Supporting Information for

Cancer stem cell activity of copper(II)-terpyridine complexes with sulfonamide groups

Karampal Singh, a† Joshua Northcote-Smith, a† Kuldip Singh, a and Kogularamanan Suntharaligam a*

^a School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom; [†] These authors contributed equally to this work

* To whom correspondence should be addressed: Email: k.suntharalingam@leicester.ac.uk

Table of Content

Experimental Details

- Figure S1. The reaction scheme for the preparation of terpyridine ligands containing various aryl sulfonamide groups $L^{1}-L^{5}$.
- **Figure S2.** ¹H NMR spectrum of 2-([2,2':6',2"-terpyridin]-4'-yloxy)ethan-1-amine in CDCl₃.
- **Figure S3.** ¹³C{¹H} NMR spectrum of 2-([2,2':6',2"-terpyridin]-4'-yloxy)ethan-1-amine in CDCl₃
- Figure S4. ¹H NMR spectrum of L^1 in CDCl₃.
- Figure S5. ${}^{13}C{}^{1}H$ NMR spectrum of L¹ in CDCl₃.
- Figure S6. ¹H NMR spectrum of L^2 in CDCl₃.
- Figure S7. ${}^{13}C{}^{1}H$ NMR spectrum of L² in CDCl₃.
- **Figure S8.** ¹H NMR spectrum of L^3 in CDCl₃.
- Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of L³ in CDCl₃.
- Figure S10. ¹H NMR spectrum of L^4 in CDCl₃.
- Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of L⁴ in CDCl₃.
- Figure S12. ${}^{19}F{}^{1}H{}$ NMR spectrum of L⁴ in CDCl₃.
- Figure S13. ¹H NMR spectrum of L^5 in CDCl₃.
- Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum of L⁵ in DMSO- d_6 .
- Figure S15. ${}^{19}F{}^{1}H{}$ NMR spectrum of L⁵ in CDCl₃.
- Figure S16. ATR-FTIR spectra of (A) 2-([2,2':6',2"-terpyridin]-4'-yloxy)ethan-1-amine, (B) L^1 , (C) L^2 , (D) L^3 , (E) L^4 , (F) L^5 in the solid form.
- **Figure S17.** High-resolution ESI-MS mass spectrum (positive mode) of 2-([2,2':6',2"-terpyridin]-4'-yloxy)ethan-1-amine.

- Figure S18. High-resolution ESI-MS mass spectrum (positive mode) of L^1 .
- Figure S19. High-resolution ESI-MS mass spectrum (positive mode) of L^2 .
- Figure S20. High-resolution ESI-MS mass spectrum (positive mode) of L^3 .
- Figure S21. High-resolution ESI-MS mass spectrum (positive mode) of L⁴.
- Figure S22. High-resolution ESI-MS mass spectrum (positive mode) of L^5 .
- Figure S23. ATR-FTIR spectra of (A) 1, (B) 2, (C) 3, (D) 4, (E) 5 in the solid form.
- Figure S24. High-resolution ESI-MS mass spectrum (positive mode) of 1.
- Figure S25. High-resolution ESI-MS mass spectrum (positive mode) of 2.
- Figure S26. High-resolution ESI-MS mass spectrum (positive mode) of 3.
- Figure S27. High-resolution ESI-MS mass spectrum (positive mode) of 4.
- Figure S28. High-resolution ESI-MS mass spectrum (positive mode) of 5.
- **Table S1.**Crystallographic data for complexes 1-3.
- **Table S2.**Crystallographic data for complexes 4-5.
- **Table S3.**Selected bond lengths (Å) for complexes 1-5.
- **Table S4.**Selected bond angles (°) for complexes 1-5.
- Table S5.Experimentally determined LogP values for copper(II)-terpyridine complexes 1-
5 and Cu(2,2';6',2"-terpyridine)Cl2.
- Figure S29. UV-Vis spectra of 1-5 (A-E) (all 50 μ M) in PBS:DMSO (200:1) over the course of 24 h at 37 °C.
- Figure S30. UV-Vis spectra of 1-5 (A-E) (all 50 μ M) in H₂O:DMSO (200:1) over the course of 24 h at 37 °C.
- **Figure S31.** UV-Vis spectra of 1-5 (A-E) (all 50 μ M) in PBS:DMSO (200:1) in the presence of ascorbic acid (0.5 mM) over the course of 24 h at 37 °C.
- Figure S32. ESI mass spectra (positive mode) of 1 (500 μ M) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.
- Figure S33. ESI mass spectra (positive mode) of 2 (500 μ M) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.
- **Figure S34.** ESI mass spectra (positive mode) of **3** (500 μM) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.
- Figure S35. ESI mass spectra (positive mode) of 4 (500 μ M) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.
- Figure S36. ESI mass spectra (positive mode) of 5 (500 μ M) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.
- **Figure S37.** UV-Vis spectra of 1-5 (A-E) (all 50 μM) in Mammary Epithelial Cell Growth Medium (MEGM):DMSO (200:1) over the course of 24 h at 37 °C.
- Figure S38. UV-Vis spectra of 1 (0.5 mM) in (A) PBS:DMSO (10:1) and (B) Mammary Epithelial Cell Growth Medium (MEGM):DMSO (10:1) before and after incubation at 37 °C for 24 h.
- **Figure S39.** Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **1** after 72 h incubation.
- **Figure S40.** Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **2** after 72 h incubation.
- **Figure S41.** Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **3** after 72 h incubation.

