=8.2841(6) \AA, \quad \mathrm{b}=10.5138(8) \AA, \mathrm{c}=$ $19.9849(15) \AA, \quad \alpha=89.305(3)^{\circ}, \quad \beta=80.720(4)^{\circ}, \quad \gamma=$ $82.276(4)^{\circ}, V=1702.2(2) \AA^{3}, T=100.0(1) \mathrm{K}, Z=1, Z^{\prime}=0.5$, $\mu\left(\mathrm{Cu} \mathrm{K} \alpha_{\alpha 1}\right)=2.399,10719$ reflections measured, 10719 unique which were used in all calculations. The final $w R_{2}$ was 0.1636 (all data) and R_{1} was 0.0625 (I $\geq 2 \sigma(\mathrm{I})$).

Table S84: Experimental parameters

Compound	4d
CCDC	2182085
Formula	$\mathrm{C}_{76.5} \mathrm{H}_{86} \mathrm{Cl}_{3} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Zn}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.384
μ / mm^{-1}	2.399
Formula Weight	1418.62
Colour	clear light colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	$0.25 \times 0.13 \times 0.09$
T/K	100.0(1)
Crystal System	triclinic
Space Group	$P-1$
a / \AA	8.2841(6)
b / \AA	10.5138(8)
c / \AA	19.9849(15)
$\alpha /{ }^{\circ}$	89.305(3)
$\beta 1^{\circ}$	80.720(4)
$\gamma /{ }^{\circ}$	82.276(4)
V / \AA^{3}	1702.2(2)
Z	1
Z^{\prime}	0.5
Wavelength/Å	1.54178
Radiation type	$\mathrm{Cu} \mathrm{K}{ }_{\alpha 1}$
$\Theta_{\text {min }} /{ }^{\circ}$	4.781
$\Theta_{\max } /{ }^{\circ}$	66.897
Measured Refl's.	10719
Indep't Refl's	10719
Refl's $\mathrm{I} \geq 2 \%$ (I)	9531
$R_{\text {int }}$.
Parameters	432
Restraints	5
Largest Peak	0.895
Deepest Hole	-1.007
GooF	1.078
$w R_{2}$ (all data)	0.1636
$w R_{2}$	0.1573
R_{1} (all data)	0.0716
R_{1}	0.0625

Table S85: Structure Quality Indicators

Reflections:	$\begin{aligned} & d \min (\mathrm{Cu}(\mathrm{a}) \\ & 20=133.8^{\circ} \end{aligned}$	0.84	1//()	34.5	Rint	6.13\%	Full 133.8°	98.1
Refinement:	Shift	0.000	Max Peak	0.9	Min Peak	-1.0	GooF	1.078

A clear light colourless prism-shaped-shaped crystal with dimensions $0.25 \times 0.13 \times 0.09 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 VENTURE diffractometer operating at $T=100.0(1)$ K. Data were measured using ϕ and ω scans with $\mathrm{Cu} \mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX46. The maximum resolution that was achieved was $\Theta=66.897^{\circ}$ ($0.84 \AA$). The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 9989 reflections, 93% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 98.10 $\%$ out to 66.897° in Θ. A multi-scan absorption correction was performed using TWINABS-2012/19 was used for absorption correction. For component 1: $w R_{2}$ (int) was 0.1178 before and 0.0638 after correction. For component 2: $w R_{2}(\mathrm{int})$ was 0.1014 before and 0.0772 after correction. The Ratio of minimum to maximum transmission is 0.80 . Final HKLF 4 output contains 44641 reflections, $R_{\text {int }}=0.0510$ (34520 with I > $3 \operatorname{sig}(\mathrm{I}), R_{\text {int }}=0.0474$). The absorption coefficient μ of this material is $2.399 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=1.54178 \AA$) and the minimum and maximum transmissions are 0.570 and 0.710 . The structure was solved, and the space group $P-1(\# 2)$ determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3. All non-hydrogen atoms were refined anisotropically excepted disordered hexane solvent. Hydrogen atom positions were calculated geometrically and refined using the riding model. The value of Z^{\prime} is 0.5 . This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms. An idealized molecular geometry has been used to model disordered hexane part. Both solvent hexane/DCM were found disordered on the same site $25.0(1) \% / 75.0(1) \%$. Several crystals examined proved to have multiple domains. The final data crystal, while still a multiple, could be described having primarily two domains and was treated as such. Orientation matrices for the two domains were determined using the program CELL_NOW ${ }^{10}$ and the data were processed further using TWINABS ${ }^{9}$. HKLF 5 was employed, BASF specifies the fractional volume contributions of the various twin components. The crystal was refined as a non-merohedral twin with a minor twin component of 0.1940 (9). The value of Z ' is 0.5 . This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms.

