Supporting Information

Synthesis, characterization, photophysical, electrochemical properties and biomolecular interaction of $\mathbf{2 , 2} \mathbf{2}^{\prime}$-biquinoline based phototoxic $\mathbf{R u}(\mathrm{II}) / \mathrm{Ir}$ (II) complexes

Utpal Das, Priyankar Paira*

1. Characterization S1-S12 2-13
2. Figure S13-S28 14-24
3. Experimental Section 24-28

CHARACTERIZATION OF COMPLEXES

Fig. S1: ${ }^{1} \mathrm{HNMR}$ of complex RuBQ

Fig. S3: ${ }^{19}$ F NMR of complex RuBQ

Fig. S4: ${ }^{31} \mathrm{P}$ NMR of complex RuBQ

Fig. S5: ESI-HRMS spectrum of complex RuBQ

Fig. S6: IR spectrum of Complex RuBQ

Fig. S7: ${ }^{1} \mathrm{H}$ NMR of complex IrBQ

Fig. S8: ${ }^{13} \mathrm{C}$ NMR of complex IrBQ

Fig. S9: ${ }^{19}$ F NMR of complex IrBQ

Fig. S10: ${ }^{31} \mathrm{P}$ NMR of complex IrBQ

Fig. S11: ESI-HRMS spectrum of complex IrBQ

Fig. S12: IR spectrum of Complex IrBQ

Fig. S13: UV-Vis spectra of complexes RuBQ and IrBQ with concentration of $3 \times 10^{-5} \mathbf{M}$.

Fig. S14: Emission spectra of complexes RuBQ, and IrBQ in $\mathbf{1 0 \%}$ DMSO-Water at $267 \mathbf{n m}$

Fig. S15: Stability of the complexes RuBQ (a), and $\operatorname{IrBQ}(b)$ with concentration of 3×10^{-5} M in 1 mM aqueous GSH media.

Fig. S16: Stability in $\mathbf{1 0 \%}$ DMSO-PBS buffer media for complexes RuBQ (a), and $\operatorname{IrBQ}(b)$ with concentration of $3 \times 10^{-5} \mathrm{M}$.

Fig. S17: Stability in 1 mM Glucose solution for complexes RuBQ (a), and IrBQ (b) with concentration of $3 \times 10^{-5} \mathrm{M}$.

Fig. S18: Stability in 1 mM cysteine solution for complexes RuBQ (a), and IrBQ (b) with concentration of $3 \times 10^{-5} \mathrm{M}$.

Fig. S19: Interaction of RuBQ complex with Cys molecules. t Peaks were vanished after 6 h.

Fig. S20: Fig. S15: Interaction of IrBQ complex with Cys molecules. \& Peaks were vanished after 6 h.

Fig. S21: DNA binding plots of all complexes RuBQ (a), and IrBQ (c). [DNA]/($\left.\varepsilon_{a}-\varepsilon_{f}\right)$ vs. [DNA] linear plots of all complexes RuBQ (b), and $\operatorname{IrBQ}(\mathrm{d})$ with concentration of 5×10^{-5} M

Fig. S22: Concentration dependent binding study of RuBQ and IrBQ complexes with concentration of $3 \times 10^{-5} \mathrm{M}$ with $1 \mathbf{m M}$ Adenine.

Fig. S23: Concentration dependent binding study of RuBQ and IrBQ complexes with concentration of $3 \times 10^{-5} \mathrm{M}$ with $1 \mathbf{m M}$ Guanine.

Fig. S24: Interaction of complexes (a) RuBQ, (d) IrBQ with EtBr. Stern-Volmer Plot of $\mathrm{I}_{0} / \mathbf{I}$ vs. concentration of complexes (b) RuBQ, (e) IrBQ. Scatchard Plot of $\log \left[I_{0}-I / I\right]$ vs. $\log [C o m p l e x]$ for EtBr in the presence of complex (c) RuBQ, (f) IrBQ.

