Supplement information

Room temperature ferroelectric material with photoluminescence: (1,3-Dicyclohexylimidazole)₂MnCl₄

Peng Chen¹, Shulin Jiao¹, Zheng Tang¹, Xiaofan Sun¹, Dong Li¹, Zhu Yang¹, Yanzhou

Lu¹, Wentao Zhang¹, Hong-Ling Cai^{1*}, and X. S. Wu¹

¹ Collaborative Innovation Centre of Advanced Microstructures, Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China.

Corresponding Author * E-mail: hlcai@nju.edu.cn

EXPERIMENTAL SECTION

Synthesis. All reagents used in this article were analytical reagents and without further purification.

0.562 g (2mmol, purity 97 %, Aldrich) of 1,3-Dicyclohexylimidazole hydrochloride ($C_{15}H_{29}CIN_2$) and 0.127 g (1mmol, purity 99 %, Aldrich) of manganese chloride (MnCl₂) were dissolved by deionized water in a beaker, and a few hydrochloric acid (purity 37 %, Aldrich) was added to the mixed solution to ensure an acidic environment of the solution. Cover the mouth of the beaker with a perforated anti-corrosion film to limit the evaporation rate of the solution, and let the beaker stand at room temperature to evaporate slowly. Green transparent flake crystals were obtained after about 2 weeks.

DSC Measurements. Differential scanning calorimetry was performed on a PerkinElmer Diamond DSC instrument in the temperature range 173~373 K under an atmosphere of nitrogen in aluminium crucibles with a heating rate of 10 K/min.

Structure stability

The single crystal sample is grinded and sieved into polycrystalline powder(particle size is $100 \sim 150 \ \mu m$) for SHG measurement. Using a low-divergence non-expanding laser beam (pulsed Nd: YAG, wavelength 1064 nm, pulse duration 5 ns, peak power 1.6 MW, repetition frequency 10c Hz). FLS 920 from Edinburgh Instruments was used as the instrument model, and the temperature was 290~400 K with a cooling and heating rate of 2 K/min with the DE 202 system, while the laser was Vibrant 355 II instrument

from the OPOTEK system. Numerical values for the nonlinear optical coefficients for the SHG were determined by comparison to a KDP benchmark.

Electrical property measurements

The dielectric anomaly, pyroelectric and ferroelectric hysteresis loops were measured by using the upper and lower silver plating layers of (1.3-Dicyclohexylimidazole)₂MnCl₄ crystal slice as electrodes. The temperature dependence of the complex permittivity at 500 Hz to 1 MHz was measured using Tonghui TH2828A LCR meter. The pyroelectric current of variable temperature is also measured on the electrometer (Keithley 6517B). The ferroelectric hysteresis loop is measured in the radiation RT6000 Premier II tester. The ferroelectric hysteresis loops are measured in the radiation RT6000 Premier II tester using the Sawyer-Tower method and in the electrometer (Keithley 6517B) using the double-wave method (DWM), respectively.

Structural characterization

Single crystal X-ray diffraction experiments were carried out at different temperatures using a Rigaku Saturn 924 diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å).

Photoluminescence measurements

Using BWPL-1000 variable temperature photoluminescence (PL) test system to test PL spectral lines of crystals in the range of 273 K to 373 K.

Temperature	278K	338K
Chemical formula	$C_{119.5}H_{203}C_{116}Mn_4N_{16}$	$C_{103}H_{179}C_{116}Mn_4N_{16}$
Crystallographic system	Triclinic	Triclinic
Space group	P1	\overline{P}
	16.9646(7)	16.9646(7)
Cell parameters(Å)	17.3879(7)	17.3879(7)
	26.9590(11)	26.9590(11)
Volume(Å ³)	7177.4(5)	7177.4(5)
Z	2	2
F(000)	2813.0	2562.0
Reflections collected	117164	117157
Independent reflections	46490	25136
parameters	2765	1252
GOF	1.035	1.068
R ₁	0.0964	0.1022
wR ₂	0.2442	0.2859

Table S1. Crystal data and structure refinements for DHIMC at various temperatures.

Figure S1. The structure diagram of the inorganic component of DHIMC at HTP.

Table S2. The geometric details of the inorganic component of DHIMC at HTP.