Table S86: Bond Lengths in Å for compound 4d.

Atom	Atom	Length/Å
Zn1	O1	$1.923(3)$
Zn1	O1A	$1.927(3)$
Zn1	N1	$2.049(3)$
Zn1	N1A	$2.045(3)$
O1	C2	$1.334(5)$
O1A	C2A	$1.329(5)$
N1	C1	$1.423(5)$
N1	C7	$1.324(5)$
N1A	C1A	$1.436(5)$
N1A	C7A	$1.326(5)$
N2	C7	$1.330(5)$
N2	C8	$1.467(5)$
N2	C9	$1.480(5)$
N2A	C7A	$1.335(5)$
N2A	C8A	$1.472(5)$
N2A	C9A	$1.487(5)$

Atom	Atom	Length/Å
C1	C2	$1.431(6)$
C1	C6	$1.388(6)$
C1' $^{\prime}$	C2'	$1.395(6)$
C1' $^{\prime}$	C6' $^{\prime}$	$1.396(6)$
C1' $^{\prime}$	C7	$1.501(5)$
C1'A	C2'A	$1.398(6)$
C1'A	C6'A	$1.392(6)$
C1'A	C7A	$1.498(5)$
C1A	C2A	$1.424(5)$
C1A	C6A	$1.387(6)$
C2	C3	$1.398(6)$
C2'	C3'	$1.396(6)$
C2'	C7'	$1.499(6)$
C2'A	C3'A	$1.390(6)$
C2'A	C7'A	$1.531(6)$
C2A	C3A	$1.398(6)$

Atom	Atom	Length/Å
C3	C4	$1.391(7)$
C3' $^{\prime}$	C4' $^{\prime}$	$1.388(6)$
C3'A $^{\prime}$	C4'A	$1.369(7)$
C3A	C4A	$1.372(6)$
C4	C5	$1.385(7)$
C4'	C5'	$1.380(7)$
C4'A	C5'A	$1.379(7)$
C4A	C5A	$1.393(6)$
C5	C6	$1.391(6)$
C5'	C6'	$1.384(6)$
C5'A $_{\text {' }}$ C6'A	$1.403(6)$	
C5A	C6A	$1.385(6)$
C8	C11	$1.519(6)$

Atom	Atom	Length/Å
C8A	C11A	$1.519(6)$
C9	C10	$1.514(6)$
C9A	C10A	$1.530(6)$
C10	C11	$1.524(6)$
C10A	C11A	$1.526(6)$
C11	C12	$1.712(10)$
C12	C12	$1.748(8)$
C18	C17	1.5341
C13	C14	1.5333
C14	C15	1.5348
C15	C16	1.5348
C16	C17	1.5349

