Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Single-ion magnet behavior of Ln³⁺ encapsulated in carbon nanotube. An *ab initio* insight

Dan Liu¹*, Xuefeng Guo¹, Xiaoyong Zhang², Abdullah A. Al-Kahtani³, Liviu F. Chibotaru⁴*

 ¹Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072 Shaanxi, China
 ²Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
 ³Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
 ⁴Theory of Nanomaterials Group, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium

Ab initio insight: single ions magnet behavior of Ln³⁺ encapsulated in carbon nanotube

The diameters of DFT optimized pristine zigzag nanotubes and calculated ones for R_{CC} = 1.4 Å [1] are shown in Table S1. One can see an enlargement of the diameters of all CNTs of ca 0.2 Å upon optimization. The last row in Table S1 gives the diameter of the closest to Tb ring of carbon atoms in the fully optimized embedded CNT Tb³⁺@(5,0). The corresponding structural model used in ab initio calculations is shown in Fig. 1, while Fig. S1 gives similar structural models for non-optimized and diameter optimized only CNT fragments. These are used for the sake of identification of the role of structural distortions of C atoms surrounding the Ln³⁺ ion in the observed multiplet spectra and magnetic anisotropy of embedded CNTs. The relevant structural distortions can be inferred from Tables S2 and S3.

edded CN1.			
CNTs	(5,0)	(6,0)	(7,0)
Non-optimized	3.91	4.70	5.48
Optimized pristine	4.08	4.84	5.60
Fully optimized (closest C ring to Tb)	4.20	4.94	5.68

Table S1. The diameters (Å) of non-optimized, optimized pristine and optimized embedded CNT.

Figure S1. Structural models of Tb^{3+} embedded into (5,0) zigzag CNT with nonoptimized (a) and partly optimized (b) nanotubes (see the text). The labelled black balls highlight nearest and next nearest carbon atoms to the Tb^{3+} ion.

Table S2. The distances (Å) between Tb^{3+} ion and the nearest and next nearest C atoms in non-optimized, CNT diameter optimized only and fully optimized (5,0) CNTs.

Tb-C	n ∽n	Non-optimized	CNT diameter optimized only	Fully optimized
	Tb-C ₁₁	2.1	2.2	2.3
	Tb-C ₁₅	2.1	2.2	2.3
nearest	Tb-C ₁₉	2.1	2.2	2.3
	Tb-C ₂₃	2.1	2.2	2.3
	Tb-C ₂₇	2.1	2.2	2.3
	Tb-C ₁₄	2.4	2.5	2.6
next-nearest	$Tb-C_{18}$	2.4	2.5	2.6
	Tb-C ₂₂	2.4	2.5	2.6
	Tb-C ₂₆	2.4	2.5	2.6
	Tb-C ₃₀	2.4	2.5	2.6

Table S3. The angles (°) between nearest C atoms and the Tb³⁺ ion in non-optimized, CNT diameter optimized only and fully optimized (5,0) CNTs.

$< C_{n1}C_nC_{n3}$	Non-optimized	CNT diameter optimized only	Fully optimized
<c<sub>15C₁₈C₁₉</c<sub>	110.2	111.2	117.6
$< C_{18}C_{19}C_{20}$	120.4	119.8	117.8

$< C_{16}C_{15}C_{18}$	120.4	119.8	117.8

Atoms	Atoms Non-optimize		CNT diameter optimized only	Fully optimized
Tb ³⁺		0.96	1.12	1.26
	C ₁₁	-0.08	-0.09	-0.05
	C ₁₅	-0.09	-0.10	-0.06
nearest	C ₁₉	-0.11	-0.11	-0.05
	C ₂₃	-0.11	-0.11	-0.06
	C ₂₇	-0.09	-0.10	-0.06
	C ₁₄	0.07	0.05	-0.01
	C ₁₈	0.08	0.07	0.00
next-nearest	C ₂₂	0.08	0.07	-0.05
	C ₂₆	0.08	0.07	0.02
	C ₃₀	0.07	0.06	-0.05

Table S4. The Mulliken charges on Tb^{3+} ion, the nearest and next nearest C atoms in non-optimized, CNT diameter optimized only and fully optimized (5,0) CNTs.

Figure S2. Position of Tb^{3+} in the (5,0), (6,0) and (7,0) CNTs (top row are non-optimized, middle row are fully optimized and bottom is CNT diameter optimized only)

and main magnetic axis (pink arrow). Color code: Tb³⁺ (green), H (gray) and C (dark gray).

Spin-orbit energies, cm ⁻¹					
(5,0)	(5,0)	(6,0)	(7,0)		
Non-optimized	CNT diameter optimized only	Non-optimized	Non-optimized		
0.0	0.0	0.0	0.0		
2.5	5.5	6.3	0.0		
48.4	19.8	123.7	327.5		
58.7	26.7	123.8	327.5		
78.2	96.0	143.1	613.9		
81.8	97.4	144.5	613.9		
172. 5	198.9	144.5	850.4		
184.3	203.6	156.9	853.0		
248.4	219.3	239.9	1032.6		
581.6	411.0	240.0	1032.6		
611.2	412.9	292.3	1145.7		
622.3	418.4	295.4	1149.2		
651.4	422.3	295.6	1187.2		

Table S5. Energies of the lowest doublets (cm^{-1}) of Tb^{3+} in (5,0), (6,0) and (7,0) CNTs (non-optimized) and (5,0) CNT (CNT diameter optimized only).

Table S6. The *g* tensors of the lowest doublets of Tb^{3+} in (5,0), (6,0) and (7,0) CNTs (non-optimized) and (5,0) CNT (CNT diameter optimized only).

