SUPPORTING INFORMATION

Histamine-bound magnesium porphyrins: diverse coordination modes, inhibitory role in photodegradation of chlorophyll *a* and antioxidant activity

Abdul K Choudhury^a, Rudra Sarkar^b and Jagannath Bhuyan^{a*}

^aDepartment of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh-791109, India

e-mail: jbhuyan7@gmail.com

^bDelhi Public School, Ruby Park, Shantipally, Kolkata-700107

Synthesis of ligand 5,10,15,20-tetrakis-(4-chlorophenyl)porphyrin, H₂T(4-Cl)PP. The ligand 5,10,15,20-tetrakis-(4-chlorophenyl)porphyrin, H₂T(4-Cl)PP was synthesized by refluxing 10.13 g 4-chlorobenzaldehyde (72 mmol) and 5 mL pyrrole (72 mmol) in 250 mL propionic acid following the reported procedure ¹. The yield of the compound was 20%. Molecular Formula: C₄₄H₂₆Cl₄N₄; Molecular Weight: 752.52; UV/Visible bands are at λ_{max}/nm ($\epsilon/M^{-1}cm^{-1}$) (in CH₂Cl₂, 10⁻⁶ M): 418 (584000 Lmol⁻¹cm⁻¹), 514 (40000 Lmol⁻¹cm⁻¹), 549 (24000 Lmol⁻¹cm⁻¹), 589 (19200 Lmol⁻¹ cm⁻¹) and 647 (16800 Lmol⁻¹cm⁻¹), respectively. Elemental analysis calcd. (%) for C₄₄H₂₆Cl₄ N₄: C 70.23, H 3.48, N 7.45; Found: C 70.32, H 3.53, N 7.50.

Synthesis of ligand 5,10,15,20-tetrakis-(4-bromophenyl)porphyrin, H₂T(4-Br)PP. The ligand 5,10,15,20-tetrakis-(4-bromophenyl)porphyrin, H₂T(4-Br)PP was synthesized by refluxing 13.33 g 4-bromobenzaldehyde (72.06 mmol) and 5 mL pyrrole (72.06 mmol) in 250 mL propionic acid following the reported procedure. Yield: 30%. Molecular Formula: $C_{44}H_{26}Br_4N_4$; Molecular Weight: 930.32; UV/Vis (in CH₂Cl₂, 10⁻⁶ M) λ_{max} /nm (ϵ): 419 (560000 Lmol⁻¹cm⁻¹), 514 (40000 Lmol⁻¹cm⁻¹), 549 (24000 Lmol⁻¹cm⁻¹), 589 (16000 Lmol⁻¹ cm⁻¹) and 646 (11200 Lmol⁻¹cm⁻¹), respectively. Elemental analysis calcd. (%) for $C_{44}H_{26}Br_4N_4$; C 56.81, H 2.82, N 6.02; Found: C 56.90, H 2.92, N 6.11.

Synthesis of 5,10,15,20-tetrakis-(4-bromophenyl)porphyrinato magnesium(II), Mg^{II}T(4-Br)PP. Compound Mg^{II}T(4-Br)PP was synthesized following procedure reported for Mg^{II}T(4-Cl)PP). Yield: 80%. Molecular Formula: $C_{44}H_{24}Br_4MgN_4$; Molecular Weight: 952.61; UV/Vis (in CH₂Cl₂) λ max/nm (ϵ): 426 (624000 Lmol⁻¹cm⁻¹), 563 (24000 Lmol⁻¹cm⁻¹), 603 (16000 Lmol⁻¹cm⁻¹); Elemental analysis calcd. (%) for $C_{44}H_{24}Br_4MgN_4$: C 55.48, H 2.54, N 5.88; Found: C 55.59, H 2.64, N 5.97.