Table S87: Bond Angles in ${ }^{\circ}$ for compound 4d.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
01	Zn1	01A	121.16(13)
01	Zn1	N1	86.44(13)
01	Zn1	N1A	124.54(12)
01A	Zn1	N1	118.27(12)
01A	Zn1	N1A	86.17(12)
N1A	Zn1	N1	124.41(13)
C2	01	Zn1	110.2(2)
C2A	01A	Zn1	110.2(2)
C1	N1	Zn1	106.1(2)
C7	N1	Zn1	123.7(3)
C7	N1	C1	120.9(3)
C1A	N1A	Zn1	105.7(2)
C7A	N1A	Zn1	128.9(3)
C7A	N1A	C1A	121.5(3)
C7	N2	C8	123.6(3)
C7	N2	C9	124.9(3)
C8	N2	C9	111.3(3)
C7A	N2A	C8A	124.4(3)
C7A	N2A	C9A	124.4(3)
C8A	N2A	C9A	111.2(3)
N1	C1	C2	115.1(3)
C6	C1	N1	124.4(4)
C6	C1	C2	120.1(4)
C2'	C1'	C6'	121.5(4)
C2'	C1'	C7	118.2(3)
C6'	C1'	C7	120.1(4)
C2'A	C1'A	C7A	118.2(3)
C6'A	C1'A	C2'A	120.8(4)
C6'A	C1'A	C7A	121.0(4)
C2A	C1A	N1A	115.3(3)
C6A	C1A	N1A	124.7(4)
C6A	C1A	C2A	119.5(4)
01	C2	C1	120.8(4)
01	C2	C3	121.4(4)
C3	C2	C1	117.8(4)
C1'	C2'	C3'	117.3(4)
C1'	C2'	C7'	121.9(4)
C3'	C2'	C7'	120.8(4)
C1'A	C2'A	C7'A	120.6(4)
C3'A	C2'A	C1'A	118.1(4)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C3'A	C2'A	C7'A	$121.4(4)$
01A	C2A	C1A	$120.4(3)$
01A	C2A	C3A	$121.5(4)$
C3A	C2A	C1A	$118.1(4)$
C4	C3	C2	$121.2(4)$
C4'	C3'	C2'	$121.6(4)$
C4'A	C3'A	C2'A	$121.4(4)$
C4A	C3A	C2A	$121.5(4)$
C5	C4	C3	$120.4(4)$
C5'	C4'	C3'	$120.1(4)$
C3'A	C4'A	C5'A	$121.0(4)$
C3A	C4A	C5A	$120.3(4)$
C4	C5	C6	$119.9(4)$
C4'	C5'	C6'	$119.7(4)$
C4'A	C5'A	C6'A	$119.0(4)$
C6A	C5A	C4A	$119.4(4)$
C1	C6	C5	$120.6(4)$
C5'	C6'	C1'	$119.8(4)$
C1'A	C6'A	C5'A	$119.7(4)$
C5A	C6A	C1A	$121.2(4)$
N1	C7	N2	$120.0(3)$
N1	C7	C1'	$124.1(3)$
N2	C7	C1'	$115.8(3)$
N1A	C7A	N2A	$120.6(3)$
N1A	C7A	C1'A	$123.6(3)$
N2A	C7A	C1'A	$115.7(3)$
N2	C8	C11	$102.7(3)$
N2A	C8A	C11A	$103.6(3)$
N2	C9	C10	$103.4(3)$
N2A	C9A	C10A	$103.4(3)$
C9	C10	C11	$103.3(3)$
C11A	C10A	C9A	$103.3(3)$
C8	C11	C10	$102.4(3)$
C8A	C11A	C10A	$103.4(3)$
Cl1	C12	Cl2	$115.2(6)$
C13	C14	C15	113.3
C16	C15	C14	113.7
C15	C16	C17	113.7
C18	C17	C16	113.3
13.3			