Dou	blets	(5,0) Non-optimized	(5,0) CNT diameter	(6,0) Non-optimized	(7,0) Non-optimized
			optimized only		
	gx	0.0	0.0	0.0	0.0
1	$g_{\rm Y}$	0.0	0.0	0.0	0.0
	gz	17.4	15.6	17.2	17.9
	gx	0.0	0.0	0.0	0.0
2	$g_{\rm Y}$	0.0	0.0	0.0	0.0
	gz	15.8	15.1	0.5	14.6
	gx	0.0	0.0	0.0	0.0
3	$g_{\rm Y}$	0.0	0.0	0.0	0.0
	gz	16.8	17.7	0.1	11.4

	gx	0.0	0.0	0.0	0.0
4	$g_{\rm Y}$	0.0	0.0	0.0	0.0
	gz	9.9	12.1	11.7	8.4

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$95.0\% \pm 6 angle$
2	2.5	$99.8\% \pm 6 angle$
3	48.4	$39.4\% \big \pm 1 \rangle + 39.8\% \big \pm 3 \rangle + 20.8\% \big \pm 5 \rangle$
4	58.7	$18.6\% 0\rangle + 47.4\% \pm2\rangle + 29.0\% \pm4\rangle$
5	78.2	$42.6\% \big \pm 1 \big\rangle + 39.0\% \big \pm 3 \big\rangle + 18.4\% \big \big \pm 5 \big\rangle$
6	81.8	$22.1\% 0\rangle + 49.6\% \pm2\rangle + 28.4\% \pm4\rangle$
7	172.5	$16.8\% \pm3 angle+79.4\% \pm5 angle$
8	184.3	$19.6\% \pm3\rangle+76.6\% \pm5\rangle$
9	248.4	$99.8\% \pm4 angle$
10	581.6	$58.5\% 0\rangle + 41.4\% \pm4\rangle$
11	611.2	$56.8\% \pm1\rangle+40.6\% \pm3\rangle$
12	622.3	$53.6\% \pm1\rangle+44.2\% \pm3\rangle$
13	651.4	$99.8\% \pm2 angle$

Table S7. Ab in	<i>itio</i> results for the	J=6 multiplet	t of Tb ³⁺ in (5.	.0) CNT ((non-optimized).
		• • • • • • • • • • • • • • • • • • • •	(-;	, - , ,	(

Table S8. *Ab initio* results for the J=6 multiplet of Tb³⁺ in (5,0) CNT (CNT diameter optimized only).

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$10.8\% 0 angle+10.0\% \pm2 angle+73.0\% \pm6 angle$
2	5.5	$93.6\% \pm6 angle$
3	19.8	$85.6\% \pm1\rangle+13.2\% \pm3\rangle$
4	26.7	$38.3\% 0 angle+39.8\% \pm2 angle+20.8\% \pm6 angle$
5	96.0	$77.0\% \big \pm 1 \big\rangle + 20.0\% \big \pm 3 \big\rangle$
6	97.4	$46.0\% 0\rangle+48.0\% \pm2\rangle$
7	198.9	$12.0\% \pm1\rangle+55.8\% \pm3\rangle+27.4\% \pm5\rangle$
8	203.6	$85.2\% \pm2\rangle+9.6\%\big \pm4\rangle$

9	219.3	$20.2\% \pm 1\rangle + 46.4\% \pm 3\rangle + 31.4\% \pm 5\rangle$
10	411.0	$9.2\%\big \pm2\big\rangle+6.0\%\big \pm3\big\rangle+75.2\%\big \pm4\big\rangle$
11	412.9	$81.6\% \pm4$)
12	418.4	$23.0\%\big \pm3\big\rangle+9.2\%\big \pm4\big\rangle+64.0\%\big \pm5\big\rangle$
13	422.3	$27.4\% \big \pm 3 \big\rangle + 63.4\% \big \pm 5 \big\rangle$

Table S9. Ab initio results for the J=6 multiplet of Tb³⁺ in (6,0) CNT (non-optimized).

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	95.2% ±6>
2	6.3	100% ± 6)
3	123.7	$79.8\% \pm1\rangle+20.2\% \pm5\rangle$
4	123.8	$79.6\% \pm1\rangle+20.4\% \pm5\rangle$
5	143.1 95.0% 0>	
6	144.5	$77.4\% \pm 2 angle + 22.6\% \pm 4 angle$
7	145.0	$77.4\% \pm 2 angle + 22.6\% \pm 4 angle$
8	156.9	$100\% \pm3 angle$
9	239.9	$20.2\% \pm1\rangle+79.8\% \pm5\rangle$
10	240.0	$22.4\% \pm1\rangle+79.6\% \pm5\rangle$
11	292.3	$100\% \pm 3 angle$
12	295.4 $22.6\% \pm 2\rangle + 77.4\% \pm 4\rangle$	
13	295.6	$22.6\% \pm 2 angle + 77.4\% \pm 4 angle$

Tał	ole S10. Ab	initio	results	for the	<i>J</i> =6 r	nultiplet	of Tb ³⁺	in (7,	0) CN	VT (n	on-op	otimized	1).

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$100\% \pm 6\rangle$
2	0.0	$100\% \pm 6\rangle$
3	327.5	$100\% \pm5 angle$
4	327.5	$100\% \pm5 angle$
5	613.9	$100\% \pm4 angle$
6	613.9	$100\% \pm4 angle$

7	850.4	$100\% \pm 3\rangle$
8	853.0	$100\% \pm 3 angle$
9	1032.6	$100\% \pm 2\rangle$
10	1032.6	$100\% \pm 2\rangle$
11	1145.7	$100\% \pm1 angle$
12	1149.2	$100\% \pm1 angle$
13	1187.2	100% 0>

Figure S3. The relaxation paths for reversal of magnetization of Tb^{3+} in non-optimized (5,0), (6,0) and (7,0) CNTs [(a), (c), and (d), respectively] and for (5,0) CNT diameter optimized only (b).

