Supporting Information

Rational engineering yolk-shell In₂S₃@void@carbon hybrid as polysulfides-absorbable sulfur host for high-performance lithiumsulfur batteries

Yingyi Ding^a, Zihan Shen^b, Tianli Han^a, Jing Xu^a, Huigang Zhang^{c,d}, Chaoquan Hu^{*,c,d} and Jinyun Liu^{*,a}

Figure S1. XRD patterns of SiO₂ and In₂S₃@SiO₂.

Figure S2. (a) Line-scanning curves and (b-d) elemental mapping images of the $In_2S_3@S@C$ hybrids. (e-h) Cross-ssectional view and elemental mapping images.

Figure S3. (a) Capacities and Coulombic efficiency of the $In_2S_3@S$ at 0.5 C. (b) Charge-discharge curves of the $In_2S_3@S$ and $In_2S_3@S@C$ at 0.5 C. (c) Corresponding dQ/dV plots. (d) Overpotential of $In_2S_3@S$ and $In_2S_3@S@C$ at 0.5 C.

Figure S4. EIS spectra of In₂S₃@S@C before and after cycling 500 times at 0.5 C.

Figure S5. The absorbance profiles of the Li_2S_6 solutions before and after adding In_2S_3 as the absorbent. The inset shows the picture after absorption. For adsorption tests, 60 μ L of 0.2 mol L⁻¹ of Li_2S_6 solution was mixed with 3 mL of tetrahydrofuran and 20 mg of samples in a glass vial, keeping for 18 h.