Fig. S25: Relative viscosity plot of Ct-DNA with complexes RuBQ, and IrBQ with respect to EtBr at $25{ }^{0} \mathrm{C}$.

Fig. S26: Interaction of complexes (a) RuBQ, (d) IrBQ with BSA. Stern-Volmer Plot of $10 / I$ vs. concentration of complexes (b) RuBQ, (e) IrBQ. Scatchard Plot of $\log [I 0-I / I]$ vs. $\log [$ Complex] for BSA in the presence of complex (c) RuBQ, (f) IrBQ.

Fig. S27: Interaction of complexes (a) RuBQ, (d) IrBQ with HSA. Stern-Volmer Plot of $10 / I$ vs. concentration of complexes (b) RuBQ, (e) IrBQ. Scatchard Plot of $\log [I 0-I / I]$ vs. $\log [C o m p l e x]$ for HSA in the presence of complex (c) RuBQ, (f) IrBQ.

Fig. S28: Example of some Ruthenium and Iridium based PACT agent collected from literature.

Table.S1: Comparison of dark and light cytotoxicity, lipophilicity, DNA binding property between RuBQ, IrBQ and previously reported Ru and Ir based PACT agent.

Complex	HeLa cell				MCF-7 cell		Dose	$\begin{aligned} & \mathrm{Log} \\ & \mathrm{p}_{\mathrm{o} / \mathrm{w}} \end{aligned}$	DNA binding parameters $\left(\mathrm{K}_{\text {app }}\right)\left(10^{6}\right.$ M^{-1})	Ref
	Dark	Light	PI	Dark	Light	PI				
1	$\begin{aligned} & \hline 67.03 \\ & \pm 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.24 \pm \\ & 0.09 \end{aligned}$	280.5	-	-		$\begin{aligned} & \hline 450 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	-	-	31
1-a	$\begin{aligned} & 19.2 \pm \\ & 0.4 \end{aligned}$	$\begin{aligned} & \hline 2.9 \pm \\ & 0.2 \end{aligned}$	6.7	-	-	-	$\begin{aligned} & \hline 450 \\ & \mathrm{~nm} \end{aligned}$	-	-	31
2	> 100	$\begin{aligned} & 90.0 \pm \\ & 1.6 \end{aligned}$	1.1	-	-	-	$\begin{aligned} & \hline 450 \\ & \mathrm{~nm} \end{aligned}$	-	-	31
2-a	> 100	> 100	1.1	-	-	-	$\begin{aligned} & \hline 450 \\ & \mathrm{~nm} \end{aligned}$	-	-	31
3	> 100	$\begin{aligned} & \hline 2.12 \pm \\ & 0.11 \\ & \hline \end{aligned}$	>47	-	-	-	$\begin{aligned} & \hline 420 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.8 \pm \\ & 0.01 \\ & \hline \end{aligned}$	-	32
4	> 100	$\begin{aligned} & \hline 5.45 \pm \\ & 0.35 \\ & \hline \end{aligned}$	>18	-	-	-	$\begin{aligned} & \hline 420 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.27 \\ & \pm 0.09 \\ & \hline \end{aligned}$	-	32
5	> 100	$\begin{aligned} & 55.40 \\ & \pm 8.4 \\ & \hline \end{aligned}$	> 1.8	-	-	-	$\begin{aligned} & \hline 420 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.29 \pm \\ & 0.04 \\ & \hline \end{aligned}$	-	32
6	> 100	$\begin{aligned} & 98.01 \\ & \pm 1.9 \end{aligned}$	> 1.0	-	-	-	$\begin{aligned} & \hline 420 \\ & \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 3.34 \pm \\ & 0.20 \end{aligned}$	-	32