Table S11. Ab initio results for the $J=6$ multiplet of Tb ³⁺ in (5,)	0) CNT	(fully optimized)).
---	--------	-------------------	----

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$99.0\% \pm 6 angle$
2	0.5	$99.4\% \pm 6 angle$
3	82.0	$8.8\% \pm3 angle+85.8\% \pm5 angle$
4	89.5	$96.4\% \pm5 angle$
5	118.2	$16.2\% 0 angle+81.6\% \pm4 angle$

6	144.7	$30.0\% \pm2 angle+69.8\% \pm4 angle$
7	155.1	$31.4\% \pm 1 angle + 68.4\% \pm 3 angle$
8	188.4	$13.4\% \pm 1\rangle + 73.2\% \pm 3\rangle + 13.2\% \pm 5\rangle$
9	190.9	$69.2\% \pm2\rangle+29.4\% \pm4\rangle$
10	370.0	$64.2\% \pm1\rangle+30.2\% \pm3\rangle$
11	370.2	$29.0\% 0\rangle + 56.4\% \pm2\rangle + 12.0\% \pm4\rangle$
12	382.5	$19.8\% \pm3\rangle+81.2\% \pm1\rangle$
13	382.5	$5.6\% \pm4\rangle+53.8\% 0\rangle+40.2\% \pm2\rangle$

Table S12. *Ab initio* results for the J=6 multiplet of Tb³⁺ in (6,0) CNT (fully optimized).

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$94.6\% \pm6 angle$
2	4.7	100% ± 6)
3	$85.9 88.2\% \pm 1\rangle + 11.8\% \pm 5\rangle$	
4	87.4	$87.6\% \pm 1 angle + 12.2\% \pm 5 angle$
5	95.3	92.8% 0>
6	102.2	$82.6\% \pm 2 + 17.4\% \pm 4$
7	103.7	$81.6\% \pm 2 angle + 16.6\% \pm 4 angle$
8	114.7	$99.8\% \pm3 angle$
9	183.2	$11.8\% \pm1\rangle+88.0\% \pm5\rangle$
10	183.4	$12.2\% \pm1\rangle+87.8\% \pm5\rangle$
11	204.4	$99.8\% \pm3 angle$
12	213.6	$16.8\% \pm 2 angle + 83.2\% \pm 4 angle$
13	214.6	$17.4\% \pm 2 + 82.6\% \pm 4$

Table S13.	Ab initio	results for t	the <i>J</i> =6 m	ultiplet o	of Tb ³⁺ in	(7,0)) CNT	(fully o	ptimized)).
						• •	/	`		~

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$11.0\% \big \pm 2 \big\rangle + 19.4\% \big \pm 4 \big\rangle + 65.2\% \big \pm 6 \big\rangle$
2	15.1	$13.8\% \pm 4 angle + 84.2\% \pm 6 angle$
3	49.0	$31.2\% \pm 1\rangle + 34.6\% \pm 3\rangle + 34.4\% \pm 5\rangle$

118.8	$26.2\% \pm 3 angle + 71.0\% \pm 5 angle$
123.3	$21.3\% 0 angle + 36.4\% \pm 2 angle + 11.6\% \pm 4 angle + 30.6\%$
265.4	$24.2\% \pm 2\rangle + 51.2\% \pm 4\rangle + 13.6\% \pm 6\rangle$
269.3	33.8% $ \pm1\rangle + 52.4\% \pm5\rangle$
484.9	$13.6\% \pm 1\rangle + 49.6\% \pm 3\rangle + 7.8\% \pm 4\rangle + 25.0\%$
485.3	$21.5\% 0 angle + 6.0\% \pm 1 angle + 6.8\% \pm 3 angle + 57.0\% \pm 1$
808.0	$16.0\% \pm 1\rangle + 34.2\% \pm 2\rangle + 32.0\% \pm 3\rangle + 13.8$
808.1	$15.0\% \pm 1 angle + 36.4\% \pm 2 angle + 30.2\% \pm 3 angle + 14.8$
1477.5	$21.9\% 0 angle + 46.0\% \pm 1 angle + 20.0\% \pm 2 angle + 9.8\% =$
1477.6	$28.0\% 0 angle + 35.8\% \pm 1 angle + 25.8\% \pm 2 angle + 7.6\% \pm 2$
	118.8 123.3 265.4 269.3 484.9 485.3 808.0 808.1 1477.5 1477.6

Figure S4. Structure of Ln^{3+} (Ln=Dy, Ho, Er and Tm top to bottom) in the (5,0), (6,0)

and (7,0) CNT (left to right) and the main magnetic axis of the corresponding ground doublet (pink arrow). Color code: Dy^{3+} (violet), Ho^{3+} (orange), Er^{3+} (dark yellow), Tm^{3+} (dark red), H (gray) and C (dark gray).