Synthesis of the complex [Mg^{II}T(4-Br)PP(hist)] 2. A sample of Mg^{II}T(4-Br)PP (20 mg, 0.02 mmol) was mixed with histamine (5 mg, 0.04 mmol) in 3 mL of chloroform. Crystals were obtained by slow diffusion of n-hexane through the chloroform solution over a period of one week. Molecular Formula: $C_{49}H_{32}Br_4$ MgN₇; Molecular Weight: 1062.73; UV/Vis (in CH₂Cl₂) λ max/nm (ϵ): 429 (648000 Lmol⁻¹cm⁻¹), 567 (32000 Lmol⁻¹cm⁻¹), 607 (24000 Lmol⁻¹cm⁻¹); Elemental analysis calcd. (%) for $C_{49}H_{32}Br_4$ MgN₇: C 65.05, H 4.25, N 14.05; Found: C 65.05, H 4.25, N 14.05. IR: Characteristics peaks at 3420, 3097, 2946, 1636, 1511, 1470, 1385, 1328, 1200, 1096, 1066, 996, 795, 746, 723 and 463 cm⁻¹. ¹H NMR (400 MHz, CDCl₃,298 K): δ (ppm) 8.76 (s, 8H, β -pyrrole), 7.98-8.00 (d, 8H, *o*-H, meso-phenyl), 7.77-7.79 (d, 8H, *m*-H, meso-phenyl), 7.24(s, 1H, CH-imidazole/hist), 6.55 (s, 1H, CH-imidazole/hist), 3.40 (m, 2H, NH-amine/hist), 2.82-2.85 (m, 2H, -CH₂/hist), 2.53-2.56 (m, 2H, -CH₂/hist).

Isolation of chlorophyll *a* from spinach. Chlorophyll *a* was isolated and purified from spinach leaves following the reported method 2 and the purity was checked by UV-Visible spectroscopy.

Figure S1. UV–Vis absorption spectra of $H_2T(4-Br)PP$, [Mg^{II}T(4-Br)PP], and 2 in DCM (1.25×10⁻⁶ M) at room temperature. The inset shows enlarged views of Q bands.

Figure S2. IR spectra of A) 1 and B) 2.

Figure S3: ¹H NMR spectrum of compound 1.

Figure S4: ¹H NMR spectrum of compound 2.

Figure S5: ¹H NMR spectrum of histamine.

Table S1. Selected experimental and theoretical (optimized) (i) bond lengths (Å) and (ii)angles (°) of compound 1 and 2

	Crystal structure			Optimized	structure
(i) Bond lengths(Å)	Comp	ound 1 C	ompound 2	Compound 1	Compound 2
Mg-N1	2.079(3)	2.076(:	5) 2.096	2.102	
Mg-N1'	2.079(3)		2.096		
Mg-N2	2.080(3)	2.106(5) 2.095	2.102	
Mg-N2'	2.080(3)		2.095		
Mg-N3	2.300(3)	2.088(5) 2.313	2.109	
Mg-N3'	2.300(3)		2.313		
Mg-N4		2.089(5)	2.110	
Mg-N5		2.145(5)	2.221	

		Crystal structure	Optimized structure		structure
(ii)Angles (°) Compound 2		Compound 1	Compound 2		Compound 1
N3-Mg-N3'	180.00(15)		180.00		
N1-Mg-N1'	180.00(1)		180.00		
N2-Mg-N2'	180.00(1)		180.00		
N1-Mg-N3	89.06(11)	158.5(2)	89.69	159.46	
N1'-Mg-N3	90.93(11)		90.30		
N1-Mg-N3'	90.94(11)		90.30		
N1'-Mg-N3'	89.06(11)		89.69		
N2-Mg-N3	89.84(11)		85.48		
N2'-Mg-N3	90.16(11)		94.52		
N2-Mg-N3'	90.16(11)		94.52		
N2'-Mg-N3'	89.84(11)		85.48		
N1-Mg-N2	89.80(11)	87.9(2)	89.69	87.95	
N1-Mg-N2'	90.20(11)		90.31		
N1'-Mg-N2	90.20(11)		90.31		
N1'-Mg-N2'	89.80(11)		89.69		
N1-Mg-N4		87.8(2)		88.33	
N1-Mg-N5		105.2(2)		102.95	
N2-Mg-N5		105.4(2)		106.54	
N3-Mg-N5		96.2(2)		97.48	
N4-Mg-N5		99.4(2)		95.63	