Number	Atom1	Atom2	Length
1	Mn1	Cl1	2.388(2)
2	Mn1	C16	2.371(3)
3	Mn1	Cl10	2.349(2)
4	Mn1	Cl2	2.355(3)
5	Mn4	Cl4	2.373(2)
6	Mn4	Cl8	2.361(2)
7	Mn4	Cl14	2.365(3)
8	Mn4	Cl16	2.375(2)

9	Mn2	Cl12	2.365(2)
10	Mn2	C15	2.347(4)
11	Mn2	Cl3	2.381(4)
12	Mn2	Cl13	2.364(4)
13	Mn3	Cl9	2.376(3)
14	Mn3	Cl11	2.382(4)
15	Mn3	Cl7	2.376(5)
16	Mn3	Cl15	2.332(5)

Figure S2. The structure diagram of the inorganic component of DHIMC at LTP.

Table S3. The geometric details of the inorganic component of DHIMC at LTP.

Number	Atom1	Atom2	Length
1	Mn1	Cl1	2.392(5)
2	Mn1	Cl6	2.362(6)
3	Mn1	Cl20	2.344(8)
4	Mn1	Cl22	2.369(8)
5	Mn2	Cl15	2.35(1)
6	Mn2	Cl17	2.363(9)
7	Mn2	Cl21	2.38(1)
8	Mn2	Cl29	2.37(1)
9	Mn3	Cl3	2.351(9)
10	Mn3	Cl14	2.364(7)
11	Mn3	Cl19	2.37(1)
12	Mn3	Cl25	2.367(9)
13	Mn4	Cl10	2.369(5)
14	Mn4	Cl12	2.364(9)
15	Mn4	Cl18	2.346(6)

16	Mn4	Cl26	2.384(7)
17	Cl4	Mn5	2.376(8)
18	Cl11	Mn5	2.363(8)
19	C130	Mn5	2.380(5)
20	Cl32	Mn5	2.341(6)
21	Mn6	Cl5	2.33(1)
22	Mn6	Cl13	2.36(1)
23	Mn6	Cl24	2.362(7)
24	Mn6	Cl27	2.40(1)
25	Cl7	Mn7	2.37(1)
26	Cl9	Mn7	2.392(9)
27	Cl23	Mn7	2.37(1)
28	Cl31	Mn7	2.31(1)
29	Mn8	Cl2	2.367(9)
30	Mn8	Cl8	2.370(6)
31	Mn8	Cl16	2.376(6)
32	Mn8	Cl28	2.367(7)

Table S4. Point charge model analysis of **DHIMC**. According to the crystal structure data collected at 278 K (LTP) and 338 K (HTP), respectively. We assume positive charge center influenced by the protonated N, while negative charge center influenced by MnCl₄²⁻ from their equilibrium position within the unit cell.

LTP

Atoms	Atom coordinate		Corrdinate of charge
			center
Mn	(0.88741, 0.16266, 0.18478)	(10.88741, 0.16266, 0.18478)	(0.68229,0.39611,0.48285)
	(0.97220,0.66020,0.67673)	(0.97056,0.61993,0.30141)	
	(0.47728,0.12883,0.28082)	(0.39190,0.63220,0.78913)	
	(0.48150,0.16290,0.64810)	(0.39418,0.67149,0.16466)	
N	(0.1001,0.8637,1.2191)	(0.1082,0.8569,1.136)	(0.49549,0.50525,0.50391)
	(0.5959,0.3708,1.2057)	(0.5958, 0.3803, 1.1223)	
	(-0.1802,0.1714,1.005)	(-0.0773,0.2198,0.9963)	
	(-0.1802,0.1714,0.005)	(-0.0773,0.2198,-0.0037)	
	(0.9227,1.2198,-0.0037)	(0.8198,1.1714,0.005)	
	(-0.1075,0.4575,0.1777)	(-0.0785,0.3772,0.2499)	
	(0.4727,-0.1632,0.286)	(0.4436,-0.0856,0.2173)	
	(1.1001,-0.1363,0.2191)	(1.1082,-0.1431,0.136)	
	(0.9227,0.2198,-0.0037)	(0.8198, 0.1714, 0.005)	
	(0.4083,0.7261,-0.0209)	(0.3274,0.6594,-0.0226)	
	(0.1001,0.8637,0.2191)	(0.1082,0.8569,0.136)	
	(0.2611,0.434,0.3276)	(0.2628, 0.4129, 0.2534)	
	(0.5959,0.3708,0.2057)	(0.5958, 0.3803, 0.1223)	
	(0.7713,-0.0888,0.3412)	(0.7671,-0.0785,0.2605)	
	(0.9227, 0.2198, 0.9963)	(0.8198, 0.1714, 1.005)	
	(1.1297,0.8373,0.743)	(1.0503,0.8187,0.8205)	
	(0.8925, 0.4575, 0.1777)	(0.9215, 0.3772, 0.2499)	
	(0.5459, 0.1225, 0.4598)	(0.4403, 0.0745, 0.4685)	
	(0.4436,0.9144,0.2173)	(0.4727, 0.8368, 0.286)	
	(0.1936,1.1327,0.6817)	(0.2522,1.0777,0.7546)	
	(0.0503,0.8187,0.8205)	(0.1297, 0.8373, 0.743)	
	(0.3274,0.6594,0.9774)	(0.4083, 0.7261, 0.9791)	
	(0.4403,1.0745,0.4685)	(0.5459,1.1225,0.4598)	
	(-0.0471,0.5656,0.4909)	(0.0538, 0.6237, 0.4911)	
	(0.1936,0.1327,0.6817)	(0.2522, 0.0777, 0.7546)	
	(0.3114,0.4708,0.6502)	(0.2422, 0.4565, 0.7236)	
	(0.7671,0.9215,0.2605)	(0.7713,0.9112,0.3412)	
	(0.8203,-0.0083,0.6412)	(0.7412,-0.0306,0.7125)	
	(1.0538,0.6237,0.4911)	(0.9529,0.5656,0.4909)	
	(0.626, 0.3253, 0.7533)	(0.5472,0.2982,0.8247)	
	(0.8203,0.9917,0.6412)	(0.7412,0.9694,0.7125)	
	(0.6497,0.6689,0.7076)	(0.721,0.6137,0.776)	