Table S88: Torsion Angles in ${ }^{\circ}$ for compound 4d.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Zn1	01	C2	C1	10.0(5)
Zn1	01	C2	C3	-169.1(3)
Zn1	01A	C2A	C1A	13.5(4)
Zn1	01A	C2A	C3A	-164.4(3)
Zn1	N1	C1	C2	-6.6(4)
Zn1	N1	C1	C6	166.6(3)
Zn1	N1	C7	N2	-52.3(5)
Zn1	N1	C7	C1'	124.6(3)
Zn1	N1A	C1A	C2A	-7.2(4)
Zn1	N1A	C1A	C6A	164.1(3)
Zn1	N1A	C7A	N2A	-39.2(5)
Zn1	N1A	C7A	C1'A	137.3(3)
01	C2	C3	C4	176.8(4)
01A	C2A	C3A	C4A	177.5(4)
N1	C1	C2	01	-1.9(5)
N1	C1	C2	C3	177.2(4)
N1	C1	C6	C5	-175.5(4)
N1A	C1A	C2A	01A	-3.8(5)
N1A	C1A	C2A	C3A	174.1(3)
N1A	C1A	C6A	C5A	-173.8(4)
N2	C8	C11	C10	-35.9(4)
N2	C9	C10	C11	-29.7(4)
N2A	C8A	C11A	C10A	-33.1(5)
N2A	C9A	C10A	C11A	-29.8(4)
C1	N1	C7	N2	165.6(3)
C1	N1	C7	C1'	-17.5(6)
C1	C2	C3	C4	-2.3(6)
C1'	C2'	C3'	C4'	-0.1(6)
C1'A	C2'A	C3'A	C4'A	-0.5(6)
C1A	N1A	C7A	N2A	166.5(4)
C1A	N1A	C7A	C1'A	-17.1(6)
C1A	C2A	C3A	C4A	-0.4(6)
C2	C1	C6	C5	-2.6(6)
C2	C3	C4	C5	-0.1(7)
C2'	C1'	C6'	C5'	1.3(6)
C2'	C1'	C7	N1	-68.7(5)
C2'	C1'	C7	N2	108.3(4)
C2'	C3'	C4'	C5'	1.0(7)
C2'A	C1'A	C6'A	C5'A	1.6(6)
C2'A	C1'A	C7A	N1A	-66.9(5)
C2'A	C1'A	C7A	N2A	109.7(4)
C2'A	C3'A	C4'A	C5'A	1.1(6)
C2A	C1A	C6A	C5A	-2.8(6)
C2A	C3A	C4A	C5A	-1.0(6)
C3	C4	C5	C6	1.3(7)
C3'	C4'	C5'	C6'	-0.7(7)
C3'A	C4'A	C5'A	C6'A	-0.4(6)
C3A	C4A	C5A	C6A	0.6(6)
C4	C5	C6	C1	0.1(6)
C4'	C5'	C6'	C1'	-0.4(6)
C4'A	C5'A	C6'A	C1'A	-0.9(6)
C4A	C5A	C6A	C1A	1.4(6)
C6	C1	C2	01	-175.5(4)
C6	C1	C2	C3	3.7(6)
C6'	C1'	C2'	C3'	-1.0(6)

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}$
C6'	C1'	C2'	C7'	178.2(4)
C6'	C1'	C7	N1	116.1(4)
C6'	C1'	C7	N2	-66.9(5)
C6'A	C1'A	C2'A	C3'A	-0.8(6)
C6'A	C1'A	C2'A	C7'A	-179.7(4)
C6'A	C1'A	C7A	N1A	113.6(4)
C6'A	C1'A	C7A	N2A	-69.7(5)
C6A	C1A	C2A	01A	-175.6(4)
C6A	C1A	C2A	C3A	2.3(6)
C7	N1	C1	C2	141.3(4)
C7	N1	C1	C6	-45.5(6)
C7	N2	C8	C11	-165.8(4)
C7	N2	C9	C10	-168.8(4)
C7	C1'	C2'	C3'	-176.2(4)
C7	C1'	C2'	C7'	3.1(6)
C7	C1'	C6'	C5'	176.4(4)
C7'	C2'	C3'	C4'	-179.4(4)
C7'A	C2'A	C3'A	C4'A	178.4(4)
C7A	N1A	C1A	C2A	152.3(4)
C7A	N1A	C1A	C6A	-36.4(6)
C7A	N2A	C8A	C11A	-164.2(4)
C7A	N2A	C9A	C10A	-171.5(4)
C7A	C1'A	C2'A	C3'A	179.7(3)
C7A	C1'A	C2'A	C7'A	0.9(5)
C7A	C1'A	C6'A	C5'A	-179.0(4)
C8	N2	C7	N1	-7.2(6)
C8	N2	C7	C1'	175.6(3)
C8	N2	C9	C10	7.3(4)
C8A	N2A	C7A	N1A	-4.6(6)
C8A	N2A	C7A	C1'A	178.7(4)
C8A	N2A	C9A	C10A	9.5(5)
C9	N2	C7	N1	168.4(4)
C9	N2	C7	C1'	-8.8(5)
C9	N2	C8	C11	18.1(4)
C9	C10	C11	C8	41.1(4)
C9A	N2A	C7A	N1A	176.5(4)
C9A	N2A	C7A	C1'A	-0.2(6)
C9A	N2A	C8A	C11A	14.7(5)
C9A	C10A	C11A	C8A	39.2(5)
C13	C14	C15	C16	180.0
C14	C15	C16	C17	180.0
C15	C16	C17	C18	180.0

