Supporting Information

Optical temperature-sensing phosphors with high sensitivities in a wide

temperature range based on different strategies

Songsong An, Jia Zhang*, Zhenghe Hua, Jiajun Chen

Physics department and Jiangsu Key Laboratory of Modern Measurement Technology and Intelligence, Huaiyin Normal University, 111 West Chang Jiang Road, Huai'an 223300, China

*Corresponding author. E-mail address: zhangjianew@126.com

Fig. S1 Dependences of intensities of 521, 553 and 659 nm emissions on absolute

temperature

Fig. S2 (a) Emission spectra of the fabricated device excited by 980 nm light of 0.95 W/cm^2 at various temperatures. (b) Dependence of I_{521}/I_{553} on absolute temperature.

$(0.5 \le x \le 3\%)$					
Concentration	$La_2O_3(g)$	$SiO_{2}(g)$	$Yb_2O_3(g)$	$Er_2O_3(g)$	
host	0.8076	0.1941	0	0	
x = 0.5%	0.7228	0.1941	0.1559	0.0047	
x = 1%	0.7188	0.1941	0.1559	0.0094	
x = 2%	0.7107	0.1941	0.1559	0.0188	
x = 3%	0.7026	0.1941	0.1559	0.0282	

Table S1 Amounts of the starting materials used for LS host and LS:10%Yb³⁺,xEr³⁺

Table S2 Amounts of the starting materials used for LS:10%Yb^{3+},xTm^{3+} (0.25% \leq x \leq

		1%)		
Concentration	$La_2O_3(g)$	$SiO_{2}(g)$	$Yb_2O_3(g)$	$Tm_2O_3(g)$
y = 0.25%	0.7248	0.1941	0.1559	0.0024
y = 0.5%	0.7228	0.1941	0.1559	0.0048
y = 0.75%	0.7208	0.1941	0.1559	0.0072
y = 1%	0.7188	0.1941	0.1559	0.0096

Table S3 τ_i and A_i (i = 1, 2) values for decay curves of LS:10%Yb³⁺,yTm³⁺ (0.25% \leq y

0.25 90.5 264.6 8946.8 1271.8 0.5 64.3 214.5 8567.7 1232.2 0.75 45.8 174.7 9437.2 828.9	v (%)	τ_1 (us)	τ_2 (us)	A ₁	A_2
0.5 64.3 214.5 8567.7 1232.2 0.75 45.8 174.7 9437.2 828.9	0.25	90.5	264.6	8946.8	1271.8
0.75 45.8 174.7 9437.2 828.9	0.5	64.3	214.5	8567.7	1232.2
0.75 13.0 171.7 91.2 020.9	0.75	45.8	174 7	9437.2	828.9
1 41 4 161 1 0255 2 005 0	0.75	чJ.0	1/1./	0255.0	020.7

 \leq 1%) by monitoring 474 nm

Table S4 τ_i and A_i (i = 1, 2) values for decay curves of LS:10%Yb³⁺,yTm³⁺ (0.25% \leq y \leq 1%) by monitoring 790 nm

y (%)	$\tau_{1}\left(\mu s\right)$	$\tau_{2}\left(\mu s\right)$	A_1	A_2
0.25	117.3	379.5	9964.9	33.2
0.5	97.0	374.1	9720.6	40.5
0.75	56.4	113.4	8073.1	981.0
1	54.8	114.8	8610.7	849.7

Table S5 τ_i and A_i (i = 1, 2) values for decay curves of LS:10%Yb³⁺,2%Er³⁺ by

monitoring	553	nm	at	various	temperat	ures
0						

Т	$\tau_{1}\left(\mu s\right)$	$\tau_{2}\left(\mu s\right)$	A_1	A_2
25	43.5	95.3	3267.7	6300.2
75	44.9	95.6	2967.2	5886.9
125	46.1	96.5	3398.7	5773.3
175	42.1	90.6	3463.0	5978.2
225	37.8	89.3	3331.8	5881.7

Table S6 τ_i and A_i (i = 1, 2) values for decay curves of LS:10%Yb³⁺,2%Er³⁺ by

Т	$\tau_{1}\left(\mu s\right)$	$\tau_{2}\left(\mu s\right)$	A_1	A_2
25	193.4	1907.8	9693.1	13.4
75	187.8	1833.2	9406.4	12.9
125	184.8	1724.1	9170.6	11.8
175	175.8	1961.4	9322.1	18.2
225	177.3	1965.2	9401.2	11.3

monitoring 659 nm at various temperatures