Supporting Information

Special NaBH₄ hydrolysis achieving multiple-surface-modifications promotes high-throughput water oxidation of CoN nanowire arrays

Sirui Liu†^a, Yuxin Shi†^a, Lingling Xu,*^a Weican Zhan,^a Meixi Chen,^a Xiaoyue Pan,^a Yuqing Yao,^a Jiajie Cai,^a Mingyi Zhang,*^a and Xinzhi Ma.*^a

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (P. R. China).

E-mail: xulingling_hit@163.com (L. Xu)

myzhangsci@hrbnu.edu.cn (M. Zhang);

maxz@hrbnu.edu.cn (X. Ma);

Fig. S1 SEM of Co(OH)F _{NWAs}/CC.

Fig. S2 SEM of B₁-CoN _{NWAs}/CC.

Fig. S3 TEM, SAED, HRTEM, HAADF-STEM and mapping of $B_1\mbox{-}CoN$ $_{\rm NWAs}\mbox{-}CC.$

Fig. S4 TEM, SAED, HRTEM, HAADF-STEM and mapping of CoN NWAS/CC.

Fig. S5 Survey XPS spectrums of $B_{0.1}$ -CoN _{NWAs}/CC about before OER (a) and after OER (b).

Fig. S6 High-resolution O 1s spectra of B_1 -CoN _{NWAs}/CC.

Fig. S7 XRD spectra of CoN $_{NWAs}$ /CC soaked in 0.1 M NaBH₄ solution for one to six hours.

Fig. S8 SEM images of CoN $_{NWAs}$ /CC soaked in 0.1 M NaBH₄ solution for (a-g) one to six hours.

Fig. S9 LSV curves of CoN $_{NWAs}/CC$ soaked in 0.1 M NaBH₄ solution for one to six hours.

Fig. S10 C_{dl} of (a) $B_{0.1}$ -CoN _{NWAs}/CC, (b) B_1 -CoN _{NWAs}/CC and (c) CoN _{NWAs}/CC.

Fig. S11 ECSA normalized LSV curves of these catalysts.

Fig. S12 Cyclic voltammetry cycling in pH = 7 phosphate buffer with a scan rate of 50 mV s⁻¹ range from -0.8 to 0 V vs. Ag/AgCl of $B_{0.1}$ -CoN _{NWAs}/CC, B₁-CoN _{NWAs}/CC and CoN _{NWAs}/CC.

Fig. S13 LSV curves of $B_{0.1}$ -CoN _{NWAs}/CC and CoN _{NWAs}/CC before and after 24 h Chronopotentiometry measurements.

Fig. S14 SEM image of CoN _{NWAs}/CC after OER.

Fig. S15 SEM image of $\rm B_1\text{-}CoN$ $_{\rm NWAs}/\rm CC$ after OER.

					= Ta
		BE (eV)	FWHM (eV)	% area	S2
	Co-N	779.80	1.1	5.2	- res
Co 2p 3/2	Co ³⁺	780.92	1.7	17.3	for
	Co ²⁺	782.20	3.3	27.8	0
	Sat.	786.40	5.0	17.8	D
	Co ³⁺	796.28	1.9	0.1	\mathbf{D}_1
Co 2p 1/2	Co ²⁺	797.44	2.4	11.5	NW
	Sat.	802.82	5.0	12.6	be
					OI
	B-N	397.45	1.9	17.3	
	Pyridinic-N	398.45	1.2	10.9	
N 1s	Co-N-B	399.45	1.2	17.3	
	Pyrrolic-N	400.30	1.0	4.5	
	N-O	403.16	3.0	50.0	
B 1s	Co-N-B	189.50	1.2	12.0	
	B-N	190.84	1.7	40.0	
	B-O	191.52	1.3	48.0	
O 1s	Co-O	530.62	1.0	19.3	
	O_{v}	531.28	1.3	40.1	
	BO _x	532.13	1.3	26.4	
	O_a	533.12	2.0	14.2	

Table S1. XPS results of $B_{0.1}\mbox{-}CoN$ $_{NWAs}\!/CC$ before OER.

		BE (eV)	FWHM (eV)	% area
0.1	Co-O	530.18	1.0	10.8
	\mathbf{O}_{v}	531.03	1.3	44.9
0 IS	BO_x	531.75	1.6	29.0
	O_a	532.83	1.8	15.3

Catalysts	η10	Electrolyte	Rerences
NiO/CoN PINWs	300	0.1M KOH	S1
Co@CNT/MSC	396	0.1M KOH	S2
NiCo ₂ O ₄ /CoN _x -NMC	370	0.1M KOH	S3
CoNS/C	345	0.1M KOH	S4
Co _{5.47} N/Co ₃ Fe ₇ /NC	379	1M KOH	S5
g CoN _x /NiFeO _x /N-RGO	372	1M KOH	S 6
ZnCoHCF-3	350	1M KOH	S7
Co-LDHs-4	241	1M KOH	S 8
CoN-Gr-2	280	1M KOH	S9
(N, S)-RGO@CoN	220	1M Na ₂ SO ₄	S10
Cu ₆ Co ₇ /CC	500	0.2 M PBS	S11
CoN/Co ₄ N	398	1 M PBS	S12
Co ₄ N-CeO ₂ /GP	239	1M KOH	S13
Co ₄ N@CNNT	285	1M KOH	S14
CoN@Ni foam	290	1M KOH	S15
Co _{5.47} N@N-rGO	350	1M KOH	S16
Co ₃ N@AN-C	280	1M KOH	S17
Ni-Co ₄ N	233	1M KOH	S18
CoO/CoSe ₂	396	0.5 M PBS	S19

Table S3. Comparison of OER properties of other cobalt-based catalysts.