Table S89: Atomic Occupancies for all atoms that are not fully occupied in compound $\mathbf{4 d}$.

Atom	Occupancy
Cl1	0.75
Cl2	0.75
C12	0.75
H12A	0.75
H12B	0.75
C18	0.25
H18A	0.25

Atom	Occupancy
H18B	0.25
H18C	0.25
C13	0.25
H13A	0.25
H13B	0.25
H13C	0.25
C14	0.25

Atom	Occupancy
H14A	0.25
H14B	0.25
C15	0.25
H15A	0.25
H15B	0.25
C16	0.25
H16A	0.25

Atom	Occupancy
H16B	0.25
C17	0.25
H17A	0.25
H17B	0.25

Analyse Chimique Synthèse Moléculaire
UNIVERSITÉ DE BOURGOGNE

Crystal Data and Experimental

Figure S137: ORTEP view of compound 6d
Experimental. Single clear light colourless needle-shaped crystals of compound $\mathbf{6 d}$ recrystallised from a mixture of DCM and cyclohexane by slow evaporation. A suitable crystal with dimensions $0.80 \times 0.15 \times 0.12 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Nonius APEX-II CCD diffractometer. The crystal was kept at a steady $T=110.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{1}$ solution program using dual methods and by using Olex2 ${ }^{2} 1.5$ as the graphical interface. The model was refined with ShelXL ${ }^{3}$ 2018/3 using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Crystal Data. $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Zn}, M_{r}=505.96$, triclinic, $P-1$ (No. 2), $\mathrm{a}=10.6168(3) \AA, \quad \mathrm{b}=11.2860(4) \AA, \quad \mathrm{c}=$ $11.5396(4) \AA, \quad \alpha=75.743(2)^{\circ}, \quad \beta=89.755(2)^{\circ}, \quad \gamma=$ $71.855(2)^{\circ}, V=1269.52(7) \AA^{3}, T=110.0(1) \mathrm{K}, Z=2, Z^{\prime}=1$, $\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha 1}\right)=0.999,86013$ reflections measured, 5840 unique $\left(\mathrm{R}_{\text {int }}=0.0553\right)$ which were used in all calculations. The final $w R_{2}$ was 0.0655 (all data) and R_{1} was 0.0259 (I ≥ 2 $\sigma(\mathrm{I})$).