7	> 100	> 100	-	-	${ }^{-}$	-	$\begin{aligned} & \hline 420 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.56 \pm \\ & 0.08 \\ & \hline \end{aligned}$	-	32
8	-	-	-	$\begin{aligned} & 250.6 \\ & \pm 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.1 \pm \\ & 0.3 \\ & \hline \end{aligned}$	20.9	$\begin{aligned} & \hline 450 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	-0.17	-	33
9	$\begin{aligned} & \hline 24.6 \pm \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.25 \pm \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 56.4 \pm \\ & 7.2 \\ & \hline \end{aligned}$	-	-	-	$\begin{aligned} & \hline 470 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.10 \pm \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.52 \pm \\ & 0.43 \\ & \hline \end{aligned}$	34
10	>200	$\begin{aligned} & 8.1 \pm \\ & 0.5 \\ & \hline \end{aligned}$	-	-	${ }^{-}$	${ }^{-}$	$\begin{aligned} & \hline 470 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1.15 \\ & \pm 0.05 \\ & \hline \end{aligned}$	6.00	35
11	$\begin{aligned} & 31.3 \pm \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \pm \\ & 2.5 \\ & \hline \end{aligned}$	2.71	$\begin{aligned} & 67.2 \pm \\ & 19.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.7 \pm \\ & 1.9 \\ & \hline \end{aligned}$	4.02	$\begin{aligned} & \hline 448 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	-0.06	5.04	36
12	> 100	12.87	-	-	-	-	$\begin{aligned} & \hline 400- \\ & 700 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.69 \pm \\ & 0.02 \end{aligned}$	6.8	37
13	$\begin{aligned} & \hline 13.20 \\ & \pm 1.52 \end{aligned}$	$\begin{aligned} & \hline 7.53 \\ & \pm 0.74 \end{aligned}$	-	$\begin{aligned} & \hline 10.76 \\ & \pm 0.48 \end{aligned}$	$\begin{aligned} & 4.88 \pm \\ & 1.27 \end{aligned}$		$\begin{aligned} & 500 \\ & \mathrm{~nm} \end{aligned}$	0.11	2.0	11
14	$\begin{aligned} & 120.4 \\ & \pm 5.4 \end{aligned}$	$\begin{aligned} & 9.5 \pm \\ & 1.3 \end{aligned}$	12.7	> 200	$\begin{aligned} & \hline 5.6 \pm \\ & 0.1 \\ & \hline \end{aligned}$	>35.7	$\begin{aligned} & \hline 425 \\ & \mathrm{~nm} \end{aligned}$	0.51	-	38
15	$\begin{aligned} & 58.67 \\ & \pm 1.31 \end{aligned}$	$\begin{aligned} & 0.33 \pm \\ & 0.02 \end{aligned}$	177.8	$\begin{aligned} & \hline 66.08 \\ & \pm 0.84 \end{aligned}$	$\begin{aligned} & 0.71 \pm \\ & 0.01 \end{aligned}$	93.1	$\begin{aligned} & 425 \\ & \mathrm{~nm} \end{aligned}$	-0.21	-	39
16	$\begin{aligned} & 30.3 \pm \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.40 \pm \\ & 0.06 \\ & \hline \end{aligned}$	75	-	-	-	$\begin{aligned} & \hline 405 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	1.42	-	40