		BE (eV)	FWHM (eV)	% area	
	Co ³⁺	779.90	1.9	44.8	
Co 2p _{3/2}	Co ²⁺	781.30	1.8	13.8	
	Sat.	789.50	6.0	6.9	
	Co ³⁺	794.72	1.2	8.6	
Co 2p _{1/2}	Co ²⁺	795.90	3.1	19.0	
	Sat.	805.42	5.0	6.9	
N 1s	N-B	397.45	1.2	0.1	
	Pyridinic-N	398.90	0.9	11.3	
	N-Co	399.63	1.3	31.0	
	Pyrrolic-N	400.66	1.5	8.5	
	N-O	403.60	2.8	35.2	
D 1a	B-N	191.10	0.5	21.7	
D 18	B-O	191.58	0.9	78.3	
O 1s	Co-O	529.52	1.5	35.4	
	O_v	530.85	1.4	38.3	
	BO_x	531.75	1.5	20.7	
	O _a	533.00	2.0	5.6	

Table S4. XPS results for the Co 2p, N 1s, B 1s and O 1s of $B_{0.1}$ -CoN _{NWAs}/CC after OER.

References

- S1 J. Yin, Y. Li, F. Lv, Q. Fan, Y.-Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi, and S. Guo, ACS Nano, 2017, 11, 2275-2283.
- S2 C. Xiao, J. Luo, M. Tan, Y. Xiao, B. Gao, Y. Zheng, and B. Lin, *J. Power Sources*, 2020, **453**, 227900
- S3 M.-F. Qiao, Y. Wang, L. Li, G.-Z. Hu, G.-A. Zou, X. Mamat, Y.-M. Dong, and Xun Hu, *Rare Metals*, 2020, **39**, 824-833.
- S4 Y. Wang, S. Zhang, X. Meng, T. Wang, Y. Feng, W. Zhang, Y.-S. He, Y. Huang,N. Yang, and Z.-F. Ma, ACS Appl. Mater. Interfaces, 2021, 13, 503-513.
- S5 L. Li, J. Chen, S. Wang, Y. Huang, and D. Cao, *Appl. Surf. Sci.*, 2022, 582, 152375.
- S6 X. Jia, Y. Zhang, D. Guo, L. Zhang, L. Wang, and L. Zhou, *Ionics*, 2020, 26, 1885-1894.
- S7 P. Jain, S. Jha, and P. P. Ingole, ACS Appl. Energy Mater., 2023, 6, 3278-3290.
- S8 Q. Chen, R. Ding, H. Liu, L. Zhou, Y. Wang, Y. Zhang, and G. Fan, ACS Appl. Mater. Interfaces, 2020, 12, 12919-12929.
- S9 T. Liu, S. Cai, G. Zhao, Z. Gao, S. Liu, H. Li, L. Chen, M. Li, X. Yang, and H. Guo, J. Energy Chem., 2021, 62, 440-450.
- S10 D. Guo, Z. Zeng, Z. Wan, Y. Li, B. Xi, and C. Wang, Adv. Funct. Mater., 2021,

31, 2101324.

- S11 M. Wang, W. Zhong, S. Zhang, R. Liu, J. Xing, and G. Zhang, J. Mater. Chem. A, 2018, 6, 9915-9921.
- S12 R.-Q. Li, P. Hu, M. Miao, Y. Li, X.-F. Jiang, Q. Wu, Z. Meng, Z. Hu, Y. Bando, and X.-B. Wang, J. Mater. Chem. A, 2018, 6, 24767-24772.
- S13 H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, and F. Cheng, J. Chen, C.-P. Li, and M. Du, *Adv. Funct. Mater.*, 2020, **30**, 1910596.
- S14 N. Wang, B. Hao, H. Chen, R. Zheng, B. Chen, S. Kuang, X. Chen, and L. Cui, *Chem. Eng. J.*, 2021, **413**, 127954.
- S15 Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R. S. Rawat, and H. Fan, Angew. Chem. Int. Ed., 2016, 55, 8670-8674.
- S16 X. Shu, S. Chen, S. Chen, W. Pan, and Ji Zhang, Carbon, 2020, 157, 234-243.
- S17 B. K. Kang, S. Y. Im, J. Lee, S. H. Kwag, S. B. Kwon, S. Tiruneh, M.-J. Kim, J.
 H. Kim, W. S. Yang, B. Lim, and D. H. Yoon, *Nano Res.*, 2019, **12**, 1605-1611.
- S18 D. Li, W. Zhang, J. Zeng, B. Gao, Y. Tang, and Q. Gao, *Sci. China Mater.*, 2021, 64, 1889-1899.
- S19 K. Li, J. Zhang, R. Wu, Y. Yu, and B. Zhang, Adv. Sci., 2016, 3, 1500426.