(i) Complex	M—N _p ^a	MX _L ^b	MP _C ^c	Ref.	
Pentacoodinated Magnesium(II)					
porphyrins					
[MgT(4-Br)PP(Hist)]	2.090(5)	2.145(5)	0.421	this work	
$[Mg(TPP)(H_2O)]^d$	2.092(7)	2.012 (6)	0.460	[3]	
[MgT(4-Cl)PP(DMAP)] ^e	2.082 (3)	2.130 (4)	0.3709	[4]	
$[Mg(TPBP)(4,4'-bpy)_2]^{f,g}$	2.065 (2)	2.319-2.290	0.072	[5]	
Hexacoordinated Magnesium(II)					
porphyrins					
[MgT(4-Cl)PP(Hist) ₂]	2.079(3)	2.300(3)	0.000	this work	
[Mg(TBrPP)(H ₂ O) ₂] ^h	2.069	2.221	0.000	[6]	
$[Mg(TPP)(H_2O)_2]^d$	2.071	2.213	0.000	[7]	
[Mg(TPP)(py) ₂] ^{d,i}	2.072	2.376	0.000	[8]	
[Mg(TPP)(HMTA) ₂] ^{d,j}	2.067(5)	2.473(2)	0.000	[9]	

Table S2. Selected (i) bond lengths (Å) and (ii) bond angles (°) for [Mg^{II}T(4-Cl)PP(Hist)₂] **1**, [Mg^{II}T(4-Br)PP(hist)] **2** and several related complexes

(ii) Complex	Bond angles (°)	Ref.
[MgT(4-Br)PP(Hist)]	105.2 (N1(por)-Mg-N5(axial))	This work
$[Mg(TPP)(H_2O)]^d$	97.6 (N(por)-Mg-O(axial))	3
[MgT(4-Cl)PP(DMAP)] ^e	98.36 (N1(por)-Mg-N(axial))	4
$[Mg(TPBP)(4,4'-bpy)_2]^{f,g}$	88.30 (N1(por)-Mg-N3(axial))	5
	91.70 (N1(por)-Mg-N4(axial))	
[MgT(4-Cl)PP(Hist) ₂]	89.06 (N1(por)-Mg-N3(axial))	This work
	90.94 (N1(por)-Mg-N3'(axial))	
$[Mg(TPP)(py)_2]^{d,i}$	94.07 (N(por)-Mg-N(axial))	8
[Mg(TPP)(HMTA) ₂] ^{d,j}	90.21 (N1(por)-Mg-N3(axial))	9

 ${}^{a}M-N_{p}$ = average equatorial metal-nitrogen pyrrole distance

 ${}^{b}M-X_{L} = metal-axial ligand distance$

 $^{c}M-P_{C}$ = distance between the metal atom and the mean plane made by the 24-atom core of the porphyrin (PC)

- d: meso-tetraphenylporphyrin
- e: DMAP: [4-(dimethylamino)pyridine]
- f: TPBP = meso-tetrakis(4-bromophenyl)porphyrinato
- g: 4,4'-bpy = 4,4-bipyridine
- h: TBrPP = meso-tetrakis(4-bromophenyl)porphyrinato
- i: py = pyridine
- j: HTMA = hexamethylenetetramine

Figure S6. Cyclic voltammogram of compound 1 (10-3 M) in dry DCM with scan rate 0.1 V/s.

Figure S7. Cyclic voltammogram of [MgT(4-Cl)PP] (10⁻³ M) in dry DCM with scan rate 0.1 V/s.

Figure S8. Cyclic voltammogram of [MgT(4-Br)PP] (10⁻³ M) in dry DCM with scan rate 0.1 V/s.