KDs	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$7.5\% \big \pm 3/2 \big\rangle + 7.6\% \big \pm 7/2 \big\rangle + 8.1\% \big \pm 9/2 \big\rangle +$
1	0.0	25.2% $\pm 13/2$ $+ 46.2\%$ $\pm 15/2$
2	3.6	$10.0\% \pm 1/2 + 8.9\% \pm 3/2 + 16.7\% \pm 5/2 + 19.7\% \pm 7/2 +$
2 3.0	$17.5\% \pm 9/2 + 11.7\% \pm 13/2 + 11.8\% \pm 15/2$	
2	95 5	$19.3\% \pm 1/2 angle + 9.1\% \pm 5/2 angle + 16.7\% \pm 7/2 angle +$
5	3 83.3	$29.7\% \pm 9/2\rangle + 18.5\% \pm 11/2\rangle$
4	116.2	$18.3\% \pm 3/2\rangle + 38.3\% \pm 5/2\rangle + 26.4\% \pm 7/2\rangle + 16.1\% \pm 11/2\rangle$
5	143.4	$14.8\% \pm 1/2\rangle + 19.0\% \pm 3/2\rangle + 12.8\% \pm 9/2\rangle + 45.4\% \pm 11/2\rangle$
(269.6	$15.6\% \pm 3/2 + 23.0\% \pm 5/2 + 13.2\% \pm 7/2 +$
0	508.0	$20.2\% \pm11/2\rangle+9.8\% \pm13/2\rangle$
7	425.0	$7.0\% \pm 1/2\rangle + 15.2\% \pm 9/2\rangle + 40.1\% \pm 13/2\rangle + 22.5\% \pm 15/2\rangle$
8	477.0	$41.7\% \pm 1/2\rangle + 22.9\% \pm 3/2\rangle + 10.4\% \pm 5/2\rangle + 10.1\% \pm 7/2\rangle$

Table S14. *Ab initio* results for the J=15/2 multiplet of Dy³⁺ in (5,0) CNT.

Table S15. Ab	initio results	for the	<i>J</i> =15/2 m	ultiplet c	of Dy^{3+}	in (6,0) CNT
---------------	----------------	---------	------------------	------------	--------------	---------	-------

KDs	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$8.4\% \pm 1/2\rangle + 8.4\% \pm 5/2\rangle + 18.4\% \pm 9/2\rangle +$
1	0.0	$29.7\% \pm 11/2 \rangle + 25.1\% \pm 13/2 \rangle$
2	42.4	$11.7\% \pm 1/2\rangle + 17.0\% \pm 5/2\rangle + 29.3\% \pm 7/2\rangle +$
Z	42.4	$20.8\% \pm 9/2 angle + 14.6\% \pm 11/2 angle$
2	40.6	$6.4\%\big \pm9/2\big\rangle+31.6\%\big \pm11/2\big\rangle+48.5\%\big \pm13/2\big\rangle+$
3	49.0	$11.2\% \pm15/2 angle$
4	64.3	$6.4\% \pm 1/2\rangle + 20.8\% \pm 3/2\rangle + 23.1\% \pm 5/2\rangle +$
4		$21.9\% \pm 7/2 \rangle + 22.6\% \pm 9/2 \rangle$
E	272 4	$5.4\% \pm 1/2 angle + 4.9\% \pm 5/2 angle + 4.0\% \pm 7/2 angle +$
3	2/2.4	$12.0\% \pm 13/2 angle + 65.6\% \pm 15/2 angle$
6	295.1	$38.0\% \pm 1/2 angle + 35.0\% \pm 3/2 angle + 7.1\% \pm 5/2 angle +$
0		$6.7\% \big \pm 11/2 \big\rangle + 6.9\% \big \pm 13/2 \big\rangle$
7	338.3	$22.8\% \pm 1/2 + 8.1\% \pm 3/2 + 23.7\% \pm 5/2 +$
/		$12.4\% \pm 7/2 + 6.3\% \pm 11/2 + 17.4\% \pm 15/2 $

9 360 7	$6.6\% \pm 1/2\rangle + 22.5\% \pm 3/2\rangle + 21.4\% \pm 5/2\rangle +$	
0	500.7	$27.5\% \pm 7/2 + 19.0\% \pm 9/2 $

Table S16. Ab initio results for the J=15/2 multiplet of Dy³⁺ in (7,0) CNT.

KDs	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$6.1\% \pm 7/2 angle + 17.9\% \pm 11/2 angle + 69.9\% \pm 15/2 angle$
2	57.8	$11.8\% \pm 1/2 + 6.8\% \pm 3/2 + 16.8\% \pm 5/2 +$
	0,10	$23.7\% \pm 9/2$ + $30.6\% \pm 13/2$ + 7.7% + $15/2$
3	145 1	$9.2\% \pm 1/2 angle + 17.9\% \pm 3/2 angle + 18.3\% \pm 7/2 angle +$
3	173.1	$6.9\%\big \pm11/2\big\rangle+30.6\%\pm13/2\big\rangle+11.6\%\big \pm15/2\big\rangle$
4	202.7	$12.3\%\big \pm1/2\rangle+18.0\%\big \pm5/2\rangle+11.4\%\big \pm7/2\rangle+$
4	502.7	$27.0\%\big \pm11/2\big\rangle+20.6\%\pm13/2\big\rangle+7.6\%\big \pm15/2\big\rangle$
5	534.1	$20.1\% \pm 3/2 + 8.9\% \pm 5/2 + 22.7\% \pm 9/2 +$
5		$27.4\% \pm 11/2 + 12.4\% \pm 13/2$
C	920.2	$18.9\% \pm 1/2 + 5.0\% \pm 5/2 + 24.5\% \pm 7/2 +$
0	039.3	$28.6\% \pm 9/2 + 15.5\% \pm 11/2$
7	1162.0	$18.9\% \pm 3/2 + 31.4\% \pm 5/2 + 27.2\% \pm 7/2 +$
1	1102.0	$14.3\% \pm 9/2 \rangle$
0	1267 5	$39.5\% \pm 1/2 + 30.7\% \pm 3/2 + 18.3\% \pm 5/2 +$
ð	1307.3	8.2% ± 7/2)

Table S17. *Ab initio* results for the J=8 multiplet of Ho³⁺ in (5,0) CNT.