- **Figure S42.** Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **4** after 72 h incubation.
- **Figure S43.** Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **5** after 72 h incubation.
- **Figure S44.** Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with gemcitabine after 72 h incubation.
- **Table S6.**IC₅₀ values of the gemcitabine, 5-fluorouracil, capecitabine, and carboplatin
against HMLER and HMLER-shEcad cells. ^a Determined after 72 h incubation
(mean of three independent experiments \pm SD). ^b Reported in reference [1].
- Figure S45. Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with L^1 after 72 h incubation.
- **Figure S46.** Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with copper nitrate after 72 h incubation.
- **Figure S47.** Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with Cu(2,2';6',2"-terpyridine)Cl₂ after 72 h incubation.
- Figure S48. Representative dose-response curves for the treatment of HMLER-shEcad cells with $L^1 + CuCl_2(1:1)$ after 72 h incubation.
- Figure S49. Representative bright-field images (\times 10) of HMLER-shEcad spheroids in the absence and presence of salinomycin or cisplatin at their IC₂₀ value (5 days incubation).
- Figure S50. Representative bright-field images (\times 10) of HMLER-shEcad spheroids in the absence and presence of Cu(2,2';6',2"-terpyridine)Cl₂ at its IC₂₀ value (5 days incubation).
- Figure S51. Representative dose-response curves for the treatment of HMLER-shEcad mammospheres with 1-5 or $Cu(2,2';6',2''-terpyridine)Cl_2$ after 5 days incubation. Error bars = SD.
- Figure S52. FITC Annexin V-propidium iodide binding assay plots of (A) untreated HMLER-shEcad cells and (B) HMLER-shEcad cells treated with cisplatin (25 μ M for 48 h).
- **Figure S53.** Immunoblotting analysis of proteins related to the apoptosis pathway. Protein expression in HMLER-shEcad cells untreated and treated with (A) 1 (0.4, 0.8, and 1.6 μ M for 24 h) or (B) 1 (0.4, 0.8, and 1.6 μ M for 48 h).

Reference

Figure S1. The reaction scheme for the preparation of terpyridine ligands containing various aryl sulfonamide groups $L^{1}-L^{5}$.

Figure S2. ¹H NMR spectrum of 2-([2,2':6',2"-terpyridin]-4'-yloxy)ethan-1-amine in CDCl₃.

Figure S3. ¹³C{¹H} NMR spectrum of 2-([2,2':6',2"-terpyridin]-4'-yloxy)ethan-1-amine in CDCl₃.

Figure S4. ¹H NMR spectrum of L¹ in CDCl₃.

Figure S5. ${}^{13}C{}^{1}H$ NMR spectrum of L¹ in CDCl₃.

Figure S6. ¹H NMR spectrum of L² in CDCl₃.

Figure S7. ${}^{13}C{}^{1}H$ NMR spectrum of L² in CDCl₃.