17	$\begin{aligned} & 22.5 \pm \\ & 0.9 \end{aligned}$	$\begin{aligned} & \hline 0.15 \pm \\ & 0.01 \end{aligned}$	150	-	-	-	$\begin{aligned} & \hline 405 \\ & \mathrm{~nm} \end{aligned}$	1.91	-	41
18	-	-	-	$\begin{aligned} & 164 \pm \\ & 10.3 \end{aligned}$	$\begin{aligned} & \hline 4.31 \pm \\ & 0.27 \\ & \text { (O.P) } \\ & \hline \end{aligned}$	38.1	$\begin{aligned} & 450 \\ & \mathrm{~nm} \end{aligned}$	-	-	42
18	${ }^{-}$	${ }^{-}$	-	$\begin{aligned} & 164 \pm \\ & 10.3 \end{aligned}$	$\begin{aligned} & 2.84 \pm \\ & 0.14 \\ & \text { (T.P) } \\ & \hline \end{aligned}$	57.7	$\begin{aligned} & 800 \\ & \mathrm{~nm} \end{aligned}$	-	-	42
19	$\begin{aligned} & 58.9 \pm \\ & 3.3 \end{aligned}$	$\begin{aligned} & \hline 3.4 \pm \\ & 0.3 \end{aligned}$	17.3	-	-	-	$\begin{aligned} & \hline 365 \\ & \mathrm{~nm} \end{aligned}$	-	-	43
19	$\begin{aligned} & 58.9 \pm \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.8 \pm \\ & 0.9 \\ & \hline \end{aligned}$	8.7	-	-	-	$\begin{aligned} & \hline 425 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	-	-	43
RuBQ	$\begin{aligned} & 24.12 \\ & \pm 0.62 \\ & \hline \end{aligned}$	$\begin{gathered} 10.48 \\ \pm 0.76 \\ \hline \end{gathered}$	2.30	$\begin{aligned} & \hline 20.12 \\ & \pm 0.58 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.45 \pm \\ & 0.58 \\ & \hline \end{aligned}$	2.12	$\begin{aligned} & \hline 500 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	0.15	2.0	
IrBQ	$\begin{aligned} & 17.15 \\ & \pm 1.46 \end{aligned}$	$\begin{aligned} & \hline 7.23 \pm \\ & 0.79 \\ & \hline \end{aligned}$	2.37	$\begin{gathered} \hline 19.19 \\ \pm 0.43 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8.75 \\ & \pm 0.46 \\ & \hline \end{aligned}$	2.19	$\begin{aligned} & \hline 500 \\ & \mathrm{~nm} \\ & \hline \end{aligned}$	0.20	2.28	

O.P $=$ One photon excitation, $T . P=$ Two photon excitation.

Experimental Section:

UV and Fluorescence study:

Two complexes (RuBQ, IrBQ,) were evaluated using UV and fluorescence spectroscopy in 10% DMSO solution. Quantum yields of luminescence (Φ) were then determined using a 10% DMSO solution and a well-characterized standard with a known quantum yield value (William's method). Quinine sulphate was utilized as a standard. For the objective of figuring out quantum yield, the following equation (i) was used.

$$
\begin{equation*}
\Phi=\Phi_{\mathrm{R}} \times \mathbf{I}_{\mathrm{S}} / \mathbf{I}_{\mathrm{R}} \times \mathrm{OD}_{\mathrm{R}} / \mathrm{OD}_{\mathrm{S}} \times \boldsymbol{\eta}_{\mathrm{S}} / \boldsymbol{\eta}_{\mathrm{R}} \tag{i}
\end{equation*}
$$

Where, $\Phi=$ quantum yield, $\mathrm{OD}=$ absorbance at $\lambda_{\max }, \eta=$ refractive index of solvent(S), reference $(\mathrm{R}), \mathrm{I}=$ peak area.

n-Octanol-water partition coefficient $\left(\log P_{o / w}\right)$:

By following the published protocol, the $\log P_{o / w}$ of these complexes was calculated using the shake flask method. We used an orbital shaker to mix a known quantity of each compound with water (pre-saturated with n-octanol) for 48 hours. The solution was centrifuged at 3000 rpm for 10 minutes in order to separate its phases. Following the bilayer separation, UV-Vis spectroscopic investigation was carried out and with the help of the OD of the complexes in water and octanol, we were able to determine the partition coefficient values $\left(\log P_{o / w}\right)$.