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$17.4\% \pm 6 angle + 77.0\% \pm 8 angle$
2	0.5	$17.2\% \pm 6 angle + 77.4\% \pm 8 angle$
3	85.8	$10.4\% \pm 2\rangle + 28.8\% \pm 3\rangle + 23.2\% \pm 4\rangle + 22.6\% \pm 5\rangle$ $7.2\% \pm 6\rangle$
4	85.8	$14.4\% \pm 2\rangle + 20.2\% \pm 3\rangle + 32.6\% \pm 4\rangle + 16.6\% \pm 5\rangle$ $10.4\% \pm 6\rangle$
5	117.0	$11.2\% \pm 1\rangle + 80.6\% \pm 5\rangle + 7.0\% \pm 7\rangle$
6	119.5	$10.2\% \pm 2 angle + 67.4\% \pm 4 angle + 21.6\% \pm 6 angle$
7	121.9	$26.6\% \pm 3\rangle + 33.4\% \pm 5\rangle + 36.8\% \pm 7\rangle$
8	122.1	$56.0\% \pm 3\rangle + 8.6\% \pm 5\rangle + 31.6\% \pm 7\rangle$

9	163.2	$27.7\% 0\rangle + 44.6\% \pm2\rangle + 20.0\% \pm4\rangle + 6.2\% \pm8\rangle$
10	196.5	$40.8\% \pm2\rangle+25.0\% \pm4\rangle+16.4\% \pm6\rangle+14.8\% \pm8\rangle$
11	200.1	$64.0\% \pm1\rangle+29.2\% \pm7\rangle$
12	256.8	$\begin{array}{l} 5.4\% \pm 1\rangle + 25.4\% \pm 3\rangle + 5.6\% \pm 5\rangle + 10.6\% \pm 6\rangle + \\ \\ 44.4\% \pm 7\rangle \end{array}$
13	257.2	$9.6\% 0 angle + 9.6\% \pm 4 angle + 44.4\% \pm 6 angle + 10.8\% \pm 7 angle + 12.6\% \pm 8 angle$
14	292.5	$\begin{array}{l} 15.0\% \pm 1\rangle + 9.4\% \pm 2\rangle + 26.8\% \pm 3\rangle + 12.4\% \pm 5\rangle + \\ 8.6\% \pm 6\rangle + 26.2\% \pm 7\rangle \end{array}$
15	292.9	$\begin{array}{l} 37.4\% \big \pm 2 \big\rangle + 6.6\% \big \pm 3 \big\rangle + 35.4\% \big \pm 6 \big\rangle + 6.2\% \big \pm 7 \big\rangle + \\ 6.0\% \big \pm 8 \big\rangle \end{array}$
16	328.4	$14.6\% 0 angle + 6.0\% \pm 2 angle + 62.8\% \pm 1 angle + 10.4\% \pm 5 angle$
17	328.4	$\begin{array}{l} 44.2\% 0\rangle + 20.6\% \pm1\rangle + 18.2\% \pm2\rangle + 6.0\% \pm4\rangle + \\ 6.8\% \pm6\rangle \end{array}$

Table S18. Ab initio results for the J=8 multiplet of Ho³⁺ in (6,0) CNT.

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$24.8\% \big \pm 1 \big\rangle + 6.6\% \big \pm 3 \big\rangle + 57.2\% \big \pm 7 \big\rangle$
2	15.3	$7.2\% \pm3\rangle+83.8\% \pm7\rangle$
3	17.1	$33.7\% 0 angle + 24.6\% \pm 2 angle + 32.0\% \pm 6 angle$
4	76.0	$50.6\% \pm 1\rangle + 9.4\% \pm 2\rangle + 8.0\% \pm 6\rangle + 28.0\% \pm 7\rangle$
5	76.5	$5.8\% \pm 2 angle + 11.4\% \pm 5 angle + 61.8\% \pm 7 angle + 10.6\% \pm 8 angle$
6	142.4	$23.7\% 0\rangle + 8.6\% \pm 5\rangle + 38.4\% \pm 6\rangle + 9.8\% \pm 8\rangle$
7	269.8	$20.9\%0\rangle + 44.4\% \pm 1\rangle + 20.6\% \pm 2\rangle$
8	270.1	$16.6\% 0 angle + 31.4\% \pm 1 angle + 25.6\% \pm 2 angle + 15.0\% \pm 3 angle + 8.8\% \pm 4 angle$
9	284.5	$13.4\% \pm 1\rangle + 17.0\% \pm 3\rangle + 15.6\% \pm 4\rangle + 37.4\% \pm 5$ $6.6\% \pm 6\rangle$
10	342.6	$\begin{array}{l} 11.2\% \pm1\rangle + 14.8\% \pm3\rangle + 13.6\% \pm4\rangle + 49.4\% \pm5\\ \\ 5.8\% \pm6\rangle \end{array}$
11	342.7	$7.2\% \pm 1 angle + 57.8\% \pm 2 angle + 15.4\% \pm 3 angle + 11.0\% \pm 4 angle$ $6.6\% \pm 8 angle$
12	481.4	$13.2\% \pm 2$ + 33.8% ± 4 + 20.6% ± 6 + 25.6% ± 8

13	501.6	$7.4\% \pm 2\rangle + 13.8\% \pm 4\rangle + 17.8\% \pm 6\rangle + 52.8\% \pm 8\rangle$
14	502.6	$6.2\% \pm2\rangle+47.6\% \pm3\rangle+38.8\% \pm5\rangle$
15	559.4	$33.4\% \pm4\rangle+5.0\% \pm5\rangle+54.4\% \pm8\rangle$
16	559.7	$8.4\% \pm2\rangle+58.4\% \pm3\rangle+26.8\% \pm5\rangle$
17	583.0	$9.8\% \pm2\rangle+49.2\% \pm4\rangle+5.0\% \pm5\rangle+29.4\% \pm8\rangle$

Table S19. *Ab initio* results for the J=8 multiplet of Ho³⁺ in (7,0) CNT.