Figure S8. ¹H NMR spectrum of L³ in CDCl₃.

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of L³ in CDCl₃.

Figure S10. ¹H NMR spectrum of L⁴ in CDCl₃.

Figure S11. ¹³C{¹H} NMR spectrum of L⁴ in CDCl₃.

Figure S12. ${}^{19}F{}^{1}H$ NMR spectrum of L⁴ in CDCl₃.

Figure S13. ¹H NMR spectrum of L⁵ in CDCl₃.

Figure S14. ¹³C{¹H} NMR spectrum of L⁵ in DMSO- d_6 .

Figure S15. ${}^{19}F{}^{1}H$ NMR spectrum of L⁵ in CDCl₃.

Figure S16. ATR-FTIR spectra of (A) 2-([2,2':6',2"-terpyridin]-4'-yloxy)ethan-1-amine, (B) L^1 , (C) L^2 , (D) L^3 , (E) L^4 , (F) L^5 in the solid form.

Figure S17. High-resolution ESI-MS mass spectrum (positive mode) of 2-([2,2':6',2''-terpyridin]-4'-yloxy)ethan-1-amine.

Figure S18. High-resolution ESI-MS mass spectrum (positive mode) of L¹.

Figure S19. High-resolution ESI-MS mass spectrum (positive mode) of L².

Figure S20. High-resolution ESI-MS mass spectrum (positive mode) of L³.

Figure S21. High-resolution ESI-MS mass spectrum (positive mode) of L⁴.

Figure S22. High-resolution ESI-MS mass spectrum (positive mode) of L⁵.

Figure S23. ATR-FTIR spectra of (A) 1, (B) 2, (C) 3, (D) 4, (E) 5 in the solid form.

Figure S24. High-resolution ESI-MS mass spectrum (positive mode) of 1.

Figure S25. High-resolution ESI-MS mass spectrum (positive mode) of 2.

Figure S26. High-resolution ESI-MS mass spectrum (positive mode) of 3.

Figure S27. High-resolution ESI-MS mass spectrum (positive mode) of 4.

Figure S28. High-resolution ESI-MS mass spectrum (positive mode) of 5.

Metal complex	1	2	3
CCDC No.	2258101	2258099	2258098
formula	$C_{24}H_{22}Cl_2CuN_4O_3S$	$\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{Cl}_{2}\mathrm{CuN}_{4}\mathrm{O}_{3}\mathrm{S}$	$\begin{array}{c} C_{27}H_{22}Cl_2CuN_4O_3S\\ + CH_3CN \end{array}$
Fw	580.95	566.93	658.04
Crystal system	triclinic	orthorhombic	triclinic
Space group	P-1	Pbca	P-1
<i>a</i> , Å	7.7408(5)	14.013(3)	7.7290(2)
<i>b</i> , Å	8.5955(6)	13.767(3)	8.4595(2)
<i>c</i> , Å	19.5113(13)	24.041(5)	23.7162(7)
α , deg.	86.001(3)	90	80.9710(10)
β , deg.	78.691(3)	90	83.8520(10)
γ, deg.	72.651(3)	90	69.4890(10)
<i>V</i> , Å ³	1215.00(14)	4638.0(18)	1432.07(7)
Ζ	2	8	2
$D_{\text{calcd}}, \text{Mg/m}^3$	1.588	1.624	1.526
2θ / deg.	4.618 to 133.532	1.69 to 26.00	7.56 to 144.46
Reflections collected	28912	34260	45499
Independent reflections	4295	4558	5648
Goodness-of-fit on F^2	1.077	0.949	1.052
$R_1, \mathrm{w}R_2 \left[I \ge 2\sigma\left(I\right)\right]$	0.0492, 0.1448	0.0419, 0.0909	0.0330, 0.0898
R_1 , w R_2 [all data]	0.0518, 0.1476	0.0622, 0.0967	0.0333, 0.0901

 Table S1. Crystallographic data for complexes 1-3.