Table S90: Experimental parameters

Compound	6d
CCDC	2182086
Formula	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Zn}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.324
μ / mm^{-1}	0.999
Formula Weight	505.96
Colour	clear light colourless
Shape	needle-shaped
Size/mm ${ }^{3}$	$0.80 \times 0.15 \times 0.12$
T/K	110.0(1)
Crystal System	triclinic
Space Group	$P-1$
a / \AA	10.6168(3)
b / \AA	11.2860(4)
c / \AA	11.5396(4)
$\alpha /{ }^{\circ}$	75.743(2)
$\beta /{ }^{\circ}$	89.755(2)
$\gamma /{ }^{\circ}$	71.855(2)
V / \AA^{3}	1269.52(7)
Z	2
Z'	1
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{\alpha 1}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.313
$\Theta_{\max } /{ }^{\circ}$	27.576
Measured Refl's.	86013
Indep't Refl's	5840
Refl's $\mathrm{I} \geq 2 \%$ (I)	4799
$R_{\text {int }}$	0.0553
Parameters	304
Restraints	0
Largest Peak	0.357
Deepest Hole	-0.304
GooF	1.038
$w R_{2}$ (all data)	0.0655
$w R_{2}$	0.0589
R_{1} (all data)	0.0408
R_{1}	0.0259

Table S91: Structure Quality Indicators

Reflections:	$\begin{aligned} & \mathrm{d} \min (\mathrm{Mo}) \\ & 2 \Theta=55.2^{\circ} \end{aligned}$	0.77	1//()	40.1	Rint	5.53\%	Full 50.5°	99.9
Refinement:	Shift	-0.002	Max Peak	0.4	Min Peak	-0.3	GooF	1.038

A clear light colourless needle-shaped-shaped crystal with dimensions $0.80 \times 0.15 \times 0.12 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Nonius APEX-II CCD diffractometer operating at $T=110.0(1) \mathrm{K}$. Data were measured using ϕ and ω scans with Mo $\mathrm{K}_{\alpha 1}$ radiation. The diffraction pattern was indexed and the total number of runs, and images was based on the strategy calculation from the program APEX4 ${ }^{6}$. The maximum resolution that was achieved was $\Theta=27.576^{\circ}$ $\left(0.77 \AA\right.$) . The unit cell was refined using SAINT V8.40B ${ }^{4}$ on 9904 reflections, 12% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT V8.40B ${ }^{4}$. The final completeness is 99.90% out to 27.576° in Θ. SADABS-2016/2 ${ }^{5}$ was used for absorption correction. $w R_{2}$ (int) was 0.0663 before and 0.0530 after correction. The Ratio of minimum to maximum transmission is 0.8031 . The absorption coefficient μ of this material is $0.999 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=0.71073 \AA$) and the minimum and maximum transmissions are 0.644 and 0.801 . The structure was solved, and the space group $P-1$ (\# 2) determined by the ShelXT ${ }^{1}$ structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL ${ }^{3}$ 2018/3 . All nonhydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z ' is 1 .

Table S92: Bond Lengths in \AA Å for compound 6d.

Atom	Atom	
Zn1	O1	$1.9337(11)$
Zn1	O1A	$1.9370(11)$
Zn1	N1	$2.0172(12)$
Zn1	N1A	$2.0072(13)$
O1	C2	$1.3278(18)$
O1A	C2A	$1.3342(18)$
N1	C1	$1.4326(19)$
N1	C7	$1.305(2)$
N1A	C1A	$1.4390(19)$
N1A	C7A	$1.309(2)$
N2	C7	$1.3289(19)$
N2	C8	$1.453(2)$
N2	C9	$1.4621(19)$
N2A	C7A	$1.328(2)$
N2A	C8A	$1.457(2)$
N2A	C9A	$1.463(2)$
N3	C10	$1.458(2)$
N3	C11	$1.455(2)$

Atom	Atom	Length/Å
N3	C12	$1.459(2)$
N3A	C10A	$1.458(2)$
N3A	C11A	$1.462(2)$
N3A	C12A	$1.457(2)$
C1	C2	$1.422(2)$
C1	C6	$1.388(2)$
C1A	C2A	$1.418(2)$
C1A	C6A	$1.394(2)$
C2	C3	$1.401(2)$
C2A	C3A	$1.397(2)$
C3	C4	$1.386(2)$
C3A	C4A	$1.387(2)$
C4	C5	$1.384(2)$
C4A	C5A	$1.386(3)$
C5	C6	$1.390(2)$
C5A	C6A	$1.388(2)$
C9	C10	$1.520(2)$
C9A	C10A	$1.523(2)$

Table S93: Bond Angles in ${ }^{\circ}$ for compound 6d.