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$11.4\% \pm 2\rangle + 16.0\% \pm 4\rangle + 19.0\% \pm 6\rangle + 47.0\% \pm 6\rangle$
2	21.0	$8.0\% \pm 4\rangle + 17.2\% \pm 6\rangle + 71.0\% \pm 8\rangle$
3	36.4	$24.0\% \pm 1\rangle + 28.6\% \pm 3\rangle + 26.8\% \pm 5\rangle + 18.4\% \pm 7$
4	101.6	$17.2\% \pm 3\rangle + 33.2\% \pm 5\rangle + 34.8\% \pm 7\rangle$
5	107.7	$10.5\% 0 angle + 20.4\% \pm 2 angle + 14.4\% \pm 4 angle + 9.0\% \pm 7 angle + 40.2\% \pm 8 angle$
6	180.4	$7.4\% \pm 1\rangle + 10.6\% \pm 2\rangle + 27.2\% \pm 4\rangle + 17.4\% \pm 6\rangle$ $14.8\% \pm 7\rangle + 19.2\% \pm 8\rangle$
7	249.4	$21.6\% \pm 1\rangle + 6.6\% \pm 3\rangle + 8.0\% \pm 4\rangle + 7.2\% \pm 6\rangle + 44.0\% \pm 7\rangle + 6.2\% \pm 8\rangle$
8	317.3	$18.4\% \pm 3\rangle + 4.8\% \pm 5\rangle + 20.2\% \pm 6\rangle + 39.0\% \pm 7\rangle$ 5.2% ± 8>
9	321.6	$15.2\% 0\rangle + 12.2\% \pm 2\rangle + 14.8\% \pm 3\rangle + 5.0\% \pm 5\rangle + 33.2\% \pm 6\rangle + 10.2\% \pm 7\rangle$
10	382.0	$10.6\% \pm 1\rangle + 23.4\% \pm 2\rangle + 9.6\% \pm 4\rangle + 13.2\% \pm 5\rangle$ $33.4\% \pm 6\rangle + 7.8\% \pm 7\rangle$
11	390.1	$17.0\% \pm 1\rangle + 10.0\% \pm 2\rangle + 33.4\% \pm 5\rangle + 18.4\% \pm 6$ $13.2\% \pm 7\rangle$
12	423.7	$17.5\% 0 angle + 5.8\% \pm 3 angle + 42.2\% \pm 4 angle + 11.2\% \pm 5 angle + 17.2\% \pm 6 angle$
13	426.4	$15.8\% \pm 1\rangle + 16.8\% \pm 3\rangle + 9.8\% \pm 4\rangle + 39.2\% \pm 5\rangle$ $7.8\% \pm 6\rangle$
14	478.1	$49.0\% \pm2\rangle+43.2\% \pm4\rangle+5.8\% \pm6\rangle$
15	478.2	$17.6\% \pm 1\rangle + 57.8\% \pm 3\rangle + 21.8\% \pm 5\rangle$
16	671.8	$69.8\% \pm1\rangle+26.2\% \pm3\rangle$

Table S20. *Ab initio* results for the J=15/2 multiplet of Er^{3+} in (5,0) CNT.

KDs	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$57.0\% \big \pm 11/2 \big\rangle + 40.6\% \big \pm 15/2 \big\rangle$
2	18.3	$7.9\% \big \pm 1/2 \big\rangle + 83.6\% \big \pm 9/2 \big\rangle + 8.1\% \big \pm 15/2 \big\rangle$
3	51.8	97.5% ± 7/2 }
4	103.9	$12.8\% \big \pm 1/2 \big\rangle + 8.1\% \big \pm 3/2 \big\rangle + 71.2\% \big \pm 5/2 \big\rangle$
5	154.1	$18.2\% \pm 1/2 + 63.3\% \pm 3/2 + 17.5\% \pm 5/2 $
6	213.1	$10.1\% \pm 9/2 \rangle + 89.1\% \pm 13/2 \rangle$
7	257.5	$42.0\% \big \pm 11/2 \big\rangle + 57.9\% \big \pm 15/2 \big\rangle$
8	289.6	$68.7\% \pm1/2\rangle+28.3\% \pm3/2\rangle$

Table S21. *Ab initio* results for the J=15/2 multiplet of Er^{3+} in (6,0) CNT.

KDs	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$63.1\% \big \pm 1/2 \big\rangle + 19.6\% \big \pm 11/2 \big\rangle + 17.3\% \big \pm 13/2 \big\rangle$
2	57.7	$66.9\% \pm 3/2 angle + 29.9\% \pm 9/2 angle$
3	98.1	57.4% ± 5/2 > + 42.6% ± 7/2 >
4	233.7	23.4% ± 11/2 > + 73.4% ± 13/2 >
5	310.6	94.5% ± 15/2 >
6	432.	$33.7\% \pm 1/2\rangle + 56.9\% \pm 11/2\rangle + 9.3\% \pm 13/2\rangle$
7	529.50	$32.7\% \pm 3/2\rangle + 65.0\% \pm 9/2\rangle$
8	579.6	$42.6\% \pm 5/2\rangle + 57.4\% \pm 7/2\rangle$

Table S22. Ab	o initio results	for the $J=15$	/2 multiplet	of Er ³⁺ in	(7,0)	CNT
---------------	------------------	----------------	--------------	------------------------	-------	-----

KDs	<i>E</i> /cm ⁻¹	Wavefunction
1	0.	99.4% ± 15/2 >
2	199.63	96.4% ± 13/2)

3	246.2	91.5% ± 11/2)
4	284.3	$90.5\% \pm9/2 angle$
5	346.8	$11.1\% \big \pm 5/2 \big\rangle + 84.9\% \big \pm 7/2 \big\rangle$
6	481.1	$85.8\% \pm 5/2 \rangle + 11.0\% \pm 7/2 \rangle$
7	571.5	$7.8\% \pm1/2\rangle+85.2\% \pm3/2\rangle$
8	646.7	85.9% $\pm 1/2$ $+ 8.4\%$ $\pm 3/2$

Table S23. *Ab initio* results for the J=6 multiplet of Tm³⁺ in (5,0) CNT.