Conductivity measurement:

Due to the verification of the interaction of the complexes with DMSO, aqueous DMSO, GSH, and Ct -DNA solutions, the conductivity of the complexes was measured using a conductivityTDS meter-307 (Systronics, India) and a cell constant of $1.0 \mathrm{~cm}^{-1}$. Here, we conducted the experiment at a complex concentration of $3 \times 10^{-5} \mathrm{M}$.

Stability study:

Three complexes (RuBQ, IrBQ) were investigated for stability in several environments, including aqueous DMSO $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{DMSO}=9: 1\right)$, GSH medium, and PBS buffer, Cysteine medium.

Biology:

DNA binding study:

The binding efficiency of the complexes with calf thymus DNA (CT-DNA) was investigated using electronic absorption spectroscopy and competitive binding experiment was performed using fluorescence spectroscopy and EtBr as a quencher.

UV-visible studies

DNA binding study was performed with the help of complex RuBQ, IrBQ in Tris-HCl buffer (5 mM Tris- HCl in water, pH 7.4) in aqueous medium. Using it's known molar absorption coefficient value of $6600 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ and its absorbance intensity at 260 nm , the concentration of CT-DNA was determined. Titration was performed by raised the concentration of CT-DNA. Before each measurement, a sample was allowed to equilibrate with CT-DNA for around 5 minutes, and then the absorbance of the resulting complex was recorded. K_{b}, the intrinsic DNA binding constant, was determined by using equation (ii).

$$
\begin{equation*}
\frac{[D N A]}{\left(\varepsilon_{a}-\varepsilon_{f}\right)}=\frac{[D N A]}{\left(\varepsilon_{b}-\varepsilon_{f}\right)}+\frac{1}{K_{b}\left(\varepsilon_{a}-\varepsilon_{f}\right)} \mathrm{L} \mathrm{~L} \tag{ii}
\end{equation*}
$$

Where, [DNA] = concentration of DNA in the base pairs, $\varepsilon_{\mathrm{a}}=$ apparent extinction coefficient observed for the complex, $\varepsilon_{\mathrm{f}}=$ extinction coefficient of the complex in its free form, $\varepsilon_{\mathrm{b}}=$
extinction coefficient of the complex when fully bound to DNA. From the resulting data we got [DNA] / $\left(\varepsilon_{a}-\varepsilon_{f}\right)$ vs [DNA] linear plot with the help of Origin Lab, version 8.5. From the ratio of slope and intercept we got the intrinsic binding constants $\left(K_{b}\right)$.

Ethidium bromide displacement assay

To demonstrate the type of DNA binding occurring of the complexes, an ethidium bromide (EtBr) displacement experiment was performed. Using ethidium bromide (EtBr) as a spectral probe in 5 mM Tris- HCl buffer (pH 7.4), the apparent binding constant ($K_{\text {app }}$) of all the complexes to CT-DNA was determined. As the fluorescence is quenched by the solvent molecules free EtBr do not show any fluorescence. However, the intercalative method of binding of EtBr with DNA grooves was suggested by the fact that its fluorescence intensity increased radially with increasing concentrations of CT-DNA. As the complex concentrations were increased, it was observed that the fluorescence intensity decreased. In accordance with the displacement idea, the complexes are thought to have first displaced EtBr from CT-DNA grooves before binding to the DNA base pairs. Apparent binding constant ($K_{\text {app }}$) values were calculated using the following equation (iii).

$$
\begin{equation*}
K_{\text {app }} \times[\text { Complex }]_{50}=K_{E t B r} \times[\mathrm{EtBr}] . \tag{iii}
\end{equation*}
$$

Where $K_{E t B r}$ is the EtBr binding constant ($K_{E t B r}=1.0 \times 10^{7} \mathrm{M}^{-1}$), and $[\mathrm{EtBr}]=8 \times 10^{-6} \mathrm{M}$. With the help of Stern-Volmer equation we determined the Stern-Volmer quenching constant (K_{SV}). We obtain linear plot of I_{0} / I vs. [complex] with the help of Origin 8.5 software. The value of K_{Sv} was calculated from the following equation:

$$
\begin{equation*}
I_{0} / I=1+\mathrm{K}_{\mathrm{SV}}[\mathrm{Q}] \mathrm{L} \mathrm{~L} \tag{iv}
\end{equation*}
$$

Where, $I_{0}=$ fluorescence intensity in absence of complex and $I=$ fluorescence intensities in presence of complex of concentration [Q].