Figure S9. Cyclic voltammogram of histamine (10^{-3} M) in dry DCM with scan rate 0.1 V/s.

Mg-porphyrin complexes	Antioxidant activity (100 µg/mL)	Reference	
	%		
[Mg(TBrPP)(4,4' -bpy)]	60	10	
[Mg(TBrPP)(pyz) ₂]	40	10	
[Mg(TClPP)]	30	4	
[Mg(TClPP)(DMAP)]	51	4	
[MgTPP]	70.99	11	
[MgTPP(DMF)]	75.57	11	
[MgT(4-Cl)PP(Hist) ₂]	92.45	This work	
[MgT(4-Br)PP(Hist)]	86.88	This work	

Table S3. Comparison of antioxidant activities of reported Mg-porphyrins

4,4'-bpy = 4,4'-bipyridine pyz = pyrazine

DMAP = 4-(dimethylamino)pyridine)

DMF= Dimethylformamide

Most important orbital excitations	Theoretical λ_{max}	f	Experimental $\lambda_{max}(\epsilon)$
H-1→L+1. H→L	566	0.0587	607 (24000)
$H-1 \rightarrow L, H \rightarrow L+1$	562	0.0421	566 (32000)
$H-2\rightarrow L, H-2\rightarrow L+1$	420	0.008	429 (648000)

 Table S4. Electronic transitions of compound 2 calculated in dichloromethane using the TD-DFT method.

 λ : wavelength (nm); ϵ : molar absorption coefficient (dm³ mol⁻¹ cm⁻¹); f: oscillator strength; H: highest occupied molecular orbital(HOMO); L: lowest unoccupied molecular orbital(LUMO).

Figure S10. Electronic spectra of chlorophyll a (10⁻⁵ M in DCM) and chlorophyll a in the presence of histamine (10⁻⁴ M in DCM).

Figure S11. DPPH radical scavenging activity of $H_2T(4-Br)PP$, [Mg^{II}T(4-Br)PP], and 2 at different concentrations.

Figure S12. Optimized molecular structure of A) compound 1 and B) compound 2.

Figure S13. The simulated electronic spectrum of A) compound 1 and B) 2 obtained from theoretical calculation.

REFERENCES:

- 1 A. D. Adler. F. R. Longo. J. D. Finarelli. J. E. Goldmacher, J. M. Assour, and L. Korsakoff. A simplified synthesis for meso-tetraphenylporphine, *Journal of Organic Chemistry*, 1967, **32**, 476-476.
- 2 S. M. Diehl-Jones, Chlorophyll separation and spectral identification, J. Chem. Ed., 1984, 61, 454-456.
- 3 O. Chin Choon, V. Mckee, and G. A. Rodley, The Crystal and Molecular Structure of a Monohydrated Dipicoline Magnesium Tetraphenylpor-phyrin Complex, *Inorganica Chimic Acta*, 1986, **123**, Lll-L14 Lll.
- 4 T. Fradi, O. Noureddine, F. ben. Taheur, M. Guergueb, S. Nasri, N. Amiri, A. Almahri, T. Roisnel, V. Guerineau, N. Issoui and H. Nasri, New DMAP meso-arylporphyrinMagnesium(II) complex. Spectroscopic, Cyclic voltammetry and X-ray molecular structure characterization. DFT, DOS and MEP calculations and Antioxidant and Antifungal activities, *Journal of Molecular Structure*, 2021, 1236.
- 5 N. Amiri, M. Hajji, T. Roisnel, G. Simonneaux, H. Nasri and M. Hajji, Synthesis, molecular structure, photophysical properties and spectroscopic characterization of new 1D-magnesium(II) porphyrin-based coordination polymer, *Res Chem Intermed.*, 2018, **44**, 5583–5595.

