Electronic Supplementary Information (ESI)

Crystal field optimization and fluorescence enhancement of Mn⁴⁺-doped fluoride red phosphor with excellent stability induced by double-site metal ion replacement for warm WLED

Junze Tong^a, Feng Hong ^{a,*}, Long Li^a, Edwin Yue Bun Pun^b, Hai Lin ^{a,b,*}

^a School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034,

China

^b Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, China

Fig. S1 Histogram of length (a) and diameter (b) of as-prepared BaSiF₆:Mn⁴⁺ red phosphor.

Fig. S2 Histogram of length (a) and diameter (b) of as-prepared BaSi_{0.5}Ge_{0.5}F₆:Mn⁴⁺ red phosphor.

Fig. S3 Histogram of length (a) and diameter (b) of as-prepared $K_{0.6}Ba_{0.7}Si_{0.5}Ge_{0.5}F_6$: Mn^{4+} red

phosphor

Host	D_q/cm^{-1}	B/cm^{-1}	<i>C</i> /cm ⁻¹	β_1	$E(^{2}E_{g})/cm^{-1}$	Ref.
Na ₂ TiF ₆	2100	504	4052	1.037	16129	1
$K_2XF_7(X = Ta, Nb)$	2166	511	3955	1.03	15948	2
(NH ₄) ₂ NaAlF ₆	2144	531	3850	1.004	15698	3
$(NH_4)_2NaGaF_6$	2144	531	3858	1.006	15723	3
$(NH_4)_2NaInF_6$	2144	531	3874	1.01	15772	3
KZnF ₃	2105	607	3785	1.0235	15797	4
KGaP ₂ O ₇	2204	782	2804	0.9385	14245	5
$SrGd_2Al_2O_7$	2053	767	2762	0.921	13793	6
Gd_2ZnTiO_6	1980	639	3132	0.913	14184	7
$Li_3Mg_2SbO_6$	2096	812	2634	0.9299	15015	8
La (MgTi) _{1/2} O ₃	2053	700	2959	0.915	14124	9
Sr_2LaNbO_6	2101	722	3001	0.9348	14409	10
$K_{0.6}Ba_{0.7}Si_{0.5}Ge_{0.5}F_6$	2173	556	3795	1.004	15773	This work

Table 1 Spectroscopic parameters and β_1 values of Mn⁴⁺ ions for as-reported Mn⁴⁺-activatedfluorides and oxides phosphor reported by other literature

References

[1] Y. M. Liu, T. M. Wang, Z. R. Tan, J. M. Meng, W. J. Huang, Y. H. Huang, S. Liao, H. X. Zhang, Ceram. Int. 2019, 45, 6243-6249.

[2] H. Lin, T. Hu, Q. M. Huang, Y. Cheng, B. Wang, J. Xu, J. M. Wang, Y. S. Wang, Laser Photonics Rev. 2017,11, 1700148.

[3] H. Wang, X. Y. Liu, F. Hong, Y. K. Dong, Y. N. Li, G. X. Liu, J. X. Wang, D. Li, W. S. Yu, X.
T. Dong, J. Lumin. 2022, 251, 119242.

[4] T. Hu, H. Lin, F. L. Lin, Y. Gao, Y. Cheng, J. Xu, Y.S. Wang, J. Mater. Chem. C,2018, 6, 10845-10854.

[5] V. Naresh, N. Lee, J. Lumin. 2019, 214, 116565.

[6] J. L. Xiao, J. C. Zhang, C. Y. Tu, J. S. Liao, H. R. Wen, G. L. Gong, Opt. Mater. 2021, 118, 111219.

[7] H. Chen, H. Lin, Q. M. Huang, F. Huang, J. Xu, B. Wang, Z. B. Lin, J. C. Zhou, Y. S. Wang, J. Mater. Chem. C, 2016, 4, 2374-2381.

- [8] J. S. Zhong, X. Chen, D. Q. Chen, M. J. Liu, Y. W. Zhu, X. Y. Li, Z. G. Ji, J. Alloys Compd. 2019, 773, 413-422.
- [9] Z. W. Zhou, J. M. Zheng, R. Shi, N. M. Zhang, J. Y. Chen, R. Y. Zhang, H. Suo, E. M. Goldys,C. F. Guo, ACS Appl. Mater. Interfaces 2017, 9, 6177-6185.
- [10] A. J. Fu, A. X. Guan, D. Y. Yu, S. Y. Xia, F. F. Gao, X. S. Zhang, L. Y. Zhou, Y. H. Li, R. G.Li, Mater. Res. Bull. 2017, 88, 258-265.