Protein binding studies

Blood plasma proteins, specifically serum albumin, play crucial roles in drug delivery. We studied the interaction of the complexes with human serum albumin (HSA), and Bovine serum albumin (BSA). At the concentration of $2 \times 10^{-6} \mathrm{M}$ BSA and HSA solution was prepared in Tris-
$\mathrm{HCl} / \mathrm{NaCl}$ buffer. The complexes' aqueous solutions were then added to the HSA and BSA solution in a stepwise fashion to raise the concentration. After each addition, the solutions were gently agitated for 5 minutes before recording the fluorescence at a wavelength of 280 nm for HSA and 295 nm for BSA. It was noticed that the fluorescence intensity gradually decreased with increasing complex concentration, proving that interaction between the complex and HSA or BSA occurred. With the help of Stern-Volmer equation we quantitatively determine the quenching constant (K_{BSA}). We obtained linear plot of $I_{0} / I \mathrm{vs}$. [complex] using the equation (v) with the help of Origin Lab, version 8.5.
$\mathrm{I}_{0} / \mathrm{I}=1+\mathrm{K}_{\mathrm{BSA} / \mathrm{HSA}}[\mathrm{Q}]=1+\mathrm{k}_{\mathrm{q}} \tau_{0}[\mathrm{Q}] \mathrm{L} \mathrm{L}$
Where $I_{0}=$ the fluorescence intensity of BSA/HSA in absence of complex, $I=$ the fluorescence intensity of BSA/HSA in presence of complex of concentration $[\mathrm{Q}], \tau_{0}=$ lifetime of the tryptophan in BSA/HSA found as $1 \times 10^{-8}, k_{q}=$ the quenching constant. Equation (vi) gives the binding properties of the complexes.
$\log \left(I_{0^{-}} I / I\right)=\log K+n \log [\mathrm{Q}] \mathrm{L} \mathrm{L} \cdots \cdots \cdots(v i)$

Where, $K=$ binding constant, $n=$ number of binding sites.

Singlet oxygen (102) quantum yield determination

Using visible light (400-700 nm) for photosensitization, the singlet oxygen $\left({ }^{1} \mathrm{O}_{2}\right)$ quantum yields of complexes in DMSO at room temperature were calculated. In order to calculate the ${ }^{1} \mathrm{O}_{2}$ quantum yields we observed the photooxidation of DPBF after sensitization by the complex. From 10 s to 140 s , DPBF photooxidation was recorded. Quantum yield of ${ }^{1} \mathrm{O}_{2}$ was determined by using Rose Bengal (RB) ($\Phi\left[{ }^{1} \mathrm{O}_{2}\right] 0.76$ in DMSO) as a reference molecule and comparing the quantum yield of DPBF photooxidation after sensitization by the compound of interest to that of RB using Equation (vii).
$\Phi \Delta_{\mathrm{c}}=\Phi \Delta_{\mathrm{RB}} \times m_{c} / m_{R B} \times F_{R B} / F_{C}$ \qquad
where $\mathrm{c}=$ complex, and $\mathrm{RB}=$ Rose Bengal. $\phi \Delta={ }^{1} \mathrm{O}_{2}$ quantum yield, and m is the slope of the plot of DPBF absorbance at 417 nm vs. irradiation time. $\mathrm{F}=$ absorption correction factor, which is given by Equation (viii).

Where, OD is the optical density at the irradiation wavelength.