Atoms	Atom c	oordinate	Corrdinate of charge center
Mn	(0.21176,0.02587,0.4316)	(0.21001,0.98595,0.05618)	(0.5,0.5,0.5)
	(0.78824,0.97413,0.5684)	(0.29922, 0.51611, 0.91542)	
	(0.78999,0.01405,0.94382)	(0.29499, 0.48313, 0.54797)	
	(0.70501,0.51687,0.45203)	(0.70078,0.48389,0.08458)	
N	(1.227,1.0804,0.2448)	(1.1388,1.0175,0.2441)	(0.5,0.5,0.5)
	(0.8612,0.9825,0.7559)	(0.773,0.9196,0.7552)	
	(0.3632,0.6537,1.0918)	(0.4429, 0.6769, 1.0208)	
	(0.8691,0.1742,1.0844)	(0.9435, 0.1899, 1.0103)	
	(0.8612,-0.0175,0.7559)	(0.773,-0.0804,0.7552)	
	(-0.1309,0.1742,1.0844)	(-0.0565,0.1899,1.0103)	
	(-0.227,-0.0804,0.7552)	(-0.1388,-0.0175,0.7559)	
	(0.1309,0.8258,0.9156)	(0.0565,0.8101,0.9897)	
	(0.5571,0.3231,0.9792)	(0.6368, 0.3463, 0.9082)	
	(0.259, 0.4276, 0.7362)	(0.3631,0.4758,0.7278)	
	(0.29, 0.1901, 0.5542)	(0.2614, 0.2685, 0.4838)	
	(0.1388,0.0175,0.2441)	(0.227, 0.0804, 0.2448)	
	(0.0565, 0.8101, -0.0103)	(0.1309,0.8258,-0.0844)	
	(0.6368, 0.3463, -0.0918)	(0.5571,0.3231,-0.0208)	
	(1.1309,0.8258,-0.0844)	(1.0565,0.8101,-0.0103)	
	(0.9435,0.1899,0.0103)	(0.8691,0.1742,0.0844)	
	(0.4429,0.6769,0.0208)	(0.3632,0.6537,0.0918)	
	(0.227,1.0804,0.2448)	(0.1388,1.0175,0.2441)	
	(0.7386,0.7315,0.5162)	(0.71,0.8099,0.4458)	
	(0.4123,0.7346,0.3908)	(0.4148,0.7243,0.4724)	
	(0.6369, 0.5242, 0.2722)	(0.741,0.5724,0.2638)	

НТР

(0.9241,0.2109,0.4041)	(0.9186,0.2256,0.483)
(0.0759,0.7891,0.5959)	(0.0814,0.7744,0.517)
(0.5852,0.2757,0.5276)	(0.5877,0.2654,0.6092)

Figure S3. The PLQY of DHIMC.

<u>Results</u>	_
Quantum Yield Results for 'Multi Scans (QY)'	
Scatter Range: 356.20 to 362.40 nm Emission Range: 461.20 to 650.00 nm	
QY = 4.41%	