Atom	Atom	Atom	Angle $/{ }^{\circ}$
01	Zn1	O1A	$112.07(5)$
01	Zn1	N1	$86.72(5)$
01	Zn1	N1A	$122.65(5)$
O1A	Zn1	N1	$122.19(5)$
01A	Zn1	N1A	$87.14(5)$
N1A	Zn1	N1	$128.83(5)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C2	O1	Zn1	$110.35(9)$
C2A	O1A	Zn1	$110.06(9)$
C1	N1	Zn1	$107.00(9)$
C7	N1	Zn1	$133.65(10)$
C7	N1	C1	$119.12(12)$
C1A	N1A	Zn1	$106.79(9)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C7A	N1A	Zn1	$133.90(11)$
C7A	N1A	C1A	$118.21(13)$
C7	N2	C8	$122.78(13)$
C7	N2	C9	$119.00(13)$
C8	N2	C9	$117.29(12)$
C7A	N2A	C8A	$122.71(13)$
C7A	N2A	C9A	$117.89(13)$
C8A	N2A	C9A	$118.31(13)$
C10	N3	C12	$111.34(14)$
C11	N3	C10	$111.52(14)$
C11	N3	C12	$110.12(15)$
C10A	N3A	C11A	$110.97(14)$
C12A	N3A	C10A	$111.88(15)$
C12A	N3A	C11A	$109.57(15)$
C2	C1	N1	$114.97(13)$
C6	C1	N1	$125.51(14)$
C6	C1	C2	$119.52(14)$
C2A	C1A	N1A	$115.34(13)$
C6A	C1A	N1A	$125.17(15)$
C6A	C1A	C2A	$119.49(15)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
01	C2	C1	$120.91(13)$
01	C2	C3	$120.83(14)$
C3	C2	C1	$118.25(14)$
01A	C2A	C1A	$120.66(14)$
01A	C2A	C3A	$120.94(15)$
C3A	C2A	C1A	$118.39(14)$
C4	C3	C2	$121.37(15)$
C4A	C3A	C2A	$121.39(16)$
C5	C4	C3	$119.89(15)$
C5A	C4A	C3A	$119.85(16)$
C4	C5	C6	$119.95(15)$
C4A	C5A	C6A	$119.97(16)$
C1	C6	C5	$121.02(15)$
C5A	C6A	C1A	$120.85(16)$
N1	C7	N2	$125.43(14)$
N1A	C7A	N2A	$125.87(14)$
N2	C9	C10	$111.96(13)$
N2A	C9A	C10A	$112.35(13)$
N3	C10	C9	$112.35(13)$
N3A	C10A	C9A	$112.59(14)$

Table S94: Torsion Angles in ${ }^{\circ}$ for compound 6d.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Zn1	O1	C2	C1	$2.37(17)$
Zn1	01	C2	C3	$-179.10(12)$
Zn1	O1A	C2A	C1A	$0.30(17)$
Zn1	O1A	C2A	C3A	$179.13(12)$
Zn1	N1	C1	C2	$-0.10(15)$
Zn1	N1	C1	C6	$-179.48(13)$
Zn1	N1	C7	N2	$-4.4(2)$
Zn1	N1A	C1A	C2A	$-1.08(15)$
Zn1	N1A	C1A	C6A	$178.64(13)$
Zn1	N1A	C7A	N2A	$-15.2(2)$
01	C2	C3	C4	$-177.86(15)$
01A	C2A	C3A	C4A	$-178.58(15)$
N1	C1	C2	O1	$-1.5(2)$
N1	C1	C2	C3	$179.88(14)$
N1	C1	C6	C5	$179.51(15)$
N1A	C1A	C2A	O1A	$0.6(2)$
N1A	C1A	C2A	C3A	$-178.28(13)$
N1A	C1A	C6A	C5A	$177.43(15)$
N2	C9	C10	N3	$-63.33(17)$
N2A	C9A	C10A	N3A	$-61.44(19)$
C1	N1	C7	N2	$-177.99(14)$
C1	C2	C3	C4	$0.7(2)$
C1A	N1A	C7A	N2A	$178.61(14)$
C1A	C2A	C3A	C4A	$0.3(2)$
C2	C1	C6	C5	$0.2(2)$
C2	C3	C4	C5	$-0.2(3)$
C2A	C1A	C6A	C5A	$-2.9(2)$
C3A	C4	C4A	C5A	$-1.7(3)$
C6	C4A	C5	C5A	C6A