Metal complex	4	5	
CCDC No.	2258097 2258100		
formula	$2 \times (C_{23}H_{19}Cl_2CuFN_4O_3S) + 1.5H_2O$	$\begin{array}{c} C_{24}H_{19}Cl_2CuF_3N_4O_3S\\ + CH_3CN \end{array}$	
Fw	1196.87	675.98	
Crystal system	triclinic	triclinic	
Space group	P-1	P-1	
<i>a</i> , Å	8.1461(6)	8.3057(6)	
<i>b</i> , Å	8.5293(7)	8.5238(6)	
<i>c</i> , Å	19.2202(16)	20.6586(14)	
a, deg.	88.390(3)	87.401(2)	
β , deg.	78.390(3)	80.917(2)	
γ, deg.	72.100(3)	71.980(2)	
<i>V</i> , Å ³	1243.97(17)	1373.36(17)	
Ζ	1	2	
$D_{\text{calcd}}, \text{Mg/m}^3$	1.598	1.635	
2θ / deg.	4.696 to 110.08	4.332 to 144.638	
Reflections collected	14856	20455	
Independent reflections	3111	5383	
Goodness-of-fit on F^2	1.037	1.118	
$R_1, \mathrm{w}R_2 \left[I \ge 2\sigma\left(I\right)\right]$	0.0631, 0.1592	0.0540, 0.1460	
R_1 , w R_2 [all data]	0.0720, 0.1712	0.0562, 0.1480	

 Table S2. Crystallographic data for complexes 4-5.

Bond	1	2	3	4	5
Cu(1)-N(2)	1.942(2)	1.957(3)	1.9364 (14)	1.941(4)	1.940(3)
Cu(1)-N(3)	2.033(2)	2.047(3)	2.0304 (15)	2.046(4)	2.048(3)
Cu(1)-N(1)	2.032(2)	2.053(3)	2.0294 (15)	2.035(4)	2.044(3)
Cu(1)-Cl(1)	2.2352(7)	2.2428(9)	2.2344(5)	2.2366(14)	2.2348(9)
Cu(1)-Cl(2)	2.6405(8)	2.4525(10)	2.7519(5)	2.6012(15)	2.5643(9)

Table S3. Selected bond lengths (\AA) for complexes 1-5.

 Table S4. Selected bond angles (°) for complexes 1-5.

Bond angle	1	2	3	4	5
N(2)-Cu(1)-N(3)	79.99(9)	78.99(10)	79.61(6)	79.99(16)	79.24(11)
N(2)-Cu(1)-N(1)	79.63(9)	78.75(10)	80.28(6)	79.56(16)	79.71(11)
N(3)-Cu(1)-N(1)	158.98(10)	155.16(10)	159.58(6)	159.01(16)	157.95(11)
N(2)-Cu(1)-Cl(1)	169.64(7)	162.51(8)	172.37(5)	169.19(13)	167.08(8)
N(3)-Cu(1)-Cl(1)	99.25(7)	98.92(8)	100.33(4)	99.52(12)	99.70(8)
N(1)-Cu(1)-Cl(1)	99.87(7)	98.99(8)	99.13(4)	99.67(13)	99.33(8)
N(2)-Cu(1)-Cl(2)	83.78(7)	94.63(8)	79.65(4)	87.10(12)	89.39(8)
N(3)-Cu(1)-Cl(2)	92.60(7)	93.55(7)	87.51(4)	92.91(12)	91.63(8)
N(1)-Cu(1)-Cl(2)	90.24(7)	99.08(7)	92.37(4)	90.76(12)	94.64(8)
Cl(1)-Cu(1)-Cl(2)	106.59(3)	102.84(3)	107.97(18)	103.70(5)	103.52(3)

Table S5. Experimentally determined LogP values for copper(II)-terpyridine complexes 1-5 and Cu(2,2';6',2"-terpyridine)Cl₂.

Figure S29. UV-Vis spectra of 1-5 (A-E) (all 50 μ M) in PBS:DMSO (200:1) over the course of 24 h at 37 °C.

Figure S30. UV-Vis spectra of 1-5 (A-E) (all 50 μ M) in H₂O:DMSO (200:1) over the course of 24 h at 37 °C.