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$\begin{array}{l} 9.3\% 0\rangle + 8.6\% \pm1\rangle + 21.4\% \pm2\rangle + 17.0\% \pm3\rangle + \\ 9.0\% \pm5\rangle + 32.2\% \pm6\rangle \end{array}$
2	88.9	$4.8\% \pm2\rangle+4.0\% \pm3\rangle+17.0\% \pm5\rangle+71.2\% \pm6\rangle$
3	104.0	$55.2\% \pm1\rangle+21.0\% \pm3\rangle+16.4\% \pm4\rangle$
4	145.7	$30.9\% 0\rangle + 56.8\% \pm2\rangle + 5.4\% \pm4\rangle$
5	197.1	$31.8\% \pm 1\rangle + 20.2\% \pm 3\rangle + 11.0\% \pm 5\rangle + 34.6\% \pm 6\rangle$
6	220.8	$25.8\% 0 angle + 39.2\% \pm 1 angle + 15.6\% \pm 2 angle + 14.4\% \pm 6 angle$
7	379.5	$22.6\% 0 angle + 8.8\% \pm 1 angle + 20.4\% \pm 3 angle + 38.0\% \pm 4 angle$
8	428.0	$55.4\% \pm 2\rangle + 33.4\% \pm 3\rangle + 9.0\% \pm 5\rangle$
9	432.2	$7.8\% \pm 3 + 46.0\% \pm 4 + 31.8\% \pm 5 + 12.0\% \pm 6$
10	451.3	$9.0\% \pm 1 angle + 24.8\% \pm 3 angle + 45.2\% \pm 4 angle + 12.8\% \pm 5 angle$
11	467.2	$32.0\% \pm 1\rangle + 26.6\% \pm 2\rangle + 33.6\% \pm 3\rangle + 7.2\% \pm 6\rangle$
12	491.9	$10.3\% 0\rangle + 13.6\% \pm 3\rangle + 58.2\% \pm 5\rangle + 11.0\% \pm 6\rangle$
13	493.0	$9.4\% \pm1 angle+10.2\% \pm2 angle+33.6\% \pm4 angle+39.8\% \pm5 angle+7.0\% \pm6 angle$

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$34.4\% \pm1 angle+65.2\% \pm5 angle$
2	29.8	$98.2\% \pm5 angle$
3	30.1	$39.2\% 0\rangle + 29.4\% \pm2\rangle + 9.4\% \pm4\rangle + 21.8\% \pm6\rangle$
4	75.2	$43.9\% 0\rangle + 29.2\% \pm4\rangle + 26.6\% \pm6\rangle$

5	81.8	$8.2\% \pm1\rangle+33.0\% \pm4\rangle+53.0\% \pm6\rangle$
6	85.0	$51.8\% \pm 1\rangle + 5.8\% \pm 3\rangle + 5.2\% \pm 4\rangle + 29.4\% \pm 5\rangle + 7$
7	194.1	$76.6\% \pm 1\rangle + 21.6\% \pm 3\rangle$
8	255.3	$13.3\% 0\rangle + 68.0\% \pm 2\rangle + 17.6\% \pm 6\rangle$
9	319.4	$30.6\% \pm2\rangle+47.6\% \pm4\rangle+21.6\% \pm6\rangle$
10	353.6	$7.2\% \big \pm 3 \big\rangle + 55.4\% \big \pm 4 \big\rangle + 30.2\% \big \pm 6 \big\rangle$
11	3549	$20.4\% \pm1\rangle+69.8\% \pm3\rangle+5.2\% \pm4\rangle$
12	400.3	$16.4\% \pm2\rangle+72.2\% \pm3\rangle$
13	400.3	$51.4\% \pm2\rangle+21.2\% \pm3\rangle+10.4\% \pm4\rangle+15.0\% \pm6\rangle$

Table S25. *Ab initio* results for the J=6 multiplet of Tm³⁺ in (7,0) CNT.

Spin-orbit singlets	<i>E</i> /cm ⁻¹	Wavefunction
1	0.0	$8.0\% \pm4 angle+87.0\% \pm6 angle$
2	4.0	91.0% ± 6)
3	57.3	$10.2\% \pm 2\rangle + 20.4\% \pm 3\rangle + 20.0\% \pm 4\rangle + 41.6\% \pm 5\rangle$
4	64.5	$8.2\% \pm 1 angle + 22.6\% \pm 3 angle + 19.0\% \pm 4 angle + 40.8\% \pm 5 angle$
5	176.6	$18.9\% 0 angle + 33.8\% \pm 2 angle + 20.6\% \pm 3 angle + 9.4\% \pm 4 angle + 8.$
6	185.3	$33.6\% \pm1\rangle+24.6\% \pm2\rangle+15.6\% \pm3\rangle+25.2\% \pm4\rangle$
7	301.3	$24.0\% \big \pm 1 \big\rangle + 7.2\% \big \pm 2 \big\rangle + 12.2\% \big \pm 4 \big\rangle + 49.4\% \big \pm 5 \big\rangle$
8	384.3	$6.4\%\big \pm1\big\rangle+27.2\%\big \pm3\big\rangle+13.0\%\big \pm4\big\rangle+47.0\%\big \pm5\big\rangle$
9	392.7	$24.2\% 0\rangle + 10.4\% \pm2\rangle + 13.4\% \pm3\rangle + 46.6\% \pm4\rangle$
10	559.8	$28.2\% \pm1\rangle+58.4\% \pm3\rangle+7.8\% \pm5\rangle$
11	567.7	$59.6\% \pm2\rangle+32.8\% \pm4\rangle$
12	721.9	$38.5\% 0\rangle + 17.4\% \pm1\rangle + 36.8\% \pm2\rangle$
13	725.9	$12.7\% 0\rangle + 64.2\% \pm 1\rangle + 7.4\% \pm 2\rangle + 13.2\% \pm 3\rangle$

Figure S5. Fully optimized structure of Er^{3+} in (6,0) CNT of variable length of 1-5 stripes of carbon rings (a-e, respectively). Main magnetic axes are shown by pink dashed lines. Color code: Er^{3+} (dark yellow), H (gray) and C (dark gray).