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C6A	C1A	C2A	C3A	$2.0(2)$
C7	N1	C1	C2	$175.07(13)$
C7	N1	C1	C6	$-4.3(2)$
C7	N2	C9	C10	$96.29(16)$
C7A	N1A	C1A	C2A	$168.57(14)$
C7A	N1A	C1A	C6A	$-11.7(2)$
C7A	N2A	C9A	C10A	$85.72(17)$
C8	N2	C7	N1	$-3.7(2)$
C8	N2	C9	C10	$-72.95(17)$
C8A	N2A	C7A	N1A	$-2.8(2)$
C8A	N2A	C9A	C10A	$-82.71(18)$
C9	N2	C7	N1	$-172.27(14)$
C9A	N2A	C7A	N1A	$-170.65(14)$
C11	N3	C10	C9	$160.91(14)$
C11A	N3A	C10A	C9A	$165.69(15)$
C12	N3	C10	C9	$-75.65(17)$
C12A	N3A	C10A	C9A	$-71.59(18)$

Table S95: Continuous shape measure values $\mathrm{SQ}(\mathrm{P})$ calculated for the coordination polyhedra found in the crystal structures of complexes $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 b}$ ', 2, and $\mathbf{3 b}$.

ML5 structure	PP-5-D5h- Pentagon	vOC-5-C4v- Vacant octahedron	TBPY-5-D3h- Trigonal bipyramid	SPY-5-C4v- Spherical square pyramid	JTBPY-5-D3h- Johnson trigonal bipyramid J12
1a	33.899	7.322	$\underline{\mathbf{2 . 0 1 5}}$	4.462	4.006
1b	33.873	7.198	$\underline{\mathbf{1 . 3 4 8}}$	4.402	2.062
1b'	32.956	5.552	$\underline{\mathbf{1 . 0 5 5}}$	3.908	1.436
2b	33.393	4.916	2.204	$\underline{\mathbf{2 . 1 8 0}}$	3.180
3b	34.054	4.678	3.062	$\underline{\mathbf{1 . 8 1 2}}$	3.830

Bold-faced numbers correspond to the lowest SQ(P) values calculated by the SHAPE 2.1 program ${ }^{11}$

Citations

1) Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8.
2) O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, J. Appl. Cryst., (2009), 42, 339-341.
3) Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.
4) Bruker, SAINT V8.40B. Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker AXS Inc., Madison, Wisconsin, USA (2021).
5) Bruker, SADABS-2016/2. Bruker AXS Inc., Madison, Wisconsin, USA (2016).
6) Bruker, APEX4. Bruker AXS Inc., Madison, Wisconsin, USA (2021).
7) Bruker, APEX3. Bruker AXS Inc., Madison, Wisconsin, USA (2015).
8) Bruker, SAINT V8.40A. Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker AXS Inc., Madison, Wisconsin, USA (2016).
9) Sheldrick, G.M, TWINABS: scaling program for twinned crystals (version 2012/1) Bruker, Madison, Wisconsin ,USA 2012.
10) Sheldrick, G.M, CELL_NOW: program for unit cell determination Bruker, Madison, Wisconsin ,USA 2008.
11) Pinsky, M.; Avnir, D. Continuous Symmetry Measures. 5. The Classical Polyhedra. Inorganic Chemistry (1998), 37, 5575-5582.

[^0]: 11-x,1-y,1-z