Figure S31. UV-Vis spectra of 1-5 (A-E) (all 50 μ M) in PBS:DMSO (200:1) in the presence of ascorbic acid (0.5 mM) over the course of 24 h at 37 °C.

Figure S32. ESI mass spectra (positive mode) of **1** (500 μ M) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.

Figure S33. ESI mass spectra (positive mode) of **2** (500 μ M) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.

Figure S34. ESI mass spectra (positive mode) of **3** (500 μ M) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.

Figure S35. ESI mass spectra (positive mode) of 4 (500 μ M) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.

Figure S36. ESI mass spectra (positive mode) of **5** (500 μ M) in H₂O:DMSO (5:1) in the presence of (A) ascorbic acid (5 mM) or (B) glutathione (5 mM) after incubation for 24 h at 37 °C.

Figure S37. UV-Vis spectra of 1-5 (A-E) (all 50 μ M) in Mammary Epithelial Cell Growth Medium (MEGM):DMSO (200:1) over the course of 24 h at 37 °C.

Figure S38. UV-Vis spectra of **1** (0.5 mM) in (A) PBS:DMSO (10:1) and (B) Mammary Epithelial Cell Growth Medium (MEGM):DMSO (10:1) before and after incubation at 37 $^{\circ}$ C for 24 h.

Figure S39. Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **1** after 72 h incubation.

Figure S40. Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **2** after 72 h incubation.

Figure S41. Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **3** after 72 h incubation.

Figure S42. Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **4** after 72 h incubation.

Figure S43. Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with **5** after 72 h incubation.

Figure S44. Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with gencitabine after 72 h incubation.

Table S6. IC₅₀ values of the gemcitabine, 5-fluorouracil, capecitabine, and carboplatin against HMLER and HMLER-shEcad cells. ^a Determined after 72 h incubation (mean of three independent experiments \pm SD). ^b Reported in reference [1].

Compound	HMLER [µM] ^a	HMLER-shEcad $[\mu M]^{a}$
gemcitabine	0.0014 ± 0.0002	0.0031 ± 0.0003
5-fluorouracil ^b	41.05 ± 5.30	49.10 ± 5.94
capecitabine ^b	> 100	> 100
carboplatin ^b	67.31 ± 2.80	72.39 ± 7.99

Figure S45. Representative dose-response curves for the treatment of HMLER and HMLER-shEcad cells with L^1 after 72 h incubation.

Figure S46. Representative dose-response curves for the treatment of HMLER and HMLERshEcad cells with copper nitrate after 72 h incubation.

Figure S47. Representative dose-response curves for the treatment of HMLER and HMLER-shEcad cells with $Cu(2,2';6',2''-terpyridine)Cl_2$ after 72 h incubation.

Figure S48. Representative dose-response curves for the treatment of HMLER-shEcad cells with $L^1 + CuCl_2(1:1)$ after 72 h incubation.

Figure S49. Representative bright-field images (\times 10) of HMLER-shEcad spheroids in the absence and presence of salinomycin or cisplatin at their IC₂₀ value (5 days incubation).

Figure S50. Representative bright-field images (× 10) of HMLER-shEcad spheroids in the absence and presence of Cu(2,2';6',2"-terpyridine)Cl₂ at its IC₂₀ value (5 days incubation).

Figure S51. Representative dose-response curves for the treatment of HMLER-shEcad mammospheres with 1-5 or Cu(2,2';6',2"-terpyridine)Cl₂ after 5 days incubation. Error bars = SD.

Figure S52. FITC Annexin V-propidium iodide binding assay plots of (A) untreated HMLER-shEcad cells and (B) HMLER-shEcad cells treated with cisplatin (25 μ M for 48 h).

Figure S53. Immunoblotting analysis of proteins related to the apoptosis pathway. Protein expression in HMLER-shEcad cells untreated and treated with (A) **1** (0.4, 0.8, and 1.6 μ M for 24 h) or (B) **1** (0.4, 0.8, and 1.6 μ M for 48 h).

Reference

1. A. Johnson, C. Olelewe, J. H. Kim, J. Northcote-Smith, R. T. Mertens, G. Passeri, K. Singh, S. G. Awuah and K. Suntharalingam, *Chem. Sci.*, 2023, 14, 557-565.