- 6 N. Amiri, S. Nasri, T. Roisnel, G. Simonneaux, H. Nasri and M. Weil, Crystal structure of diaqua[5,10,15,20-tetrakis(4-bromophenyl)porphyrinato-κ4N]magnesium, *Acta Crystallographica Section E: Structure Reports Online*, 2015, **71**(3), 73–74.
- 7 K. Ezzayani, M. S. Belkhiria, S. Najmudin, C. Bonifácio and H. Nasri, Aqua(4-cyanopyridineκN4)(5,10,15,20-tetraphenylporphyrinatoκ4N)magnesium, Acta Crystallographica Section E: Structure Reports Online, 2013, 69(1).
- 8 M. P. Bym, C. J. Curtis, Y. Hsiou, I. Khan, P. A. Sawin, S. K. Tendick, A. Terzis and C. E. Strouse', Porphyrin Sponges: Conservation of Host Structure in over 200 Porphyrin-Based Lattice Clathrates, *J. Am. Chem. Soc.*, 1993, **115**, 9480-9491.
- 9 K. Ezzayani, A. ben Khelifa, E. Saint-Aman, F. Loiseau and H. Nasri, Complex of hexamethylenetetraminewith magnesium-tetraphenylporphyrin:Synthesis,structure, spectroscopic characterizations and electrochemical properties, *Journal of Molecular Structure*, 2017, **1137**, 412–418.
- 10 N. Amiri, F. ben Taheur, S. Chevreux, C.M. Rodrigues, V. Dorcet, G. Lemercier, and H. Nasri, Syntheses, crystal structures, photo-physical properties, antioxidant and antifungal activities of Mg(II)4,4'-bipyridine and Mg(II) pyrazine complexes of the 5,10,15,20-tetrakis(4-bromophenyl)porphyrin, *Inorganica Chimica Acta*, 2021, **525**.
- 11 A. K. Choudhurv. B. P. Borah. K. D. Borah and J. Bhuvan. Svnthesis. crvstal structure. computational studies. and antioxidant properties of dimethylformamide-bound magnesium tetraphenylporphyrin. *Journal of Coordination Chemistry*, 2023, DOI: 10.1080/00958972.2023.2222876.

Comments of Checkcif

Alert level of compound 1

PLAT430_ALERT_2_B Short Inter D...A Contact N4 ..N4 . 2.85 Ang. -x,1-y,2-z = 2_567 Check

Response: The short N-N bond distance is due to the H-bonding interaction present in the structure.

PLAT430_ALERT_2_B Short Inter D...A Contact N5 ..N5 . 2.86 Ang. 1-x,1-y,2-z = 2_667 Check

Response: The short N-N bond distance is due to the H-bonding interaction present in the structure.

PLAT934_ALERT_3_B Number of (lobs-lcalc)/Sigma(W) > 10 Outliers .. 3 Check

Response: The variation is due to the reason that checkcif does the calculation in a different way than SHELXL. This is not really an issue.

PLAT990_ALERT_1_B Deprecated .res/.hkl Input Style SQUEEZE Job ... ! Note

The above B alert is due to disorders in the lattice solvent molecules. We have refined the data with the squeeze command by PLATON software. The alert level B arises due to the disorders in the crystal.

Alert level B of compound 2

PLAT353_ALERT_3_B Long N-H (N0.87,N1.01A) N7 - H7B . 1.08 Ang.

Response:

The N7 atom participates in a strong H-bonding with the imidazole/histamine ring nitrogen. This relatively long N7-H7B bond is due to H-bonding which is discussed in the paper.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.97Ang From C49 3.03 eA-3

Response: The above B alert is due to disorders in the lattice solvent molecules.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.97Ang From C49 2.86 eA-3

Response: The above B alert is due to disorders in the lattice solvent molecules.

PLAT990_ALERT_1_B Deprecated .res/.hkl Input Style SQUEEZE Job ... ! Note

Response: The above B alert is due to disorders in the lattice solvent molecules. We have refined the data with the squeeze command by PLATON software. The alert level B arises due to the disorders in the crystal.