Table S26. Energies of the lowest KDs for fully optimized structure of Er^{3+} in (6,0) CNT of variable length (1-5 stripes of carbon rings).

Spin-orbit energies, cm ⁻¹					
1	2	3	4	5	
0.0	0.0	0.0	0.0	0.0	
20.6	69.6	50.2	57.7	57.8	
95.4	174.6	83.4	98.1	95.7	
114.6	263.1	200.0	233.7	215.7	
151.7	325.6	279.9	310.5	283.5	
727.7	452.9	378.6	432.8	426.6	
763.5	619.0	464.3	529.5	524.5	
796.0	721.3	510.4	579.6	577.9	

Table S27. The *g* factors of the lowest KDs for fully optimized structure of Er^{3+} in (6,0) CNT of variable length (1-5 stripes of carbon rings).

K	Ds	1	2	3	4	5
	gx	0.1	3.0	4.1	8.4	8.3
1	g _Y	0.2	3.0	4.1	8.4	8.3
	gz	14.5	13.2	11.8	0.9	1.1

	g _X	7.0	0.0	0.0	0.2	0.1
2	g _Y	6.6	0.0	0.0	0.2	0.1
	gz	4.5	17.3	16.8	0.2	0.3
	g _X	9.2	0.7	1.9	9.0	8.9
3	g _Y	8.5	0.7	1.9	8.6	8.7
	gz	2.0	6.2	5.0	0.1	0.2
	g _X	0.3	0.0	0.0	4.9	5.0
4	$g_{\rm Y}$	0.4	0.0	0.1	5.0	5.1
	gz	2.9	1.6	1.6	8.4	7.8

Table S28. Energies of the J=7/2 KDs of Yb³⁺ in (5,0) CNT.

Spin-orbit energies,		
cm ⁻¹		
0.0		
32.0		
256.2		
303.8		

Table S29. The g factors of the J=7/2 KDs of Yb³⁺ in (5,0) CNT.

KDs		g		
	gx	1.6		
1	$g_{\rm Y}$	1.7		
	gz	6.7		
	g _x	0.1		
2	g _Y	0.6		
	gz	7.2		
	gx	3.6		
3	g _Y	3.5		
	gz	1.5		
	gx	0.7		
4	g _Y	0.8		
	gz	7.5		

Tb@(5,0)CNT	Tb@(6,0)CNT	Tb@(7,0)CNT	Dy@(5,0)CNT	Dy@(6,0)CNT	Dy@(7,0)CNT	H0@(5,0)CNT	Ho@(6,0)CNT	Ho@(7,0)CNT
1.00	2.00	1.00	1.01	1.72	1.00	1.62	1.92	1.81
۲	*	*	۲			۲		
1.00	1.00	1.00	1.00	1.72	1.63	1.78	1.08	1.17
۲	•	•	۲	۲	•	۲	۲	۲
2.00	1.00	2.00	1.42	1.14	1.63	1.59	1.78	1.73
۲	(*)	(\bullet)	۲	۲	(\bullet)	۲	۲	
1.00	1.00	1.00	1.57	1.14	1.35	1.05	1.00	1.14
۲	۲	۲	۲	۲	(\bullet)	۲	۲	(\bullet)
1.00	1.00	1.00	1.01	1.14	1.35	1.38	1.22	1.20
۲	۲	*	۲	۲		۲	۲	۲
1.00	1.00	1.00	1.42	1.14	1.01	1.22	1.22	1.73
۲	(*)	(*)	۲	۲	۲	۲	۲	(*)
1.00	1.00	1.00	1.57	1.00	1.01	1.36	1.78	1.23
	۲		۲	۲		۲		$\langle \bullet \rangle$
	Er@(5,	0)CNT Er@(6,	0)CNT Er@(7,	0)CNT Tm@(15 2	5,0)CNT Tm@(6,0)CNT Tm@(7.0)CNT	

1.09	1.99	1.45	2.00	2.00	2.00
۲	۲		(2)	۲	
1.91	1.08	1.48	1.88	1.84	1.98
۲		۲	۲	۲	
1.71	1.92	1.56	1.88	1.83	1.64
۲	۲	\bigcirc	۲	۲	
1.26	1.23	1.99	1.83	1.84	1.38
۲	۲		۲		
1.96	1.77	1.44	1.83	1.83	1.98
۲		(*)		۲	۲
1.30	1.26	1.55	1.29	1.32	1.38
۲	\bigcirc		۲	۲	۲
1.78	1.74	1.53	1.29	1.32	1.64
۲	۲		۲	۲	

Figure S6. The seven active molecular orbitals of 4f type for Ln^{3+} @CNT (Ln= Tb, Dy, Ho, Er and Tm) obtained in CASSCF/RASSI-SO. The isosurface corresponds to a value of 0.04. The number at each plot is the occupation number of the corresponding natural orbital in the ground state.

[1] A. Eatemadi et al., Nanoscale Research Letters 9, 393 (2014)